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Abstract
Background  An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A 
and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a 
mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A 
and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in 
lung cancer.
Methodology  We searched for relevant publications in the PubMed and Google Scholar databases using the keywords 
“RASSF1A”, “SHOX2” and “lung cancer” etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family struc-
tures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in 
lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A 
and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients.
Results  The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, 
driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher 
sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage.
Conclusions  The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug 
resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identi-
fied as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
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Introduction

Lung cancer contributes to the highest incidence of cancer-
related mortality in the world (Bray et al. 2018). At pre-
sent, the methods for treating lung cancer have continuously 
improved; such methods include early surgical resection, the 
first-line standard treatment of radiotherapy and chemother-
apy, immunotherapy and targeted therapy for advanced lung 

cancer patients (Blumenthal et al. 2018). However, the effect 
of drug therapy is often unsatisfactory because of metas-
tasis and the emergence of drug resistance, which could 
be derived by EGFR secondary mutations, such as EGFR 
T790M, and epigenetic modifications, such as DNA meth-
ylation (Lin and Shaw 2016; Mehta et al. 2015). The poor 
5-year survival rate mainly results from delayed diagnosis 
and the presence of drug resistance and metastatic lesions 
(Dela Cruz et al. 2011). Therefore, the search for more spe-
cific and more sensitive detection strategies for the diagnosis 
of lung cancer in the early stage and for the monitoring of 
the response to therapies in the advanced stage is urgent.

Lung cancer is a heterogeneous disease based on differ-
ent genetic and epigenetic molecular alterations. Genetic 
changes, including point mutations, deletions, transloca-
tions, and amplifications, are known as the drivers of lung 
cancer that lead to sequential progression from benign 
disease to cancer. Epigenetics focuses on the heritable 
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alterations of gene expression while without changing the 
DNA sequence of genes (Deans and Maggert 2015). DNA 
methylation is one of the most thoroughly studied epigenetic 
modifications of genomic DNA. The functions of DNA mod-
ification by methylation include maintaining chromosome 
stability, inhibiting repetitive sequences, preventing foreign 
DNA integration, and controlling gene expression (Robert-
son 2005). DNA methylation has been considered closely 
associated with tumorigenesis and one of the earliest and 
most consistent molecular markers of human cancers (Abu-
Remaileh et al. 2015; Heyn and Esteller 2012; Timp and 
Feinberg 2013). The genome of tumor cells shows global 
hypomethylation and regional hypermethylation, especially 
in promoter CpG islands of tumor suppressor genes (Heyn 
and Esteller 2012). Methylation of promoter CpG islands 
could transcriptionally silence the associated genes, most of 
which are tumor suppressor genes (TSGs), and contribute to 
oncogenesis (Laird 2003).

TSGs are normal genes that control normal cell division, 
repair DNA damage and promote apoptosis or programmed 
cell death of damaged cells. In addition, the proteins encoded 
by TSGs could regulate many other genes to maintain the 
stability of DNA. TSGs tend to be recessive that both alleles 
must be damaged contributing to cancer (Zhu et al. 2015). 
Once a TSG is hypermethylated or mutated, resulting in loss 
of its activity, cell division might proceed uncontrolled and 
contribute to tumorigenesis (Esteller 2002).

Recently, many  prevalent studies have reported that 
TSGs, such as CDKN2A, APC, RARβ, MGMT, DAPK, 
F2RL3,and RASSF1A, were frequently hypermethylated 
and silenced in lung cancer (Duruisseaux and Esteller 2017; 
Feng et al. 2016; Niklinska et al. 2009). Ras association 
domain-containing protein 1A (RASSF1A), one of the most 
thoroughly studied TSGs, is functionally involved in cell 
proliferation, tumorigenesis, and migration (Malpeli et al. 
2019). Short stature homeobox 2 (SHOX2), an oncogene, is 
a regulator of cell proliferation and apoptosis and an inducer 
of EMT (Marchini et al. 2016). In addition to its functions in 
the progression of cancer, SHOX2 is also critical for skeletal 
development, embryonic development, and cardiovascular 
system differentiation (Peng et al. 2019; Yi et al. 2017). 
RASSF1A and SHOX2 both are frequently hypermethyl-
ated in lung cancer tissue (Darwiche et al. 2013; Kneip 
et al. 2011; Zhang et al. 2017). Studies from several groups 
have shown that the combined detection of RASSF1A and 
SHOX2 methylation in various types of samples, includ-
ing alveolar lavage fluid, serum, pleural effusion, ascites 
samples, cells, and lymph nodes, exhibited remarkably high 
sensitivity and specificity in lung cancer (Darwiche et al. 
2013; Kneip et al. 2011; Ooki et al. 2017; Ren et al. 2017; 
Zhang et al. 2017). Evidence has strongly suggested that the 
methylation of RASSF1A and SHOX2 is a critical event in 
the tumorigenesis and progression of lung cancer, and these 

modified genes could serve as a potential pair of biomark-
ers for lung cancer screening at early or advanced stages 
(Alanazi et al. 2018; Niklinska et al. 2009; Peng et al. 2019; 
Zhang et al. 2017). Currently, an increasing number of stud-
ies have focused on the diagnostic value of RASSF1A and 
SHOX2 methylation in lung cancer. However, the inherent 
relationship between the epigenetic methylation and intricate 
cellular events of RASSF1A and SHOX2 in lung cancer is not 
well understood.

To more profoundly understand the diagnostic value of 
methylated RASSF1A and SHOX2 in lung cancer, this review 
will provide substantial insights into the molecular events of 
RASSF1A and SHOX2 in lung cancer.

Survey methodology

PubMed database (https​://www.ncbi.nlm.nih.gov/pubme​d) 
and Google scholar database (https​://schol​ar.chong​buluo​
.com/) were mainly used for related publication search 
with the keywords “RASSF1A”, “RASSF1-A”, “RASSF-
1A”, “SHOX2”, “SHOX”, “Shox2”, “OG12”, “SHOT”, 
“OG12X”, and “lung cancer”.

RASSF1A

RASSF1A gene function and related diseases

The RAS-association domain family (RASSF) comprises 
ten members from RASSF1 to RASSF10. These proteins 
are characterized by a putative Ras association (RA) domain 
that can be found on the C terminus (for example RASSF1-
6, called C-RASSF proteins) or on the N terminus (for 
example RASSF7-10, called N-RASSF proteins) (Iwasa 
et al. 2018; Richter et al. 2009). RASSF1 and RASSF5 are 
widely and prominently studied members of this protein 
family, while few studies have provided data about the other 
members.

The RASSF1 gene contains eight exons (1α, 1β, 2αβ, 2γ, 
3, 4, 5 and 6) and two promoters, in which there are two CpG 
islands. The RASSF1 proteins consist of eight variant iso-
forms (RASSF1A–RASSF1H) that are produced from alter-
native splice variants and alternative promoter usage (Rich-
ter et al. 2009). Recently, only RASSF1A and RASSF1C two 
isoforms were mainly focused and researched. Interestingly, 
RASSF1A and RASSF1C are ubiquitously expressed in nor-
mal tissue, and they localize microtubules and participate in 
growth regulation (Malpeli et al. 2019). Although harboring 
60% amino acid identity, the two transcripts exhibit different 
biological functions (Volodko et al. 2014). The functions of 
RASSF1A and RASSF1C in cancer are almost opposite; 
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the former plays a role in suppressing cancer, while the lat-
ter plays a pivotal role in carcinogenesis. RASSF1A and 
RASSF1C have three identical domains, including the RA 
domain, the ataxia telangiectasia mutated (ATM) phospho-
rylation site and the Salvador/rassf/Hippo (SARAH) domain, 
which suggests their overlapping functions in cells. The C1 
domain (a protein kinase C (PKC) conserved region) is the 
main structural difference between the two isoforms, and it 
exists only at the N terminus of RASSF1A, which explains 
the opposing roles of these proteins in carcinogenesis in a 
certain (Dubois et al. 2019a). RASSF1A and RASSF1C 
balance cell survival events and malignant behavior. The 
hypermethylated transcriptional silencing of RASSF1A dis-
rupts the balance and contributes to the overexpression of 
RASSF1C and the function of RASSF1C in carcinogenesis 
(Dubois et al. 2019a).

It is important to understand the functions of domains. 
RASSF1A is unique in its structures  that it contains a 
cysteine-rich domain (CRD), known as an amino-terminal-
conserved region one diacylglycerol-binding domain (C1/
DAG), which is absent in RASSF1C and other RASSF fam-
ily members except for RASSF5 (Donninger et al. 2007). 
Therefore, RASSF1A and RASSF5 form heterodimers with 
each other via the C1 domain (Ortizvega et al. 2002). The 

C1/DAG interaction can drive membrane translocation and 
mediate proximal signal transduction events, including the 
PKC/MAPK/ERK pathway, which is associated with cell 
growth (Johnson et al. 2007; Lucic et al. 2016). The RA 
domain is considered a Ras effector and interacts with Ras-
related GTPases (Richter et al. 2009). However, the RA 
domain activity of RASSF1A is so weak that RASSF1A 
only acts as a scaffold linking members of the Ras family, 
such as k-ras, to the regulation of multiple pro-apoptotic 
signaling pathways (Schmidt et al. 2018). Adjacent to the 
RA domain is a C-terminal coiled-coil motif called the 
SARAH domain, which only exists in RASSF1-6 (Sherwood 
et al. 2009). The SARAH domain of RASSF1A (RASSF1-
SARAH) binds RASSF1A to the RASSF isoforms to form a 
homodimer or heterdimer, and interacts with MST-SARAH 
to activate the Hippo pathway, which is an important pro-
apoptotic signaling pathway (Iwasa et al. 2018). In addi-
tion, the ATM phosphorylation site is found only in RASSF1 
isoforms A, C, D, E and H, and this site is not present in 
other RASSF family members. The ATM phosphorylation 
site contributes to modulating the phosphorylation of the 
effectors of DNA damage checkpoint pathways, which are 
involved in the regulation of genomic stability (Donninger 

1α 1β 2αβ 2γ 3 4 5 6

1α 2αβ 3 4 5 6RASSF1A
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Fig. 1   The whole structure and functional domains of RASSF1A 
RASSF1 lie on 3p21.31 and is comprised of eight exons, three pro-
motors with two CpG islands of which one belongs to RASSF1A 
and the other belongs to RASSF1C. RASS1A is generated from 
RASSF1 through alternative splicing. Untranslated region and exons 
are respectively showed by open boxes and black boxes, promoters by 

black arrows and CpG islands by grey bars. The protein of RASSF1A 
has four common domain whose functions were described as the 
above: conserved region 1 diacylglycerol-binding domain (C1/DAG) 
(red), putative ATM kinase phosphorylation consensus sequence 
motif (yellow), Ras association (RA) domain (green), Salvador/
RASSF/Hippo (SARAH) domain (purple)
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et al. 2007). Figure 1 shows more clearly the structure and 
functional domain of RASSF1A as described.

Based on the function of its domains, the basic function 
of RASSF1A is related to microtubule stabilization, motil-
ity, mitosis, DNA repair, genomic stability, apoptosis, and 
proliferation. Therefore, RASSF1A is so important that its 
deficiency is necessary for tumorigenesis, migration, and 
neoplastic transformation. Mutations of RASSF1A are rarely 
reported in tumors (Richter et al. 2009). Alleles of RASSF1A 
are mainly inactivated by hypermethylation of the CpG 
islands in their promoters and by heterozygous deletion; 
hypermethylation of the promoter is the dominant reason 
for RASSF1A deficiency in cancer tissues (Donninger et al. 
2007).

Possible roles of RASSF1A in lung cancer

Inflammatory cytokines (including interleukin (IL)-6) are 
generated by precancerous cells or cancer cells and induce 
tissue damage, which ultimately results in chronic inflam-
mation (Strzelak et al. 2018). Chronic inflammation plays 
an important role in driving the fundamental biological 
processes of cancer, including tumor angiogenesis, prolif-
eration, metastasis, immune suppression, epithelial–mes-
enchymal transition (EMT), and cancer stem cell (CSC) 
generation (Markopoulos et al. 2019; Tan et al. 2013). The 
classic inflammatory cytokine signaling pathway is the 
TGF-β1/SMADS/AMPK/NF-κB pathway, which triggers 
a cascade that amplifies inflammatory events (Markopou-
los et al. 2019). Interestingly, Marilyn Gordon et al. have 
shown that RASSF1A is strongly associated with the Toll-
like receptor (TLR) components and results in inhibiting 
the TLR-driven activation of NF-κB (Gordon et al. 2013). 
In Rassf1a knockout mice, the failure of Rassf1a to inhibit 
NF-κB enhances inflammation-induced DNA damage and 
thereby promotes the tyrosine phosphorylation of Yes-asso-
ciated protein (YAP) and the accumulation of p53 (Gordon 
et al. 2013). Therefore, RASSF1A deficiency could stimu-
late the NF-κB pathway, leading to enhanced inflammation 
and contributing to tumorigenesis. It was reported that IL-6 
drove RASSF1A hypermethylation and decreased transcrip-
tion by upregulating DNA methyltransferase 1 (DNMT1) 
in cancer cells (Braconi et al. 2010; Foran et al. 2010). Lee 
Schmidt et  al. showed that RASSF1A-knockdown cells 
exhibited upregulated IL-6 and enhanced inflammation 
(Schmidt et al. 2018). Additionally, scientists demonstrated 
that Rassf1a-knockout mice with chemically induced colitis 
exhibited exacerbated inflammation and distinctly increased 
IL-6 production (Gordon et al. 2013; Schmidt et al. 2018). 
Therefore, there is a positive feedback loop between IL-6 
and RASSF1A, which more obviously shows us the rela-
tionship between the silence of RASSF1A and inflamma-
tion. In cancer cells, overexpressed RASSF1A exhibited a 

dual function that suppressed cell proliferation by blocking 
the cell cycle through the downregulation of cyclin D1 and 
promoted invasiveness by upregulating p21 and vimentin 
through the activation of the IL-6/STAT3 pathway (Huang 
et al. 2016; Yi et al. 2018). Several elegant studies have 
directly demonstrated that IL-6 can promote lung tumorigen-
esis (Koyama et al. 2016; Qu et al. 2015; Tan et al. 2013). 
Obviously, RASSF1A epigenetic silencing and inflamma-
tory signaling intricately cooperate in lung tumorigenesis 
and metastasis.

The Hippo signaling pathway not only promotes apop-
tosis but also induces stem cell differentiation during organ 
development and tissue regeneration. RASSF1A activates 
the Hippo pathway as a critical upstream regulator. Moreo-
ver, RASSF1A directly promotes cooperation between YAP1 
and p73, which mediates the transcription of pro-apoptotic 
genes and differentiation genes by inhibiting the nuclear 
translocation of SMAD2 (Iwasa et al. 2018; Papaspyropou-
los et al. 2018). RASSF1A overexpression inhibits lung can-
cer cell proliferation, invasion, and metastasis potentially 
by preventing YAP activation through the GEF-H1/RhoB 
pathway (Dubois et al. 2016). The deficiency in RASSF1A 
not only disrupts this critical pro-apoptotic pathway but also 
enhances cancer-related pathways. RASSF1A deficiency 
leading to YAP activation is a key reason that bronchial epi-
thelial cells acquire a malignant phenotype, invasive and 
antiapoptotic properties, and finally transform into cancer 
cells (Dubois et al. 2016; Dubois et al. 2019b; Pefani et al. 
2016). RASSF1A depletion increases YAP nuclear accu-
mulation and activates YAP through the following main 
mechanisms: (i) inactivating the Hippo pathway: RASSF1A 
silencing fails to activate the MST2/LAST pathway, result-
ing in YAP dephosphorylation and reduced degradation; 
(ii) inhibiting the RASSF1A/NDR2/GEF-H1/RhoB/YAP 
pathway (Dubois et al. 2016; Keller et al. 2019): RASSF1A 
depletion causes NDR2 and GEF-H1/RhoB activation, and 
subsequently RhoB enhances the inhibition of YAP phos-
phorylation; (iii) promoting the YAP1/SMAD2 interaction: 
TGF-β stimulates RASSF1A degradation, which is required 
for YAP1/SMAD2 interaction and SMAD2 nuclear trans-
location, and YAP1 and SMAD2 cotranscribe many genes 
involved in invasion and metastasis (Pefani et al. 2016).

RASSF1A, as a RAS effector, not only crosslinks K-RAS 
to pro-apoptotic signaling pathways, such as the Bax and 
Hippo pathways but also facilitates the association of Ras 
with other signaling pathways, including inflammation, 
autophagy, DNA repair, protein acetylation, and ubiquit-
ination (Donninger et al. 2016). For example, after K-RAS 
and RASSF1A form a complex, RASSF1A activates Bax by 
binding to MOAP-1 (Vos et al. 2006). Recently, Lee Schmidt 
and colleagues reported that RASSF1A deficiency enhances 
RAS-driven lung tumorigenesis, and the dysregulation of 
inflammatory pathways due to RASSF1A deficiency may 



1383Journal of Cancer Research and Clinical Oncology (2020) 146:1379–1393	

1 3

also contribute to these processes (Schmidt et al. 2018). In 
conclusion, the frequent epigenetic loss of the RASSF1A 
gene undoubtedly affects the balance of many cellular events 
contributing to Ras-driven tumorigenesis, metastasis, and 
transformation.

RASSF1A competitively binds to MST2 from the 
RAF-1–MST2 inhibitory complex, which in turn enhances 
RAF-1 activity and enhances the MST2/LAST kinase cas-
cade pro-apoptotic response (Romano et al. 2014). This 
observation suggests that the loss of RASSF1A inhibits 
the Ras-MAPK pathway. Thaler et al. (2012) reported a 
paradoxical regulatory relationship between RASSF1A and 
the Ras-MAPK pathway in breast cancer cells. RASSF1A 
represses estrogen receptor (ERα) expression and transiently 
suppresses ERα-induced Ras-MAPK activity upon E2 stim-
ulation but later activates the Ras-MAPK pathway as a result 
of inhibited Akt1 activity (Thaler et al. 2012). The inhibited 
activity of Akt1 reduces the suppression of the Ras-MAPK 
pathway, resulting in its activation. Interestingly, some sci-
entists reported an opposite result, namely that the loss of 
RASSF1A mediates the activation of the Raf-MAPK path-
way in lung cancer cells (Huang et al. 2016; Kilili and Kyria-
kis 2010; Pallares et al. 2008; Thaler et al. 2009). RASSF1A 
deficiency activates extracellular signal-regulated kinase 1/2 
(ERK1/2) by enhancing physical binding to MST2, which 
increases its activity (Ram et al. 2014). Mst2 and Raf not 
only inhibit each other’s activity. In addition, Kilili GK dem-
onstrated that Mst2 also positively regulates Raf-1 activ-
ity by maintaining the catalytic subunit of phosphatase-2A 
(PP2A-C) levels, which subsequently activate the Raf/ERK 
pathway (Kilili and Kyriakis 2010). In addition, this study 
showed that the Mst2 – > LATS1/2 pathway promotes mito-
genic signaling. To date, there is little evidence regarding 
the mechanism by which RASSF1A cross-talks with com-
ponents of the Raf-MAPK pathway. More evidence that 
validates the relationship between RASSF1A and the Ras-
MAPK pathway might greatly contribute to the study of the 
mechanisms of lung cancer occurrence and progression.

The scientists (Volodko et al. 2016) found that RASSF1A 
methylation frequency and expression were indirectly 
regulated by p53/death-associated protein 6 (DAXX) sign-
aling. These authors reported that P53 binds to the pro-
moter of RASSF1A and then recruits DAXX and DNMT1, 
which finally results in the methylation and inactivation of 
RASSF1A. Moreover, studies demonstrated that the DAXX 
expression levels (and not the p53 expression levels) directly 
affected the rates of  RASSF1A  methylation. However, 
RASSF1A-knockout mice tend to exhibit spontaneous tumo-
rigenesis and can enhance p53- or K-RAS-mediated tumor 
susceptibility (Schmidt et al. 2018; Tommasi et al. 2011). 
Rassf1a−/− p53−/− double-knockout mice were remarkably 
susceptible to tumor formation and died due to malignancies 
significantly faster than their single-knockout littermates 

(Tommasi et al. 2011); these results indicated that p53 and 
RASSF1A have a unique relationship with each other. The 
loss of RASSF1A disrupts the normal mechanisms by which 
mitosis causes genomic instability, such as cytokinesis fail-
ure, tetraploidization, and p53-dependent tetraploidy check-
point activation (Tommasi et al. 2011). Therefore, RASSF1A 
epigenetic silencing and p53 also potentially cooperate in 
lung tumorigenesis. Further basic molecular research and 
clinical studies must be carried out to prove the effect of 
the p53 mutation status on RASSF1A promoter-specific 
methylation. Interestingly, Licchesi et al. (2008) confirmed 
that the level of RASSF1A hypermethylation significantly 
increased in the progression from normal tissues to pre-
cancerous lesions and then to lung cancer. Interestingly, 
it has been demonstrated that RASSF1A directly antago-
nizes RhoA, which is a factor that is directly related to 
tumor cell invasion and metastasis; this is an indispensable 
process for tumor inhibition (Lee et al. 2016). In addition, 
RASSF1A deficiency reduces the expression of β-catenin 
and E-cadherin, which facilitate malignant cell adhesion 
to the extracellular matrix (ECM), migration and invasion 
(Bao et al. 2019). The loss of RASSF1A meditates dedif-
ferentiation to pluripotency in embryonic stem cells (ESCs) 
via WNT/Hippo pathway transcription factor competition 
(Papaspyropoulos et al. 2018). Pankova et al. reported that 
lung adenocarcinoma cells with hypermethylated RASSF1A 
exhibit increased expression of prolyl 4-hydroxylase alpha-2 
(P4HA2), resulting in collagen deposition and a rigid ECM 
that trigger cancer stem cell-like programming and meta-
static dissemination (Pankova et al. 2019). Therefore, the 
deficiency of RASSF1A in lung cancer is involved in lower 
differentiation grade and enhanced stem cell characteristics, 
which are essential for EGFR-TKI resistance, reoccurrence, 
and metastasis in lung cancer.

According to the present data, the frequency of RASSF1A 
promoter methylation is reported to be as high as 88% in 
lung cancer compared with hardly any methylation in the 
normal surrounding tissue; the frequency of RASSF1A 
promoter methylation reaches almost 100% in small cell 
lung cancer (SCLC) and 65% in non-small cell lung can-
cer (NSCLC) (Burbee et al. 2001; Grawenda and O’neill 
2015). Epigenetic loss in RASSF1A is considered a com-
mon event in lung tumors, and this loss is very important 
for the occurrence, invasion and metastasis of lung cancer. 
However, Swati Dabral et al. (Dabral et al. 2019) reported 
a novel finding that in some tumors, RASSF1A was highly 
expressed instead of epigenetically or genetically silenced. 
Under hypoxia, RASSF1A-HIF-1α signaling forms a 
positive feedback loop that results in the accumulation of 
RASSF1A and then facilitates the regulation of hypoxia-
driven genes, the Warburg effect, and proliferation in a non-
malignant, hypoxia-induced prototype disease and in lung 
cancer (Dabral et al. 2019).
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Furthermore, microRNAs (miRNAs) are involved in the 
regulation of RASSF1A. Recently, two miRNAs (miR-602 
and miR-181a/b) have been proven to directly target and 
negatively control the expression of RASSF1A in many 
types of cancer cells (Bräuer-Hartmann et al. 2015; Yang 
et al. 2010; Yu et al. 2018). The research team of Daniela 
Bräuer-Hartmann demonstrated that the process of mir-181 
a/b targeting and inhibiting RASSF1A demonstrates a very 
specific PML/RARα dependency in acute promyelocytic 
leukemia (APL) (Bräuer-Hartmann et al. 2015). Therefore, 
these authors first thought that RASSF1A might be a mem-
ber of the retinoic acid-induced differentiation network in 
APL (Bräuer-Hartmann et al. 2015). Moreover, many miR-
NAs, including miR-148a, miR-152 and miR-342, also 
downregulate RASSF1A expression but first target DNMT1 
and then silence RASSF1A by hypermethylation (Braconi 
et al. 2010; Wang et al. 2011). Interestingly, RASSF1A 
induces miR-711 to downregulate CDK4 expression, result-
ing in cell cycle arrest at the G1 phase (Liao et al. 2016). 
Therefore, miRNA-induced suppression of RASSF1A might 
be necessary for tumorigenesis and progression of cancer.

Based on the information described above, we aim to 
provide a deeper understanding of the molecular events of 
RASSF1A in lung cancer. In the past several decades, schol-
ars have reported that RASSF1A plays a vital role in lung 
cancer tumorigenesis and metastasis. The link between 
RASSF1A and key cancer pathways, including the IL-6/JAK/
STAT3 (Yi et al. 2018), Hippo (Chen et al. 2017; Oh and 
Lockwood 2017), Ras/PI3K/AKT, Ras/RAF/MEK/ERK, 
RhoA/TGF-β (Lee et al. 2016), K-RAS and p53 signaling 
pathways, is discussed above and is summarized in Fig. 2. In 
all of these scenarios, RASSF1A or methylated RASSF1A 
could be a promising and practical biomarker for the early 
diagnosis, stage evaluation, histopathological typing, and 
monitoring the chemotherapy/targeted drug response and 
progression of lung cancer.
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Fig. 2   Possible roles of RASSF1A in lung cancer. Inflammatory stim-
ulation induces the production of inflammatory cytokines, such as 
IL6. IL-6 and micro RNAs epigenetically silence RASSF1A through 
DNMT1 and DNA methyltransferase 3B (DNMT3B). RASSF1A 
is a pivotal regulator of the hippo pathway promoting apoptosis. 
RASSF1A activates MST1/2, LATS1/2 and YAP/TAZ by phospho-
rylating their proteins one by one and in turn, promotes pro-apoptotic 
genes transcription. The epigenetic silence of RASSF1A fails to acti-
vate the Hippo pathway resulting in YAP dephosphorylation and deg-

radation of reducing. RASSF1A depletion causes NDR2 and GEF-
H1/RhoB activation, and subsequently RhoB enhances the inhibition 
of YAP phosphorylation. It leads to more nuclear accumulation of 
dephosphorylation of YAP/TAZ. RASSF1A cross-talks with TFG-β 
by negatively regulating SMAD2/3 and RhoA. What’s more, the loss 
of RASSF1A could activate Ras/Raf/MAPK/ERK and Ras/PI3K/
AKT pathway. The RASSF1A loss-drived processes could result in 
lung cancer cell proliferation, anti-apoptosis, inflammation, angiogen-
esis, resistance, stemness, EMT, metastasis, and invasion
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SHOX2

SHOX2 gene function and related diseases

Short stature homeobox (SHOX) is a member of the paired 
homeobox gene family and lies on the pseudoautosomal 
quarter 1 (PAR1) of the sex chromosomes in humans. The 
SHOX2 gene, located on chr3q25.32 in humans, is known 
as SHOX, SHOT, OG12, and OG12X in humans, as Shox2 
or Og12x in mice, and as paired family homeodomain pro-
tein (Prx3) in rats (Blaschke et al. 1998; De Baere et al. 
1998; Hu et al. 2018; Semina et al. 1998; Van Schaick et al. 
1997). SHOX2 is orthologous to murine Shox2 (sharing 
99% identity at the amino acid level) and is highly homolo-
gous to SHOX (sharing 83% identity) with identical func-
tional domains, so their functions are considered to partly 
overlap (Clement-Jones et al. 2000; Marchini et al. 2016; 
Semina et al. 1998). This observation suggests that studies 
of SHOX and Shox2 might provide certain clues regarding 
the role of SHOX2 in fundamental biological processes. The 
SHOX2 gene includes seven exons and yields three tran-
scripts, namely SHOX2a, SHOX2b, and SHOX2c, about 
which there is little known to date (Hu et al. 2018). The 
proteins encoded by this gene contain a homeodomain, an 
SH3-binding domain, a P-loop cyclic nucleotide-binding 
site and an OAR domain (Blaschke et al. 1998; Rovescalli 
et al. 1996). The homeobox family proteins all contain a 
homeodomain, which is a characteristic 60-amino acid 

DNA-binding domain. The homeodomain is essential for 
the development of the early embryonic body structure and 
the cardiac autonomic rhythm system by regulating cellular 
proliferation and differentiation (Boncinelli 1997; Gehring 
et al. 1994). Some publications have identified the role of 
SHOX2 in physical development (Aza-Carmona et al. 2014; 
Blaschke et al. 1998; Bobick and Cobb 2012; Clement-Jones 
et al. 2000). SH3 domains mainly function by mediating 
intracellular protein–protein interactions through the recog-
nition of proline-rich sequence motifs on cellular proteins 
(Weng et al. 1995). The OAR sequence is required for the 
transactivation activity of the human SHOX protein (Sawada 
et al. 2015). All the structural and functional domains of 
SHOX2 can be seen more clearly in Fig. 3.

The SHOX proteins are mainly enriched in the mid-por-
tion and relatively distal regions of the limb skeleton, heart, 
nose, gill arches, nervous system, and human embryonic 
reproductive nodules (Clement-Jones et al. 2000). How-
ever, SHOX2 is relatively proximal to the limbs (Song et al. 
2015). In addition, SHOX2 is also expressed in the nasal 
process, CNS basal plate, dorsal root ganglia, cardiac inflow 
tract, third pharyngeal arch, and derived structures (Clem-
ent-Jones et al. 2000). The SHOX gene mainly regulates the 
development of the early embryonic body structure and the 
cardiac autonomic rhythm system (Marchini et al. 2016; 
Mortensen et al. 2012). The alteration of the SHOX gene, 
such as by mutation, generally leads to a lack of expression 
that causes short stature syndrome (Marchini et al. 2016). 
Haploinsufficiency or mutation of the SHOX gene occurs 

CpG island CpG island CpG island

1 2 543 6a 7 6b

SHOX2 

/SHOX

SHOX2

Shox2

SHOX2/SHOX Homeodomain

SH3-binding domain

P-loop cyclic nucleotide-binding site

OAR domain

Fig. 3   The whole structure and functional domains of SHOX2. The 
SHOX2 gene lay on 3q25.32 and consisted of seven exons, three pro-
moters and three CpG islands, one of which is on gene body and two 
of which are on promoters. Untranslated region and exons are, respec-
tively, shown by open boxes and black boxes, promoters by black 
arrows, and CpG islands by grey bars. The amino acid sequence and 

common homology domains between the SHOX, Shox2, and SHOX2 
genes show high similarity. The protein of SHOX2 has four domains 
whose functions were described as above: homeodomain (red), SH3-
binding domain (green), P-loop cyclic nucleotide-binding site (yel-
low), and OAR domain (blue)
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in some skeletal dysplasia, such as Leri–Weill dyschon-
drosteosis, Turner syndrome, and Langer mesomelic dys-
plasia (Bonafe et al. 2015). Abnormal expression of SHOX2 
causes cardiac rhythm system disorders, impaired cerebellar 
development, and motor coordination deficits (Ionta et al. 
2015; Rosin et al. 2015). However, whether genetic altera-
tion of the SHOX2 gene may lead to short stature syndrome 
diseases has not yet been determined (Aza-Carmona et al. 
2014). In healthy, normal individuals and idiopathic short 
stature (ISS) and Leri–Weill dyschondrosteosis (LWD) 
patients with pseudoautosomal CNVs, the promoter CpG 
islands of SHOX were minimally methylated (Ogushi et al. 
2019). This observation suggests that SHOX2 might be in a 
demethylation state in normal people and majority of ISS/
LWD patients, which needs to be investigated.

SHOX interacts with chondrogenic transcription fac-
tors (SOX5/SOX6 and SOX9) and then activates the Agc1 
enhancer, which is essential for chondrogenesis and skeletal 
development (Aza-Carmona et al. 2011). Interestingly, Mir-
iam Aza-Carmona and Veronica Barca-Tierno et al. (Aza-
Carmona et al. 2014) demonstrated that SHOX2 regulates 
two SHOX transcription targets using the same cofactors 
(SOX5, SOX6 and SOX9); one target is the natriuretic pep-
tide precursor B gene (NPPB), and the other target is Aggre-
can (ACAN). These authors showed that there was no genetic 
alteration of SHOX2 in a cohort of 83 LWD patients. In 
addition, these authors postulated a time- and tissue-specific 
functional redundancy between SHOX and SHOX2. SHOX 
has a dual regulatory function because it could not only be 
a transcriptional activator but also a transcriptional repres-
sor, temporally and spatially regulating the expression of 
downstream genes (Hristov et al. 2014). Interestingly, simi-
lar to human SHOX, mouse Shox2 functions in bidirectional 
transcriptional regulation in different cell types, depending 
on the cell type-specific cofactors (Puskaric et al. 2010; Yu 
et al. 2007). Thus, we speculate that SHOX2 may also be a 
bidirectional transcription regulator.

There are three CpG islands in the SHOX2 gene (Ogushi 
et al. 2019; Song et al. 2015), and the methylation of these 
CpG islands could profoundly affect the SHOX2 gene itself 
and the expression of other related genes. Interestingly, the 
CpG islands of the SHOX2 gene are frequently hypermeth-
ylated and exhibit elevated expression in cancer tissue and 
cells, such as in lung cancer, breast cancer, esophageal squa-
mous cell carcinoma, and hepatocellular carcinoma (Leiro 
et al. 2019; Yang et al. 2013; Yi et al. 2017). We can con-
clude that SHOX2 not only is critical for skeletal develop-
ment, embryonic development, and cardiovascular system 
differentiation but also functions in the progression of can-
cer by promoting phenotypic transformation and migration 
(Peng et al. 2019; Yi et al. 2017).

Possible roles of SHOX2 in lung cancer

DNA methylation is important for regulating fundamental 
biological processes and human diseases (Robertson 2005). 
Aberrant DNA methylation is a biomarker of tumors. The 
differential methylation of certain genes, such as SHOX2, in 
tumor tissues and normal tissues indicates that these genes 
play an important role in tumorigenesis and tumor invasion 
and metastasis (Peng et al. 2019). In the last decade, the 
methylation of SHOX2 was considered a valuable auxil-
iary diagnostic biomarker for lung cancer. Nevertheless, 
there are currently just a few papers focused on the relevant 
pathophysiological molecular mechanisms of SHOX2 in 
carcinogenesis.

Shox2 directly interacts with and targets the bone mor-
phogenic protein 4 (Bmp4) gene, which is a member of the 
TGF-β superfamily (Puskaric et al. 2010). Interestingly, 
Shox2 can facilitate the transcription of Bmp4 in Xenopus 
embryos while repressing the transcription of Bmp4 in limb 
development (Puskaric et al. 2010). This evidence certainly 
supports Ling Yu’s conjecture that Shox2 can repress the 
expression of Bmp4 during limb development in normal 
mice (Yu et al. 2007). In addition, Ling Yu and her col-
leagues demonstrated that the overexpression of Bmp4 indi-
rectly represses the expression of runt-related transcription 
factor 2 (Runx2) in the proximal limb of Shox2-deficient 
mice (Yu et al. 2007). Runx2 has been identified as a mes-
enchymal stem marker for various types of cancer, especially 
those with bone metastases, including lung cancer, and as a 
determinant regulator of bone metastases that is involved in 
bone remodeling and skeletal integrity (Valenti et al. 2016). 
Runx2 plays a crucial role in the osteogenic differentiation 
process of mesenchymal stem cells, which includes trans-
forming growth factor-β 1/2 (TGF-β), vascular endothelial 
growth factors (VEGFs) and the Wnt/β-catenin pathway 
(Dalle Carbonare et al. 2012; Valenti et al. 2016). The high 
expression of Runx2 in prostate cancer cells is associated 
with the increased expression of metastasis-related factors, 
including matrix metalloproteinases (MMPs), pro-angio-
genic factors and adhesion proteins, which are truly piv-
otal for tumorigenesis and metastasis (Baniwal et al. 2010). 
Moreover, TGF-β1 independently induces the Runx2–Smad 
and Runx2–cJun complexes to increase the expression of 
IL-11 and Runx2 in metastatic cells, which contribute to 
the progression of cancer-induced bone disease (Zhang et al. 
2015a, b). In addition, it was reported that Runx2 regulates 
the processes of cell proliferation, epithelial–mesenchymal 
transition (EMT), apoptosis, metastasis, and resistance in 
lung cancer (Hsu et al. 2011; Huang et al. 2019a; Valenti 
et al. 2016; Xie et al. 2016). In response to DNA damage, 
RUNX2 forms a complex with P53 in the nucleus and binds 
to the p53-target promoter with the assistance of histone dea-
cetylase 6 (HDAC6) (Ozaki et al. 2013) (35). Then RUNX2 
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negatively regulates the transcription and anti-apoptotic 
functions of the P53 target genes in the H1299 lung ade-
nocarcinoma cell line (Ozaki et al. 2013). The knockdown 
of RUNX2 recovers the chemosensitivity of p53-null/p53-
mutated cancer cells through activating the TAp73/TAp63-
dependent cell death pathway (Ozaki et  al. 2018). The 
downregulation of p53 activates NF-κB to promote tumo-
rigenesis and leads to drug resistance by dysregulating cell 
cycle progression and inhibiting apoptosis in lung cancer 
cells (Yang et al. 2015). Therefore, SHOX2 inhibits anti-
apoptosis and activates NF-κB pathway through increasing 
RUNX2 to repress the activity of p53, which results in the 
occurrence of carcinogenic biological processes. Accord-
ing to the completely orthologous relationship of mouse 
Shox2 and human SHOX2, we can strongly speculate that 
SHOX2 may act through the same mechanism (as we can 
see in Fig. 4). Therefore, SHOX2 promotes tumorigenesis, 
EMT, bone metastasis, and resistance in lung cancer through 
its downstream target genes.

Recently, SHOX2 was identified to be targeted and inhib-
ited by certain microRNAs, such as miR-223-3p, miR-503, 
and miR-375, which ultimately suppresses cancer-related 
biological behavior (proliferation, EMT, and metasta-
sis) in several different tumors (Hong et al. 2014; Huang 
et al. 2019b; Sun et al. 2019; Yi et al. 2017). Hong and 
his colleagues demonstrated that miR-375 directly targets 
SHOX2 and inhibits its protein and mRNA expression in 
breast cancer cells (Hong et al. 2014). Surprisingly, Laixi 
Bi and his colleagues demonstrated that miR-375 is too low 
to inhibit homeobox B3 (HOXB3) expression, leading to 
more DNMT3B promoting pre-miR-375 hypermethylation 
that represses miR-375 again in acute myeloid leukemia 
(Bi et al. 2018). The most classic function of DNMT3B is 
to cause DNA methylation of gene promoter CpG islands, 
especially of CpG islands in TSG promoters, resulting in 
transcriptional repression (Gagliardi et al. 2018). In addition, 
DNMT3B that lacks catalytic activity promotes the meth-
ylation of the bodies of transcribed genes and then causes 
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Fig. 4   The role of SHOX2 in lung cancer. MiR-375 targets and 
represses SHOX2 through regulation of DNMT3B expression. MiR-
375 is down-regulated in many cancers, which leads to the up-regu-
lation of SHOX2. High expression of SHOX2 enhances the inhibition 
of Bmp4 and results in RUNX2 increase. RUNX2 plays a pivotal role 
in bone metastasis processes, including the up-regulation of MMPs 
and VEGFs, the activation of TGF-β and Wnt/β-catenin pathway, 
promoting the binding of Runx2–Smad complex and Runx2–cJun 

complex. Besides, SHOX2 and TβR-I or FGFR3 have interactions 
with each other. TβR-I and FGFR3 activate downstream signaling 
pathways, respectively. SHOX2 inhibits anti-apoptosis ability and 
activates NF-κB pathway through increasing RUNX2 to repress the 
activity of p53. Through these biological processes, the overexpres-
sion of SHOX2 in lung cancer cells is critial for tumor cell prolifera-
tion, inflammation, tumorigenesis, invasion, cell-skeleton reconstruc-
tion, EMT, bone metastasis, and drug resistance
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high expression of these genes (Baubec et al. 2015; Duymich 
et al. 2016; Yang et al. 2014). Interestingly, SHOX2, which 
is considered an oncogene, is hypermethylated and overex-
pressed in cancer (Hong et al. 2014; Schneider et al. 2011; 
Yang et al. 2013; Yi et al. 2017). Furthermore, a publication 
demonstrated that HOXB3-activated DNMT3B represses 
TSG RASSF1A (Braconi et al. 2010). Therefore, we can 
boldly speculate that DNMT3B hypermethylates the onco-
gene SHOX2 and the TSG RASSF1A in lung cancer.

Notably, miR-375 also targets YAP1, TEA domain fam-
ily 4 (TEAD4) and connective tissue growth factor (CTGF) 
(Kang et al. 2018), which are important effectors of the 
Hippo signaling pathway. As we conclude, miR-375 is a 
super controller of the Hippo pathway. SHOX2 may cross-
talk with the Hippo signaling pathway through miR-375 to 
induce tumorigenesis and metastasis. More cellular studies 
are needed to explore the association between microRNAs 
and SHOX2 methylation.

EMT is defined as the transformation from epithelial 
phenotypes to mesenchymal phenotypes, and this transfor-
mation is essential for the invasion ability of cancer cells. 
Some reports have indicated that the SHOX2 gene is a 
novel EMT inducer. One study showed that ectopic SHOX2 
expression promotes the expression of growth factor-beta 
receptor I (TβR-I), which suggests that transforming growth 
factor-beta (TGF-β) signaling is essential for the process of 
SHOX2-induced EMT in mesenchymal breast cancer cells 
(Hong et al. 2014). Another report demonstrated that ectopic 
SHOX2 expression reverses the mRNA and protein expres-
sion of EMT-related genes, including β-catenin, N-cadherin, 
E-cadherin, and Vimentin, and induces the proliferation 
and metastasis of carcinoma in vitro and in vivo (Yi et al. 
2017). Furthermore, Lukas Balek et al. (Balek et al. 2018) 
proved that FGFR3 interacts with the transcriptional regula-
tor SHOX2. The SHOX2 gene is involved in FGF-regulated 
pathways/events, including the RAS/ERK and PI3K/AKT 
pathways, stem cell pluripotency relevant signaling path-
ways, EGFR tyrosine kinase inhibitors resistance, cell prolif-
eration, migration, differentiation and cell phenotypes. The 
role of SHOX2 in tumors is discussed above and is sum-
marized in Fig. 4.

The clinical application of RASSF1A 
and SHOX2 in lung cancer auxiliary 
diagnosis

Since the methylation of the RASSF1A and SHOX2 genes 
is described as an early and frequent event in tumorigene-
sis, RASSF1A and SHOX2 could be a pair of valuable bio-
markers in lung cancer screening, including NSCLC and 
SCLC (Burbee et al. 2001; Schmidt et al. 2015). An analy-
sis of current research progress showed that lung tumor 

patients who exhibit hypermethylation of RASSF1A and 
SHOX2 showed poor tissue differentiation, more advanced 
stages, susceptibility to local recurrence, and significantly 
shortened overall survival and disease-free survival (Bao 
et al. 2019; Dubois et al. 2016; Grawenda and O’neill 
2015; Hong et al. 2014; Malpeli et al. 2019; Peng et al. 
2019; Yang et al. 2013; Zhao et al. 2015). Moreover, it 
has been confirmed that the detection of RASSF1A and 
SHOX2 methylation is useful for the surveillance of 
chemotherapy responses in advanced lung cancer patients 
(De Fraipont et al. 2012; Schmidt et al. 2015). Therefore, 
we concluded that the methylated RASSF1A and SHOX2 
genes may be a powerful pair of biomarkers for tracking 
tumorigenesis and metastasis in lung cancer.

The RASSF1A and SHOX2 methylation assay is a reli-
able technique for the diagnosis of lung cancer patients 
whose diagnoses are unclear based on cytological exami-
nation or chest CT (Ilse et al. 2014). Recently, the detec-
tion of RASSF1A and SHOX2 methylation has been 
clinically available for the auxiliary diagnosis of lung 
cancer by alveolar lavage fluid samples. Other types of 
samples, such as plasma, bronchoalveolar lavage fluid, 
pleural effusion, lymph node, and tumor tissue of lung 
cancer patients, are also under investigation (Ren et al. 
2017; Zhang et al. 2017; Zhao et al. 2015). The sensitivity 
and specificity of methylated RASSF1A for lung cancer 
diagnosis from serum or sputum samples were just 45% 
(95% CI: 0.41–0.48) (random effects) and as high as 99% 
(95% CI: 0.98–1.00) (fixed effects) (Zhang et al. 2019). 
A meta-analysis (Zhao et al. 2015) reported that SHOX2 
methylation has a moderate sensitivity of 70% (95% CI: 
0.46–0.87) but with unexceptionable specificity of 96% 
(95% CI: 0.91–0.99) (AUC = 0.96), supporting its value 
for confirming benignity for negative results. The low 
diagnostic sensitivity of testing methylated RASSF1A or 
SHOX2 separately limited the application to lung cancer 
screening. However, the combined detection of RASSF1A 
and SHOX2 methylation sharply increased the sensitivity 
to 81.0% and almost maintained the original high specific-
ity (AUC = 0.892) (Zhang et al. 2017). Interestingly, the 
combination of methylation detection and cytology detec-
tion further increased the sensitivity to 93.0% (Zhang et al. 
2017). In addition, based on all the types of samples listed 
above, the SHOX2 and RASSF1A methylation assay has 
remarkably higher sensitivity than the traditional serum-
based biomarkers, CT and positron emission tomogra-
phy/computed tomography (PET–CT) for diagnosing 
lung cancer in the early stage. The most common serum-
based biomarkers, including CEA, CYFRA 21–1, SCC, 
and NSE, had sensitivities of 47.5%, 47.5%, 49%, and 
39.7%, respectively (Chu et al. 2011), pulmonary nodules 
detected by screening with low-dose computed tomogra-
phy (LDCT) displayed a low lung cancer prevalence of 
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5.5% (Mcwilliams et al. 2013), and the PET–CT in lung 
cancer in lung disease patients was 93.5% (Feng et al. 
2017). PET–CT is an invasive, radiative, and expensive 
diagnostic technique, so it is not suitable for early screen-
ing for lung cancer. However, the detection of SHOX2 and 
RASSF1A methylation did not have the disadvantages of 
the detection methods described above.

Therefore, by comparing these validations with the above 
data, the SHOX2 and RASSF1A methylation assays might 
be an excellent option for auxiliary lung cancer diagnosis 
or screening.

Conclusions and perspective

In various cancers, including lung cancer, esophageal can-
cer, gastric carcinoma, prostatic cancer, APL, breast cancer, 
hepatocellular carcinoma, and colorectal cancer, RASSF1A 
is a TSG that is widely silenced by hypermethylation, while 
SHOX2 is an oncogene that is broadly overexpressed and 
hypermethylated (Bräuer-Hartmann et al. 2015; Byun et al. 
2001; Fernandes et al. 2013; Li et al. 2018; Li et al. 2012; 
Ren et al. 2017; Yang et al. 2010). The loss of RASSF1A 
and the high expression of SHOX2 play important roles in 
the regulation of the occurrence, apoptosis, and transfor-
mation of lung cancer cells. Numerous studies have shown 
that these two genes act as regulators or effectors of multi-
ple cancer signaling pathways, driving cancer progression. 
RASSF1A is a key regulator of the Hippo pathway and cou-
ples this pathway to the TNF-α, NF-κB, and TGF-β signal-
ing pathways. In the synergistic action of the inflammatory 
cytokines, P53 and K-RAS, the epigenetic loss of RASSF1A 
crosslinks a series of important cancer signaling pathways 
and plays an essential role in carcinogenesis and metasta-
sis. SHOX2, due to its complex relationship with certain 
microRNAs, may cross-talk with the Hippo, EMT, RAS/
ERK MAPK and PI3K/AKT pathways, which are critical 
for tumorigenesis, metastasis, and occurrence of lung cancer. 
The combined detection of RASSF1A and SHOX2 methyla-
tion, with its high sensitivity and specificity, may provide an 
unexceptionable biomarker pair for lung cancer screening 
and progression monitoring.

SHOX2 is capable of binding to the TGF receptor and 
cross-talk with the NF-κB pathway, suggesting a mutual reg-
ulatory relationship with RASSF1A. The close relationship 
between RASSF1A and SHOX2 and the Hippo, NF-kB, and 
TGF-β pathways may provide new insights into how we can 
interfere with these pathways or factors to produce benefits. 
Further study on the crosstalk and crossover between these 
two genes and cancer signaling pathways is very important 
for a better understanding of their functional implications 
and therapeutic effects in lung cancer. As described above, 
more scientists are necessary to conduct clinical and basic 

research to further understand the biological functions of 
RASSF1A and SHOX2 and to improve the methods of their 
detection. It is expected that these markers can increase the 
accuracy of screening lung cancer patients to improve the 
5-year survival rate and guide personalized clinical medica-
tion in a timely manner.
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