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Abstract
Purpose Circular RNAs (circRNAs), a large class of non-coding RNAs with covalently closed-loop structures, are abundant, 
stable, conserved, and have tissue and developmental-stage specificities. The biological functions of circRNAs are varied. 
Moreover, circRNAs participate in various pathological processes, especially in multiple cancers. Lung cancer is the most 
frequent malignant tumor worldwide. Many studies have suggested that circRNAs are pivotal in non-small cell lung cancer. 
This article aims to provide a retrospective review of the latest research on the functions of circRNAs in non-small cell lung 
cancer. In particular, we focus our discussion on the role of circRNAs in cell-cycle regulation and the epithelial–mesenchy-
mal transition, and also discuss the known regulatory molecular mechanisms of circRNAs in non-small cell lung cancer.
Methods We reviewed the literature on circRNAs and non-small cell lung cancer from PubMed databases. Specifically, we 
focused on the roles and mechanisms of circRNAs in regulating the cell cycle and the epithelial–mesenchymal transition.
Results Dysregulation of circRNAs is closely correlated with proliferation, migration, and invasion of non-small cell lung 
cancer, especially in terms of modulating cell-cycle regulation and the epithelial–mesenchymal transition.
Conclusion Taken together, circRNAs have potential as biomarkers for the diagnosis, prognosis, and treatment of non-small 
cell lung cancer.

Keywords Circular RNAs · Non-small cell lung cancer · Biomarker · Cell cycle · Epithelial–mesenchymal transition

Introduction

Lung cancer, the most frequent malignant tumor in both men 
and women, is the leading cause of cancer-related deaths 
worldwide (Torre et  al. 2015; Chen et  al. 2016; Siegel 
et al. 2018). According to its pathology, lung cancer can 
be divided into small cell lung cancer and non-small cell 
lung cancer (NSCLC), the latter of which accounts for 80% 
of all cases of lung cancer (Torre et al. 2015). At present, 
the standard therapy for NSCLC includes surgical resec-
tion, platinum-based dual chemotherapy, and target therapy. 
Despite improvement in diagnostic and therapeutic strategies 
over the past few decades, the diagnostic rate of stage-I lung 
cancer is only approximately 15% and the 5-year survival 
rate of advanced lung cancer is less than 20% (Wood et al. 
2012; Collins et al. 2007; Wu et al. 2012). Therefore, it is 
urgent to identify more effective markers for early diagno-
sis and prognosis predication and to seek novel therapeutic 
targets.

Circular RNAs (circRNAs) were first discovered in RNA 
viruses by electron microscopy in 1976 (Sanger et al. 1976). 
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Three years later, circRNAs were also confirmed to exist in 
the cytoplasm of eukaryotic cells, and were considered to be 
endogenous RNA-splicing products (Hsu and Coca-Prados 
1979). This large class of long non-coding RNAs (lncRNAs) 
differs structurally from other lncRNAs in that circRNAs 
have a covalent junction linking the 3′ and 5 ends. However, 
for several decades of research following the discovery of 
circRNAs, the linkages of the ends to form circRNAs were 
mistaken for splicing errors (Cocquerelle et al. 1993). With 
the fast development of high-throughput sequencing and bio-
informatic analysis in recent years, numerous circRNAs have 
been discovered in multiple human cell lines.

Recently, researchers have found that circRNAs can func-
tion as endogenous regulators in various diseases, such as in 
myocardial fibrosis and neuropsychiatric disorders. Surpris-
ing evidence has suggested that circRNAs may represent 
novel diagnostic, prognostic, and therapeutic markers of 
multiple cancers, such as gastric cancer, colorectal cancer, 
and hepatocellular carcinoma. However, the biological func-
tion of circRNAs in lung cancer remains less understood. 
Recently, a high-throughput microarray determined the 
expression profiles of circRNAs in lung adenocarcinoma 
(Zhao et al. 2017). There were 356 circRNAs that were sig-
nificantly dysregulated; among them, 204 circRNAs were 
upregulated, while 152 circRNAs were down-regulated. This 
discovery indicates that circRNAs may play a pivotal role 
in the development and progression of NSCLC. The present 
study reviews the latest research on the roles of circRNAs 
in NSCLC. We review the biological functions of circRNAs 
in NSCLC and the potentiality of circRNAs as NSLC bio-
markers. In addition, we focus on the roles of circRNAs in 
cell-cycle regulation and the epithelial–mesenchymal transi-
tion (EMT).

Classification and biogenesis of circRNAs

Based on their compositions, circRNAs are mainly divided 
into three categories, namely, exonic circRNAs (ecircR-
NAs), intronic circRNAs (ciRNAs), and exon–intron circR-
NAs (EIciRNAs). The majority of circRNAs are ecircRNAs, 
which are derived from exons and are predominantly local-
ized in the cytoplasm (Zhang et al. 2014). In contrast, ciR-
NAs are derived from introns and are predominantly local-
ized in the nucleus (Zhang et al. 2013). EIciRNAs, which are 
derived from exons and introns, are predominantly localized 
in the nucleus (Li et al. 2015b).

Zhang et al. found that flanking intronic complementary 
sequences are necessary for exon circularization (Zhang 
et al. 2014). A representative example is Alu sequences. In 
addition, Jeck et al. also confirmed that Alu sequences ori-
ented in opposite directions can significantly promote exon 
circularization (Jeck et al. 2013). Furthermore, RNA-binding 

proteins (RBPs) can also affect the circularization of circR-
NAs. Simon et al. observed that quaking (QKI) can bind to 
upstream and downstream sequences of circRNA-forming 
exons, forming a bridge to link two introns (Conn et al. 
2015). Moreover, both knockdown of QKI and insertion of 
QKI-binding sites into introns can effectively influence exon 
circularization. The splicing factor, muscleblind (MBL), also 
plays a similar role (Ashwal-Fluss et al. 2014). In addition, 
some other RBPs have been verified to be inhibitors of exon 
circularization (Ivanov et al. 2015).

Properties of circRNAs

The covalently closed continuous loop of circRNAs differen-
tiates them from linear RNAs. The distinctive structures of 
circRNAs, which lack 5′ caps and 3′ tails, render them resist-
ant to digestion by RNase R, the primary exoribonuclease 
of eukaryotic linear RNAs (Suzuki and Tsukahara 2014). 
Hence, circRNAs are more stable and have longer half-lives 
than canonical linear isoforms.

Reports on circRNAs have consistently confirmed that 
they are abundant and conserved. Different categories of 
circRNAs exhibit different characteristics in terms of their 
sequences and distributions. The ecircRNAs predominantly 
localize in the cytoplasm, while intronic and exon–intron 
circRNAs localize in the nucleus (Jeck et al. 2013; Zhang 
et al. 2013; Li et al. 2015b).

Recent studies have uncovered that the expression of cir-
cRNAs is tissue and developmental-stage specific (Salzman 
et al. 2013; Li et al. 2018c; Xu et al. 2017b). For instance, 
has_circRNA 2149 is expressed in  CD19+ leukocytes, but is 
not detected in  CD34+ leukocytes, neutrophils, or HEK293 
cells (Qu et al. 2015). This specificity in expression indicates 
that circRNAs may play important roles in the regulation of 
multiple physiological and pathological processes.

Functions of circRNAs

microRNA (miRNA) sponges

In recent years, the post-transcriptional regulation of gene 
expression has been identified in which RNAs harbor the 
same microRNA response elements (MREs) and can seques-
ter microRNAs from other targets (Karreth and Pandolfi 
2013; Sumazin et al. 2011) (Fig. 1a). These MRE-harboring 
RNAs are termed as competing endogenous RNAs (ceR-
NAs) (Salmena et al. 2011). Many studies have demon-
strated that miRNAs have multiple functions in physiologi-
cal and pathological processes, such as cellular proliferation, 
differentiation, and apoptosis (Ebert et al. 2007). The novel 
crosstalk between miRNAs and ceRNAs can form a more 
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effective and systematic framework for post-transcriptional 
regulation. Recent studies have also shown that circRNAs 
participate in the regulation of gene expression by acting as 
ceRNAs (Hansen et al. 2013; Memczak et al. 2013). This 
function in protecting target genes from repression by miR-
NAs is referred to as circRNAs acting as miRNA sponges.

As a result of the diverse functions of miRNAs, circRNAs 
have been demonstrated to be involved in various diseases, 
especially in multiple types of cancer. For example, circ-
CCDc66 can promote cellular proliferation, invasion, and 
metastasis of colorectal cancer by sponging miR-33b and 
miR-93 (Hsiao et al. 2017). In hepatocellular carcinoma, 
circ_0001445 (also named cSMARCA5, which is derived 
from the SMARCA5 gene) can function as miR-17-3p and 
miR-181b-5p sponges (Yu et al. 2018a). In addition, cir-
cABCB10 exerts its tumor-promoting effect by sponging 
miR-1271 (Liang et al. 2017). Another study found that 

circABCB10 also participates in the regulation of cancer 
cell invasion and metastasis by sponging miR-1252 rather 
than miR-1271 (Tian et al. 2019). Thus, one circRNA can 
sponge multiple miRNAs to form a complex and precise 
regulatory network.

Interaction with RNA‑binding proteins

Several circRNAs possess conserved protein-binding sites 
and influence the function of corresponding proteins by 
interacting with them (Fig. 1b). The interaction between cir-
cRNAs and proteins may produce different results, including 
mediating the interaction of different proteins and altering 
subcellular localization of proteins.

A typical example is circFoxo3, which can interact with 
cyclin-dependent kinase 2 (Cdk2) and p21 (Du et al. 2016). 
The formation of a circFoxo3-Cdk2-p21 ternary complex 

Fig. 1  Functions of circRNAs. a 
circRNAs harboring MREs can 
function as miRNA sponges. b 
circRNAs can simultaneously 
bind two different proteins to 
mediate interactions between 
proteins. c circRNAs can 
function as positive regulators 
of parental gene expression. 
d circRNAs can translate into 
proteins. e circRNAs can open 
their circular structure and 
insert into the genome to form 
pseudogenes
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can inhibit the transition from the G1 phase to the S phase of 
the cell cycle, leading to G1 arrest. In addition, another study 
found that circFoxo3 can bind both mouse double minute 2 
homolog (MDM2) and p53, facilitating MDM2-induced p53 
ubiquitination and further degradation (Du et al. 2017a). In 
addition to mediating the interaction of proteins, circFoxo3 
can also bind to and alter the subcellular localization of 
proteins (confining them to the cytoplasm), including ID1, 
E2F1, FAK, and HIF-1α (HIF1A) (Du et al. 2017b). Many 
other circRNAs, such as circ-Amotl1, can also interact with 
multiple proteins (Yang et al. 2017a).

Regulation of parental genes

Compared with ecircRNAs, which are predominantly 
located in the cytoplasm, ciRNAs and EIciRNAs are pre-
dominantly located in the nucleus and do not possess MREs; 
however, they can regulate the expressions of their paren-
tal genes at transcriptional and post-transcriptional levels 
(Fig. 1c). Li et al. discovered that EIciRNAs can promote 
the cis regulation of the expressions of their parental genes 
(Li et al. 2015b). EIciRNAs can interact with U1 small 
nuclear ribonucleoprotein particle (U1 snRNP) via specific 
RNA–RNA interactions to regulate RNA polymerase-II. A 
previous study showed that knocking down circEIF3J and 
circPAIP2 reduced the transcriptions of their parental genes, 
without affecting neighboring genes (Li et al. 2015b). Simi-
lar to EIciRNAs, ciRNAs can also promote the expressions 
of their parental genes by acting as positive regulators of 
RNA polymerase-II transcription (Zhang et al. 2013).

In addition, circRNAs can regulate parental gene expres-
sion at the post-transcriptional level. HuR, an RNA-binding 
protein, has been shown to be positively correlated with 
the expression of the PABPN1 gene. Recent evidence has 
demonstrated that circPABPH1, which is derived from the 
PABPN1 gene, interacts with HuR and results in the down-
regulation of PABPN1 expression (Abdelmohsen et  al. 
2017).

Translation into proteins

Non-coding RNAs (ncRNAs) refer to RNAs without cod-
ing potential, including short ncRNAs (sncRNAs) and long 
ncRNAs (lncRNAs). An increasing number of studies have 
indicated that ncRNAs participate in the regulation of virtu-
ally every cellular process (Beermann et al. 2016). Although 
circRNAs have long been considered to be a subset of lncR-
NAs, recent evidence has demonstrated that circRNAs may 
have coding potential (Fig. 1d). The first study that discov-
ered that circRNAs may have the ability to translate into 
proteins was published in 1986, and implied that the genome 
of the hepatitis δ virus can generate a 122-amino-acid pro-
tein from a circRNA (Kos et al. 1986). Since then, more 

studies have corroborated this phenomenon. The following 
features may be important for circRNAs to translate into 
proteins: (1) the open-reading frames (ORF) of circRNAs 
may need to be long enough, or greater than a minimum 
length (Abe et al. 2015; Bazzini et al. 2014); (2) the ORF 
may need to span splicing junctions (Wang and Wang 2015); 
and (3) upstream to the translation initiation site, some nec-
essary regulatory elements may need to be present, such 
as N6-methyladenosine (m6A) modifications (Yang et al. 
2017b) and the internal ribosome entry site (IRES) element 
(Filbin and Kieft 2009; Chen and Sarnow 1995). Circ-
ZNF609 possesses a 753-nt ORF and has been shown to 
have protein-coding ability (Legnini et al. 2017). Skadener 
et al. found that ribo-circRNAs associate with translating 
ribosomes, bind to membrane-associated ribosomes, and 
take advantage of the start codon and termination codons 
of host mRNAs (Pamudurti et al. 2017). In addition, circ-
SHPRH—containing an ORF driven by IRES—can code 
a functional 17-kDa SHPRH-146-aa protein (Zhang et al. 
2018a). All of the above findings provide convincing evi-
dence for the translational ability of circRNAs.

Other functions of circRNAs

In addition to the above functions, circRNAs have other 
potential functional mechanisms. Recently, researchers 
developed a computational pipeline (CIRCpseudo) accord-
ing to the features of circRNAs and discovered circRFWD2-
derived pseudogenes via this pipeline (Dong et al. 2016). 
This discovery suggests that circRNAs can change genomic 
DNA composition by forming pseudogenes (Fig. 1e).

Circular RNAs in non‑small cell lung cancer

Increasing evidence suggests that circRNAs participate in 
pathophysiological processes in various diseases, especially 
in cancer. Research on circRNAs in lung cancer has been on 
the rise. Here, we provide a table of all of the circRNAs that 
have been shown to play roles in NSCLC (Table 1).

circ‑Foxo3

The forkhead box O class (FOXO) is one subclass of the 
forkhead transcription factor superfamily and is evolu-
tionarily conserved. Foxo3 has been identified to partici-
pate in the regulation of cellular proliferation, apoptosis, 
metabolism, and stress resistance (Van Der Vos and Coffer 
2011). Increasing evidence suggests that Foxo3 is associ-
ated with tumorigenesis and tumor progression, such as in 
lung cancer (Myatt and Lam 2007; Cho et al. 2014). The 
Foxo3 gene can be transcribed into three isoforms, including 
linear Foxo3 (Foxo3 mRNA), circular Foxo3 (circ-Foxo3), 
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and pseudogene Foxo3 (Foxo3P), and all of them can act 
as tumor suppressers (Yang et al. 2016). In breast can-
cer, circ-Foxo3 is down-regulated, and overexpression of 
circ-Foxo3 increases the level of Foxo3 protein (Du et al. 
2017a). However, the mechanism of this phenomenon is 
still unclear. Recently, it has been shown that the level of 
circ-Foxo3 expression is significantly down-regulated in 
NSCLC tissues and in several cell lines, and overexpression 
of circ-Foxo3 inhibits cancer cell proliferation, but induces 
apoptosis (Zhang et al. 2018d; Du et al. 2016). Zhang et al. 
also found enhancement of Foxo3 mRNA after overexpres-
sion of circ-Foxo3 (Zhang et al. 2018d). This study further 
revealed that circ-Foxo3 is mainly enriched in the cytoplasm 
and can function as a sponge of miR-155, which has a target 
gene of Foxo3. William et al. demonstrated a novel mecha-
nism of the tumor-suppressive function of circ-Foxo3. Their 
study confirmed that circ-Foxo3 can interact with both cyc-
lin-dependent kinase 2 (CDK2) and p21 to form a ternary 
complex, leading to the arrest of cell-cycle progression (Du 
et al. 2016). Hence, circ-Foxo3 plays an anti-oncogenic role 
by acting as an miRNA sponge and protein scaffold.

ciRS‑7

ciRS-7 (also named CDR1as) is one of the earliest discov-
ered and most well-known circRNAs and originates from the 
back-splicing of the CDR1 gene. Many studies demonstrate 
that ciRS-7 harbors more than 70 miRNA-binding sites and 
can specifically function as a sponge of miR-7 (Hansen et al. 
2013; Memczak et al. 2013). As such, ciRS-7 participates 
in post-transcriptional regulation and plays a pivotal role in 
various diseases, including cancer (Pan et al. 2018; Weng 
et al. 2017; Xu et al. 2017a). To our surprise, a recent study 
discovered that ciRS-7 is associated with the development 
of NSCLC (Zhang et al. 2018c). The expression of ciRS-7 
is significantly upregulated in NSCLC tissues and cell lines, 
and may promote cancer cell proliferation via ciRS-7/miR-7/
EGFR/CCNE1/PIK3CD signaling (Zhang et al. 2018c). In 
addition, the higher expression level of ciRS-7 was further 
found to be associated with TNM stage and lymph node 
metastasis of NSCLC. Taken together, ciRS-7 has the pros-
pect of being a prognostic marker of NSCLC.

circ‑UBR5

It is well known that circRNAs exert their phenotype by 
sponging specific miRNAs in NSCLC and that they are 
mainly located in the cytoplasm (Wang et al. 2018c; Dai et al. 
2018). Further in-depth research, however, has identified sev-
eral circRNAs that play regulatory roles in the nucleus (Fang 
et al. 2019; Yang et al. 2017a). According to our recent work, 
there was only one functional circRNA (circ-UBR5) that was 
enriched in the nucleus and was previously considered as a 

circRNA without an obvious functional phenotype in NSCLC 
(Qin et al. 2018). Qin et al. found that the expression of circ-
UBR5 is down-regulated in NSCLC and that this deregula-
tion may be associated with tumor differentiation. In addition, 
a potential mechanism is that circ-UBR5 may participate in 
spliceosome-mediated RNA-splicing regulation via binding 
to splicing regulatory factor QKI and NOVA1, as well as U1 
snRNA in the nucleus (Qin et al. 2018). All of these findings 
indicate that circ-UBR5 may serve as a prognostic marker by 
indicating the degree of NSCLC differentiation.

F‑circEA

The genomes of tumor cells are generally unstable and incur 
various genomic alterations, such as point mutations, chromo-
somal amplifications, deletions, and translocations (Chin et al. 
2011). It has previously been thought that fusion genes exert 
oncogenic phenotypes by encoding fusion proteins. Accumu-
lated evidence has demonstrated that fusion genes not only 
encode fusion oncogenic proteins, but also generate specific 
circular RNAs (Guarnerio et al. 2016). A novel fusion gene 
has already been identified in NSCLC patients, which com-
prises portions of the echinoderm microtubule-associated pro-
tein-like 4 (EML4) gene and the anaplastic lymphoma kinase 
(ALK) gene, and has been named the EML4-ALK fusion gene 
(Soda et al. 2007). Its oncogenic phenotype has been identi-
fied, as have the differences between patients with the EML4-
ALK fusion gene and patients with mutations of the epidermal 
growth factor receptor gene. Furthermore, the EML4-ALK 
fusion gene has been a therapeutic target in this subset of 
NSCLC patients (Katayama et al. 2011). New research has 
shown that the EML4-ALK fusion gene also encodes a spe-
cific circular RNA, named F-circEA, which is the product of 
the EML4-ALK variant 3b translocation (Tan et al. 2018a, 
b). More interestingly, this fusion gene can produce two dif-
ferent circRNAs, namely, F-circEA-2a and F-circEA-4a (Tan 
et al. 2018b). Both these circRNAs can promote cancer cell 
migration and invasion. F-circ-2a possesses an “AA” motif at 
the junction site, whereas F-circEA-4a possesses an “AAAA” 
motif at the junction site. It is noteworthy that F-circEA-4a is 
detected in both the cytoplasm and plasma membrane, whereas 
F-circ-2a is only detected in the cytoplasm in EML4-ALK-
positive NSCLCs. These findings suggest that F-circEA-4a 
may be a novel liquid and non-invasive biopsy marker to moni-
tor the EML4-ALK fusion gene and guide targeted therapy in 
NSCLC patients.

The mechanisms of circular RNAs in NSCLC

The expression levels of circRNAs are in equilibrium under 
normal physiological conditions, but are often dysregulated 
in NSLC. In addition, dysregulation of circRNAs may be 
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associated with the initiation and progression of tumors. 
Recent evidence has demonstrated that the majority of cir-
cRNAs associated with NSCLC act as endogenous miRNA 
sponges. In addition, miRNA–circRNA interactions consist-
ently influence two common pathways—the cell cycle and 
the EMT. Next, we review circRNAs involved in these two 
pathways, some of which act as sponging miRNAs.

circRNAs participating in the regulation of cell cycle 
in lung cancer

The cell cycle is tightly controlled by a complex and elabo-
rate regulatory network in which a series of biochemical 
switches trigger the processes of the cell cycle. The G1 
phase is a period in which the cell integrates and interprets 
diverse signals, and makes further decisions about whether 
or not to enter the S phase. Evidently, the G1/S checkpoint 
is the most important one of all cell-cycle checkpoints, and 
many oncogenes and tumor repressor genes are associated 
with aberrations in the control of the G1/S (Massagué 2004; 
Kastan and Jiri 2004). Activation of G1 CDKs (cyclin-
dependent kinases) is essential for the transition from the 
G1 phase to the S phase. Retinoblastoma protein (pRB), the 
product of the RB gene, is a well-known inhibitor of the 
G1/S transition, and its phosphorylation and dephospho-
rylation by CDKs represent its key regulatory mechanism. 
In early G1, activated cyclin-D-Cdk4/6 complexes regulate 
the phosphorylation of pRB, which releases E2F 1–3 (posi-
tive transcriptional factors). E2F 1–3 promote expression 
of cyclin E, which binds and activates Cdk2. When Cdk2 
is activated, the pre-replicative complex (PRC) recruits 
multiple components to initiate DNA replication, leading 
to transition from the G1 phase to the S phase (Hochegger 
et al. 2008). All of the above findings represent the classical 

model for the transition from the G1 phase to the S phase. 
Rigorous regulation of Cdk2 activation and pRB phospho-
rylation ensures that cells with DNA damage and mutations 
cannot enter the S phase of cell cycle.

Many recent experiments have shown that circRNAs 
play important roles in regulation of the cell cycle. Aberrant 
expression of circRNAs allows cells to skip cell-cycle check-
points and to enter the next phase of the cell cycle. Here, we 
briefly review a few circRNAs that have been shown to be 
involved in the regulation of G1/S checkpoint (Fig. 2).

The cyclin-dependent kinase inhibitor, p21 (a 165 amino-
acid protein), is the central inhibitor of Cdk2 and can induce 
G1-phase cell-cycle arrest by binding to and inhibiting the 
catalytic activity of Cdk2 (Abbas and Dutta 2009). Recent 
research has found that circFoxo3 can directly bind with 
p21 and Cdk2 to form ternary complexes (Du et al. 2016). 
The ternary complexes inhibit the catalytic activity of 
Cdk2, leading to G1-phase arrest. Experimental data have 
confirmed that the expression level of circFoxo3 is signifi-
cantly reduced in NSCLC (Zhang et al. 2018d; Du et al. 
2016). The down-regulation of circFoxo3 disturbs the ter-
nary complexes, which increases cell-cycle entry. Another 
circRNA that relates to the regulation of p21 is circPRKCI. 
The expression of circPRKCI is significantly increased 
during amplification of the PRKCI gene (the host gene of 
circPRKCI) (Qiu et al. 2018). Experimental results sug-
gest that circRPKCI can function as miR-545 and miR-589 
sponges, relieving its suppression to the E2F7 factor. In 
addition, E2F7 inhibits expression of p21 by binding to the 
promotor of CDKN1A (the host gene of p21) (Sun et al. 
2016). Finally, the up-regulation of circPRKCI promotes 
proliferation of NSCLC cells.

In addition to the regulation of Cdk2 through p21, Cdk2 
undergoes a different regulatory mechanism by restriction 

Fig. 2  Regulatory network of 
several circRNAs that are asso-
ciated with the cell cycle in the 
pathogenesis of NSCLC
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of the supply of cyclin E. A study found that the level of 
circ_0013958 is upregulated in NSCLC. Circ_0013958, 
localizing mainly in the cytoplasm, can increase the cyclin 
D1 level by sponging miR-134 (Zhu et al. 2017). The miR-
134 can bind to the 3′-UTR of CCND1 (the host gene of 
cyclin D1). Cyclin D1 further binds to and activates Cdk4/6, 
leading to the release of E2F 1–3 factors and the promotion 
of cyclin E expression.

In addition to the above factors, there are several other 
circRNAs that are involved in the regulation of G1/S check-
points. However, there are no clear regulatory mechanisms 
that have yet been elucidated. Specifically, circ-0003998 
regulates cell proliferation by the circ-0003998/miR-326/
Notch-1 pathway (Jiang et al. 2018). Surprisingly, we previ-
ously found that miR-326 can bind to the 3′-UTR of CCND1 
mRNA, resulting in G1-phase arrest in NSCLC (Sun et al. 
2016). A recent study indicated that the level of circ_100395 
was down-regulated in NSCLC and regulated the miR-1228/
TCF21 axis (Chen et al. 2018). In addition, the overexpres-
sion of circ_100395 can reduce the expression of Cyclin 
D1. Furthermore, miR-1228 can promote the development 
of hepatocellular carcinoma through a p53 feedback loop 
(Zhang et al. 2015) and p53 has been shown to be a positive 
regulator of p21. A study by Dai et al. found that overexpres-
sion of circ_0006916 can lead to accumulation of NSCLC 
cells in the G0/G1 phase and that circ_0006916 can function 
as an miR-522 sponge (Dai et al. 2018). We previously found 
that miR-522 can induce G1-phase arrest (Zhang et al. 2016; 
Tan et al. 2014). These results are in accordance with the 
results of Dai et al. In addition, researchers have discovered 
that knockdown of circ_0000064 and circ_0079530 inhib-
its the NSCLC cell transition from the G1 to S phases of 
the cell cycle; however, the underlying mechanism remains 
unknown (Luo et al. 2017; Li et al. 2018a).

circRNAs participating in the epithelial–
mesenchymal transition

The EMT is an evolutionarily conserved biological process 
that polarizes epithelial cells and changes their phenotype 
to non-polarized mesenchymal cells, which confers migra-
tory and invasive properties. The EMT is a fundamental 
physiological and pathological processes that is especially 
involved in the initiation of cancer cell migration, invasion, 
and metastasis (Yilmaz and Christofori 2009). Cells will 
undergo a series of changes in gene expression via a com-
plex regulatory network. This network involves many com-
plex signaling pathways, such as the transforming growth 
factor beta (TGF-β) signaling pathway (Massague 2008). 
TGF-β, a potent EMT inducer, can trigger the up-regula-
tion of CDH1 transcriptional repressors (such as Snail1 
Snail2, ZEB1, and ZEB2), leading to the down-regulation 
of E-cadherin (Peinado et al. 2007). The down-regulation of 

epithelial markers (such as E-cadherin) and up-regulation of 
mesenchymal markers (such as N-cadherin, vimentin, and 
fibronectin) are prominent features of cells after this transi-
tion (Mani et al. 2008). Thus, cellular phenotypes can be 
defined by detecting these classical markers.

circ_0007534, derived from the DDX42 gene, has been 
identified as a regulator of NSCLC cell migration and inva-
sion (Qi et al. 2018). The protein levels of Snail, N-cad-
herin, and Vimentin were significantly increased, while 
E-cadherin was decreased when circ_0007534 was overex-
pressed, demonstrating that circ_0007534 can promote the 
EMT in NSCLC. The expression level of circ_0079530 is 
increased in NSCLC, and can promote cancer cell migra-
tion and invasion by regulating the EMT (Li et al. 2018a). 
Another oncogenic factor, circ_0067934, can also promote 
cancer metastasis by modulating the EMT (Wang and Li 
2018). Epithelial markers were upregulated, while mesen-
chymal markers were down-regulated when circ_0067934 
was silenced by si-RNA. All of the above oncogenic factors 
act as tumor promotors by regulating the EMT. In contrast, 
circ_0008305 is a tumor repressor by inhibiting the TGF-
β-induced EMT (Wang et al. 2018b). A study by Wang 
et al. demonstrated this mechanism in detail. Specifically, 
circ_0008305 can upregulate the expression of TIF1γ by 
sponging miR-429 and miR-200b-3p, resulting in the inhibi-
tion of TGF-β-induced EMT. This study not only detected 
the markers of EMT, but also elucidated the corresponding 
regulatory mechanism (Fig. 3).

circRNAs as biomarkers of cancer

Recently, many studies have suggested that circRNAs may 
represent diagnostic, prognostic, and/or therapeutic markers 
of various types of cancer. circRNAs are abundant, con-
served, and are stable because of their covalently closed 
structure. In addition, circRNAs can be detected in tissue, 
plasma, and saliva,which allow them to be widely detected 
as cancer biomarkers (Bahn et al. 2015; Memczak et al. 
2015). In addition, circRNAs can be detected in exosomes, 
which are small membranous vesicles secreted by various 
cells (Li et al. 2015a). Interestingly, the expression profile 
of circRNAs in the sera of patients with colorectal cancer 
was found to be significantly different from that in healthy 
donors; in relation to the sera of healthy donors, 257 novel 
circRNAs were present and 67 circRNAs were missing in 
the sera of patients with colorectal cancer (Li et al. 2015a).

In addition, the expression of circRNAs is tissue and 
developmental-stage specific. Hence, dysregulation of dis-
tinctive circRNAs may be indicative of specific types of 
tumors (e.g., fusion circRNAs derived from fusion genes). In 
NSCLC, a specific circRNA, F-circEA, was discovered to be 
useful in the diagnosis of EML4-ALK-positive patients (Tan 
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et al. 2018a). In leukemia, there is a distinctive F-circRNA, 
F-circM9, which is derived from MLL/AF9 translocation 
(Guarnerio et al. 2016).

Conclusion

Many studies have focused on ncRNAs as potential diagnos-
tic biomarkers and therapeutic targets. Different aspects of 
ncRNA biology have been elucidated, including ncRNA bio-
genesis, modes of interactions, physiological functions, as 
well as their roles in disease contexts (especially in cancer) 
(Beermann et al. 2016; Guo et al. 2019). Among ncRNAs, 
the mechanisms of miRNAs are best understood. Along with 
the development of high-throughput sequencing technolo-
gies, the expression patterns of abundant circRNAs can be 
easily detected. Furthermore, different expression profiles 
of circRNAs between cancer patients and heathy individuals 
have been discovered. In gliomas, there are more than 476 
circRNAs that are differentially expressed compared with 
those in control brain tissue (Song et al. 2016). In addition, 
a total of 527 circRNAs exhibited different expression pro-
files between hepatocellular-carcinoma and para-tumorous 
tissues (Fu et al. 2017) Compared with those in adjacent 
normal tissue, 356 circRNAs were differentially expressed in 
NSCLC (Zhao et al. 2017). All of these findings suggest that 

circRNAs play pivotal roles in the pathological progression 
of cancer and may be useful as cancer biomarkers.

NSCLC accounts for the majority of lung cancers and 
its early diagnosis is pivotal for increasing its survival rate. 
Thus, it is urgent to find novel biomarkers with high sen-
sitivity and specificity for NSCLC. The dysregulation of 
circRNA expression is closely related to the development 
and progression of cancer. It is possible that circRNAs may 
represent novel and non-invasive biomarkers for cancer due 
to their closed-loop structures, resistance to RNAse R, and 
tissue and developmental-stage specificities. In particular, 
recent research has shown that circRNAs are enriched in 
exosomes, which can be detected in many types of bodily 
fluids (Zhou et al. 2018; Li et al. 2015a). Many experiments 
have demonstrated that circRNAs have potential as biomark-
ers for diagnosis, prognosis, and therapeutic interventions 
for NSCLC. The up-regulation and/or down-regulation of 
circRNAs are closely related to cellular proliferation, migra-
tion, invasion, and drug resistance. Although there are many 
advantages of circRNAs as biomarkers, the reliability of 
diagnosis by circRNAs still needs to be validated. In addi-
tion, there have been fewer studies on the roles of circRNAs 
in NSCLC compared with those for other cancers, and little 
is known about the mechanisms of circRNAs in NSCLC. 
Thus, more studies focused on the roles of circRNAs in 
NSCLC are needed.

Fig. 3  Regulatory network 
of several circRNAs that are 
associated with the epithelial–
mesenchymal transition in the 
pathogenesis of NSCLC
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