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Abstract
Purpose  Hepatocellular carcinoma (HCC) is a complicated disease with low survival rate due to frequent recurrence and 
the lack of efficient therapies. For advanced HCC, sorafenib, as the only approved first-line drug for HCC, improves the 
survival to some extent, but depressingly with severe adverse effects and emerging resistance conditions, which cause a poor 
prognosis. Ferroptosis is a new recognized way of non-apoptosis-regulated cell death, characterized by the iron-dependent 
accumulation of lipid hydroperoxides, showing a tremendous promising in the therapy of cancer, especially in HCC. To 
provide ideas for the diagnosis and treatment of HCC, we summarized the role of ferroptosis in HCC.
Methods  The relevant literature from PubMed is reviewed in this article.
Results  Interestingly enough, investigators have found sorafenib can induce ferroptosis in HCC. Moreover, recent researches 
reported increasing pathways and mechanisms related to ferroptosis in HCC such as TP53 and Rb, and strategies to improve 
sorafenib resistance by targeting ferroptosis. In addition, other drugs were reported to induce ferroptosis in HCC such as 
erastin and showed good efficacy in vivo and in vitro.
Conclusion  In this review, we summarize pathways and mechanisms of ferroptosis in HCC and other digestive system 
neoplasms such as gastric cancer, pancreatic cancer and colorectal cancer and point out the trends of ferroptosis in HCC.
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Background

Hepatocellular carcinoma (HCC) is the most common type 
of liver cancer and is the second leading cause of cancer 
death worldwide (Torre et al. 2015). It is estimated that 782, 
500 new liver cancer cases and 745, 500 deaths occurred 
worldwide during 2012 (Torre et al. 2015). Only few people 
are diagnosed at early stage, most people are diagnosed at 
middle-late stage, when they lose the opportunity of surgical 
therapy. For those patients, molecular targeted agents such 
as sorafenib (Llovet et al. 2008) and regorafenib (Bruix et al. 
2017), which is used after sorafenib failure, have been impli-
cated. Sorafenib, a multikinase inhibitor, is the first drug to 
be used for the systematic treatment of advanced HCC and 
can prolong the survival of HCC patients (Hsu et al. 2009). 
In two randomized phase III clinical trials of advanced HCC 
patients (Cheng et al. 2009; Llovet et al. 2008), sorafenib 
treatment improved the time to progression and extended 
overall survival only by 2.8 and 2.3 months compared to 
the placebo group, suggesting that drug resistance makes 
sorafenib an unsatisfactory effect. Thus, how to improve 
sorafenib resistance and seeking more effective new drugs 
have been an emerging event for advanced HCC patients 
and postoperative adjuvant chemotherapy patients. Recently, 
sorafenib was found to induce a new type of regulated cell 
death (RCD)-ferroptosis (Louandre et al. 2013), which is 
distinct from apoptosis, necroptosis and autophagy (Dixon 
et al. 2012). Ferroptosis is a new identified cell death and has 
been found in many physiological and pathological diseases 
such as neurodegenerative diseases (Do Van et al. 2016; 
Hambright et al. 2017), ischemia reperfusion injury (Ton-
nus and Linkermann 2016) and a series of cancers (Alvarez 
et al. 2017; Hao et al. 2017; Kinowaki et al. 2018; Louandre 
et al. 2013; Woo et al. 2018). Researchers have found ferrop-
tosis plays a vital part in HCC (Sun et al. 2016a) and some 
new drugs (Ou et al. 2017) can induce ferroptosis and more 
importantly, some regulators that can regulate ferroptosis 

in HCC, such as Rb (Louandre et al. 2015), p53 (Jennis 
et al. 2016), and nuclear factor erythroid 2-related factor 
2 (NRF2) (Sun et al. 2016b). What role on earth does fer-
roptosis play in HCC and what clues have researchers found 
and the future directions about ferroptosis in HCC can be 
found in this article.

Ferroptosis and its regulation in cancer

Ferroptosis was recently identified as a new form of RCD by 
Brent R. Stockwell’s laboratory in 2012 (Dixon et al. 2012). 
Ferroptosis differs from apoptosis and other major forms of 
RCD in many aspects. Morphologically, it is characterized 
by smaller mitochondria than normal and increased mem-
brane density (Dixon et al. 2012). Mechanismly, it is an iron-
dependent with accumulation of lipid peroxidation cell death 
and is regulated by a distinct set of genes, such as RPL8 
(ribosomal protein L8), IREB2 (iron-responsive element-
binding protein 2), ATP5G3 (ATP synthase F0 complex 
subunit C3), CS (citrate synthase), TTC35 (tetratricopep-
tide repeat domain 35) and ACSF2 (acyl-CoA synthetase 
family member 2) (Dixon et al. 2012). From the perspective 
of death inhibitor, ferroptosis is blocked by ferrostatin-1, 
not ZVAD-FMK (a potent apoptosis inhibitor) and necro-
sulfonamide (a potent necroptosis inhibitor). Erastin, a typi-
cal inducer of ferroptosis, inhibits SLC7A11 (Dixon et al. 
2012), which is a member of cystine/glutamate antiporter, 
thus to inhibit synthesis of glutathione (GSH), then causing 
the accumulation of reactive oxygen species (ROS) and fol-
lowing ferroptosis. Glutathione peroxidase 4 (GPX4) is an 
essential negative regulator in ferroptosis in many cancers 
(Yang et al. 2014). In more detail, GPX4 is a selenoprotein 
that has a key selenocysteine residue within its catalytic site 
and ebselen, a GPX4 mimetic, is able to partially protect the 
HCC cells from ferroptosis (Ou et al. 2017). In short, fer-
roptosis is a new way of cell death and will bring new targets 
in the therapies and prognosis of various diseases (Fig. 1).

As mentioned above, ferroptosis was found in several 
types of tumor cells such as diffuse large B-cell lymphoma 
(DLBCL) (Kinowaki et al. 2018), renal cell carcinoma(RCC) 
(Woo et al. 2018), breast cancer (Ma et al. 2016), pancre-
atic cancer(PC) (Eling et al. 2015) and lung cancer (Alvarez 
et al. 2017), in particular HCC. As we know, induction of 
cell death is an emerging approach for cancer therapy. Since 
the first demonstration in 2012, a series of strategies have 
been developed to induce ferroptosis of cancer cells, includ-
ing the use of nanomaterials (Ou et al. 2017), clinical drugs 
(such as sorafenib (Louandre et al. 2013), sulfasalazine 
(SSZ) (Dixon et al. 2012) and artesunate (Eling et al. 2015), 
experimental compounds (Dixon et al. 2012) and depriva-
tion of cystine (Hayano et al. 2016). Ferroptosis is emerging 
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as a potential weapon against tumor growth and opens new 
avenue for cancer therapies.

Potential roles of ferroptosis in HCC

The fact that sorafenib can induce ferroptosis adds a piece 
to the puzzle of sorafenib anti-tumor mechanisms in HCC. 
Moreover, targeting ferroptosis can improve sorafenib resist-
ance from a new perspective. More than sorafenib, research-
ers also have found other drugs which can induce ferroptosis 
and new targets which can regulate ferroptosis in HCC. In 
short, ferroptosis brings a new angle for the therapy and 
prognosis for HCC.

Ferroptosis and sorafenib in HCC

The multikinase inhibitor sorafenib is the only first-line drug 
for patients with advanced HCC (Llovet et al. 2008). As we 
know, sorafenib exerts its anticancer effects by induction of 
apoptosis and inhibition of proliferation as well as inhibi-
tion of angiogenesis (Liu et al. 2006) mainly by its kinase 
inhibitory effect. However, sorafenib is a weak apoptosis 
inducer as a single agent (Galmiche et al. 2014). Delightedly, 
investigators have found sorafenib can induce a novel way of 
RCD–ferroptosis. A recent study reported that the depletion 
of the intracellular iron stores achieved using the iron chela-
tor deferoxamine (DFX) protected HCC cells from the cyto-
toxic effects of sorafenib and DFX prevented sorafenib from 

inducing oxidative stress (Louandre et al. 2013), consisting 
with the iron and lipid peroxidation dependences of ferrop-
tosis. Likewise, Louandre et al. (Louandre et al. 2013) sug-
gested that both pharmacological ferroptosis inhibitors (fer-
rostatin-1) or genetic procedures (RNA interference against 
IREB2), readily inhibited the cytotoxic effects of sorafenib 
in HCC cells. Beyond that, Lachaier et al. (Lachaier et al. 
2014) reported that in comparison with other kinases inhibi-
tors, sorafenib is the only drug that displayed ferroptotic 
efficacy, suggesting that the induction of ferroptosis is a spe-
cific property of sorafenib and unrelated to the RAF kinases 
inhibitory effect of sorafenib. By the way, researchers also 
found sorafenib-induced ferroptosis not only in HCC, but 
also in pancreatic adenocarcinoma, colon carcinoma, and 
kidney tumors (Lachaier et al. 2014), also providing a new 
perspective in the therapy of these tumors. In terms of 
mechanism, another study showed sorafenib can also inhibit 
SLC7A11 to induce ferroptosis (Dixon et al. 2014), such 
as erastin. Collectively, sorafenib-induced ferroptosis is an 
effective mechanism for the induction of cell death in HCC 
independent its kinases inhibitory effect. However, more 
studies are still needed to illuminate the precise mechanisms 
in this process.

Rb inhibits sorafenib‑induced ferroptosis in HCC

We already know that retinoblastoma (Rb) protein reg-
ulates cell proliferation and plays a vital role in G1/S 
checkpoint via its ability to regulate the activity of the 
transcription factors of the E2F family (Knudsen and 

Fig. 1   The mechanism of 
ferroptosis. Ferroptosis is char-
acterized by production of ROS 
from accumulated iron and lipid 
peroxidation. This illustration 
shows the process of ferroptosis 
and summarizes the molecule 
pathways that regulate iron and 
lipid perioxidation, respectively. 
PUFA polyunsaturated fatty 
acids, PHKG2 phosphorylase 
kinase G2, NCOA4 nuclear 
receptor coactivator 4, BSO 
buthionine sulfoximine
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Knudsen 2008). The loss of function of the Rb protein is 
an important event during liver carcinogenesis (Mayhew 
et al. 2007), but it is unclear whether the Rb status modu-
lates the response of HCC cells to sorafenib. Recently, 
Louandre et al. found that HCC cells with reduced levels 
of Rb exhibited a two- to threefold increase in cell death 
induction upon exposure to sorafenib compared with con-
trols (Louandre et al. 2015). They also found that upon 
exposure to sorafenib, the Rb-negative status of HCC 
cells promoted the occurrence of ferroptosis with high 
expression of mitochondria ROS (Louandre et al. 2015). 
Furthermore, the Rb status of individual HCC patients is 
associated with the prognosis of these patients when they 
receive sorafenib. The findings illuminate the role of Rb in 
the response of HCC cells to sorafenib and in the regula-
tion of ferroptosis.

NRF2 protects HCC from sorafenib‑induced 
ferroptosis

We already know the NRF2 is a key regulator of the anti-
oxidant response (Ma 2013) and NRF2 overexpression 
inhibits apoptosis and contributes to chemoresistance 
in several cancers (Wang et al. 2008). However, it is still 
unclear whether NRF2 activation is involved in the regu-
lation of other forms of RCD, such as ferroptosis. A new 
study indicated NRF2 plays a central role in protecting 
HCC cells against sorafenib-induced ferroptosis (Sun et al. 
2016b). Upon exposure to erastin and sorafenib, p62 pre-
vented NRF2 degradation and enhanced subsequent NRF2 
nuclear accumulation through inactivation of Kelch-like 
ECH-associated protein 1(Keap1). Additionally, nuclear 
NRF2 interacted with the transcriptional coactivator small 
v-maf avian musculoaponeurotic fibrosarcoma oncogene 
homolog (Maf) proteins such as MafG (Suzuki et al. 2013) 
and then activated transcription of quinone oxidoreductase 1 
(NQO1), heme oxygenase-1 (HO1), and ferritin heavy chain 
1 (FTH1), which are antioxidants, then causing the resist-
ance to ferroptosis. FTH1 and ferritin light chain make up 
ferritin heteropolymers, where ferrous iron stores (Harrison 
and Arosio 1996). Knockdown of p62, NQO1, HO1, and 
FTH1 in HCC cells promoted ferroptosis in response to eras-
tin or sorafenib and genetic or pharmacologic inhibition of 
NRF2 expression/activity in HCC cells rendered HCC more 
sensitive to erastin and sorafenib in vitro and in vivo. Fur-
thermore, NRF2 inhibitors–alkaloid trigonelline (Arlt et al. 
2013) had the potency to be used in combination therapy for 
HCC by overcoming chemoresistance with the induction of 
ferroptosis (Sun et al. 2016b). Above all, activation of the 
p62-Keap1-NRF2 pathway protects against ferroptosis in 
HCC cells and the research results provide an approach for 
combination therapy to improve sorafenib resistance.

MT‑1G inhibits ferroptosis thus facilitating sorafenib 
resistance in HCC

Acquired resistance to sorafenib has been found in HCC 
patients, which results in a poor prognosis (Liu et  al. 
2017), thus elucidating mechanisms underlying sorafenib 
resistance has great significance for improving the effi-
cacy of sorafenib. A recent study suggested that metal-
lothionein-1G (MT-1G) is a critical negative regula-
tor of ferroptosis and has been a promising therapeutic 
target of sorafenib resistance in human HCC cells (Sun 
et al. 2016a). Studies reported the expression of MT-1G 
is remarkably induced by sorafenib, but not other clini-
cally relevant kinase inhibitors (e.g., erlotinib, gefitinib, 
tivantinib, and vemurafenib, etc.). Importantly, genetic 
and pharmacological inhibition of MT-1G enhanced the 
anticancer activity of sorafenib in  vitro and in tumor 
xenograft models. The molecular mechanisms underlying 
the action of MT-1G in sorafenib resistance involved the 
inhibition of ferroptosis. In detail, knockdown of MT-1G 
increased GSH depletion and lipid peroxidation without 
altering iron levels, which contribute to sorafenib-induced 
ferroptosis. Investigators also found the upstream regulator 
in this process and they showed that activation of NRF2, 
but not p53 and hypoxia-inducible factor 1-alpha (HIF1α), 
was essential for induction of MT-1G expression via the 
cystathionase pathway following sorafenib treatment. 
Moreover, the study found high induction of MT1 in the 
serum was indicative of poor prognosis in HCC patients 
treated with sorafenib with low overall survival, which has 
a significant clinical meaning for predicting prognosis. In 
conclusion, MT-1G is a novel molecular mechanism of 
sorafenib resistance and also a new negative regulator of 
ferroptosis in HCC.

Haloperidol promotes sorafenib‑induced ferroptosis 
in HCC

Sigma 1 receptor (S1R) is a protein modulator which is 
related to oxidative stress metabolism. Lately, Bai et al. 
discovered that haloperidol, as a antagonist, promoted 
both erastin and sorafenib-induced ferroptosis, even with 
both drugs at relatively lower doses, indicating that halo-
peridol may benefit HCC patients treated with sorafenib 
by reducing the dosage or potentiating the effectiveness 
of this drug (Bai et al. 2017). In terms of mechanism, 
haloperidol increased the cellular levels of Fe2+ and lipid 
peroxidation. Otherwise, haloperidol influenced many 
ferrotosis-related targets such as NRF2, HO-1 and GPX4. 
In conclusion, this finding provides a novel strategy for the 
combination of drugs for HCC therapy.
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CISD1 negatively regulates ferroptosis in HCC

As we know, the occurrence of ferroptosis is accompanied 
by the morphologic change of mitochondria (Dixon et al. 
2012), so we can assume that mitochondria is vital in the 
ferroptosis, but the key regulator of ferroptosis in mitochon-
dria remains unknown. Currently, Yuan et al. have found 
that CDGSH iron sulfur domain 1 (CISD1, also termed 
mitoNEET), an iron-containing outer mitochondrial mem-
brane iron sulfur protein, negatively regulates ferroptosis 
and is upregulated by erastin in an iron-dependent manner in 
human HCC cells (Yuan et al. 2016). They found inhibition 
of CISD1 contributed to erastin-induced ferroptosis and in 
contrast, stabilization of the iron sulfur cluster of CISD1 by 
pioglitazone inhibited mitochondrial iron uptake, lipid per-
oxidation, and subsequent ferroptosis in HCC. To sum up, 
CISD1 protects against mitochondrial injury in ferroptosis 
in HCC.

Polymorphism of TP53 genes (S47 variant) inhibits 
ferroptosis in HCC

TP53 gene is a well-known tumor suppressor gene and regu-
lates apoptosis (Shi et al. 2014), necrosis (Khan and Xiang 
2017), and autophagy (Mrakovcic and Frohlich 2018), but 
whether it regulates ferroptosis is unclear. As we know, 
phosphorylation of Ser46 is important to maintain the tumor 
suppression function of p53 (Taira et al. 2007). A recent 
study showed that mutant p53 with Pro47 losing its function 
to phosphorylate Ser46, which is referred to as Ser 47 (S47), 
inhibits ferroptosis in HCC (Jennis et al. 2016). Compared 
with wide-type p53 HCC cells, SLC7A11 was increased and 
PTGS2 (a ferroptosis biomarker in vivo) was decreased in 
the S47 cells after exposure to cisplatin indicating a resist-
ance to ferroptosis. They showed that this variant showed a 
defect in ferroptosis induction and conferred increased can-
cer risk in a mouse model (Jennis et al. 2016). Notably, this 
mutation just existed in Africans and African-Americans, 
so the genetic typing has a significance to assess the risk of 
cancer in these people. In brief, S47 variant shows a defect 
in ferroptosis induction in HCC.

Regulation of lipid metabolism in ferroptosis in HCC

ACSL4 contributes to ferroptosis in HCC

Although lipid peroxidation plays a central role in trigger-
ing ferroptosis, the essential regulator of lipid metabolism 
in ferroptosis remains poorly defined. Now, Yuan et al. have 
identified acyl-CoA synthetase long-chain family mem-
ber 4 (ACSL4) is required for ferroptosis in HCC (Jennis 
et al. 2016). Compared with ferroptosis-sensitive cells, the 
expression of ACSL4 was remarkably downregulated in 

ferroptosis-resistant cells, so expression of ACSL4 may be 
a useful biomarker for monitoring ferroptosis. Moreover, 
knockdown of ACSL4 inhibited erastin-induced ferroptosis 
in HepG2 cells. Mechanically, ACSL4-mediated production 
of 5-hydroxyeicosatetraenoic acid (5-HETE) contributed to 
ferroptosis and pharmacological inhibition of 5-HETE pro-
duction by zileuton limited ACSL4 overexpression-induced 
ferroptosis. The production of 5-HETE has been observed in 
the induction of ferroptosis previously (Friedmann Angeli 
et al. 2014). Happily, compared with normal tissue, ACSL4 
is overexpressed in several cancers such as liver, kidney, 
colorectal, and head and neck cancer (Chen et al. 2016), so 
induction of ferroptosis may be an anticancer approach with 
fewer side effects for these cancers. Collectively, ACSL4 
plays a key role in promoting erastin-induced ferroptosis 
through 5-HETE-mediated lipotoxicity. ACSL4 is not only 
a sensitive monitor of ferroptosis, but also an important con-
tributor of ferroptosis.

LDL–DHA nanoparticles can induce ferroptosis in HCC

Researchers have found some drugs can induce ferroptosis 
in cancers, and they improve the therapy of cancer signifi-
cantly. Recently, Ou et al. have found low-density lipopro-
tein–docosahexaenoic acid (LDL–DHA) (Firestone 1994) 
can induce ferroptosis to kill HCC cells (Ou et al. 2017). 
LDL–DHA were cytotoxic to both rat hepatoma and human 
HCC cell lines with pronounced lipid peroxidation, deple-
tion of GSH and inactivation of the GPX4 prioring to cell 
death. In keeping with the mechanisms of ferroptosis, GPX4 
was also found to be a central regulator of LDL–DHA nan-
oparticle-induced tumor cell killing. On one hand, DHA 
degraded GPX4 directly. On the other hand, LDL–DHA 
nanoparticles decreased intracellular GSH by reducing redox 
couples GSH/GSSG and NADPH/NADP+ and removing 
GSH-aldehyde adducts (Hayes and McLellan 1999), then 
GPX4 cannot exert its enzymatic activity because of the 
depletion of substrate. In conclusion, LDL–DHA nanopar-
ticles induce cell death in HCC cells through the ferroptosis 
pathway, which represents a novel molecular mechanism of 
anticancer activity for LDL–DHA nanoparticles. We believe 
more drugs will be discovered to induce ferroptosis for HCC 
patients.

Ferroptosis in other digestive system neoplasms

Digestive system tumors mainly include esophagus cancer, 
gastric cancer (GC), colorectal cancer (CRC), liver cancer 
and PC. These tumors have high morbidity and mortality 
rates (Torre et al. 2015) but lack effective drugs, so seeking 
new targets for them is very important. Recently, increasing 
studies have indicated that ferroptosis is strongly implicated 
in GC (Hao et al. 2017), CRC (Guo et al. 2018; Hong et al. 
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2017; Xie et al. 2017), and PC (Eling et al. 2015; Kasukabe 
et al. 2016; Shintoku et al. 2017; Wang et al. 2016; Xie et al. 
2016; Yamaguchi et al. 2018; Zhu et al. 2017). For exam-
ple, artesunate induces ferroptosis in RAS-activated human 
pancreatic ductal adenocarcinoma (PDAC); HSPA5 (Heat-
shock 70-kDa protein 5) negatively regulates ferroptosis and 
inhibition of HSPA5-GPX4 pathway enhances gemcitabine 
sensitivity. We list a table to generalize progress of ferrop-
tosis in GC, CRC and PC (Table 1). Up to now, the function 
of ferroptosis in esophageal cancer has not been studied. 
We believe the study of ferroptosis in digestive system neo-
plasms will provide new insights into the therapies for them.

Conclusion and perspective

Taken together, we can see that ferroptosis has a very vital 
role in cancers, especially in HCC. Sorafenib can induce 
ferroptosis, as a new mechanism to mediate its cytotoxic-
ity. Rb, NRF2, and MT-IG inhibit sorafenib-induced fer-
roptosis, so inhibition of the three regulators can improve 
sorafenib resistance, which provide promising strategies 

for HCC therapy. On the contrary, haloperidol promotes 
sorafenib-induced ferroptosis and provides a strategy for 
combination therapy with sorafenib in HCC. In addition, 
CISD1 is also a negative regulator in HCC and gives us 
a better understanding about iron metabolism of ferropto-
sis. In addition to iron metabolism, lipid metabolism is also 
critical for ferroptosis in HCC, for example, LDL–DHA can 
induce ferroptosis and ACSL4 is a monitor and contributor 
to ferroptosis (Fig. 2). Some progress has been made about 
ferroptosis in HCC; however, detailed signal transduction 
pathways and key transcriptional regulators of ferroptosis in 
HCC remain unknown. For example, p53 can enhance fer-
roptosis by inhibiting SLC7A11 in breast cancer, but TP53 
inhibits erastin-induced ferroptosis via blocking DPP4 activ-
ity in a transcription-independent manner in CRC. What role 
does p53 play in human HCC is still needed to be clarified. 
And more work is needed to investigate, in addition to drug 
resistance, what other roles ferroptosis play in other pheno-
types such as metastasis, energy metabolism and autophagy 
in HCC. We believe the understandings of ferroptosis in 
HCC can bring us a hope to improve the therapy and prog-
nosis of HCC.

Table 1   Ferroptosis relevance among digestive system neoplasms

CDO1 cysteine dioxygenase 1, CN-A cotylenin A, PEITC phenethyl isothiocyanate, PL piperlongumine, HSPA5 heatshock 70-kDa protein 5, 
LOX lipoxygenases, ALOX arachidonate lipoxygenase, NCOA4 nuclear receptor coactivator 4, CHOP C/EBP homologous protein, PUMA p53 
upregulated modulator of apoptosis, TRAIL tumor necrosis factor-related apoptosis-inducing ligand, DPP4 dipeptidyl-peptidase-4

Cancer type Relevance to ferroptosis References

GC c-Myb/CDO1 mediates ferroptosis and inhibition of CDO1 expression upregulates GPX4 expression Hao et al. (2017)
PC Artesunate induces ferroptosis in RAS-activited human PDAC Eling et al. (2015)

The combination of CN-A and PEITC induces ferroptosis Kasukabe et al. (2016)
PL induces ferroptosis and triple combined treatment with PL, CNA and SSZ is highly effective against 

PC
Yamaguchi et al. (2018)

Non-oxidative dopamine blocks ferroptosis Kasukabe et al. (2016)
HSPA5 negatively regulates ferroptosis and inhibition of the HSPA5-GPX4 pathway enhances gemcit-

abine sensitivity
Zhu et al. (2017)

LOX inhibitors prevent erastin-induced ferroptosis and ALOX15 activator promotes ferroptosis in PC 
cells

Shintoku et al. (2017)

Baicalein inhibits erastin-induced ferroptosis Xie et al. (2016)
Overexpression of NCOA4 increases ferritin degradation and promotes ferroptosis Hou et al. (2016)
p53-independent CHOP/PUMA axis is involved in ferroptosis and plays a key role in ferroptotic agent-

mediated sensitization to TRAIL-induced apoptosis in PC cell
Hong et al. (2017)

CRC​ Cisplatin induces ferroptosis via GSH depletion and GPX4 inactivation Guo et al. (2018)
TP53 inhibits erastin-induced ferroptosis via blocking DPP4 activity in a transcription-independent man-

ner
Xie et al. (2017)

p53-independent CHOP/PUMA axis is involved in ferroptosis and plays a key role in ferroptotic agent-
mediated sensitization to TRAIL-induced apoptosis in CRC​

Hong et al. (2017)
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