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Abstract
Heat shock protein 47 (HSP47) is an important chaperone required for the correct folding and secretion of collagen. Several 
studies revealed that HSP47 has a role in numerous steps of collagen synthesis, preventing procollagen aggregation and 
inducing hydroxylation of proline and lysine residues. HSP47 is encoded by the SERPINH1 gene, which is located on chro-
mosome 11q13.5, one of the most frequently amplified regions in human cancer. The altered expression levels of HSP47 have 
been correlated with several types of cancer, such as cervical, breast, pancreatic and gastric cancers. Studies have shown that 
HSP47 promotes tumor angiogenesis, growth, migration and metastatic capacity. In this review, we highlight the fundamental 
aspects of the interaction between HSP47 and collagen and the recent discoveries of the role of this chaperone in different 
types of malignant neoplasias. We also discuss recent treatments using HSP47 as a therapeutic target, and present evidences 
that HSP47 is an essential protein for cancer biology and a potential molecular target for chemotherapy.
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Introduction

The maintenance of cellular protein homeostasis (proteo-
stasis) is essential for the proper function of the cell. The 
main compartment involved in the correct protein-folding 
process is the endoplasmic reticulum (ER), where a com-
plex network of molecules assists with proteostasis (Dufey 
et al. 2015). At the core of this process are the chaperones, 
which support the correct maturation of new peptide chains 
(Brandvold and Morimoto 2015).

Heat shock protein 47 (HSP47) is an important chaper-
one required for the correct folding and secretion of vari-
ous types of collagen (Natsume et al. 1994). This protein 
was first described in chicken embryo fibroblasts as an 
HSP that can bind to collagen type 1 (Nagata and Yamada 
1986; Nagata et al. 1986). In 1991, with the determination 
of its nucleotide sequence, it was demonstrated that HSP47 

belongs to the serpin family, despite the lack of serine pro-
tease inhibitory activity (Hirayoshi et al. 1991). However, 
the HSP47 gene (SERPINH1) is transcriptionally modulated 
by a heat shock element (HSE) (Natsume et al. 1994).

In several types of cells, the expression of HSP47 can be 
correlated with the expression of collagen. HSP47 is highly 
expressed in cells such as chick embryo fibroblasts, which 
also express high levels of collagen (Hirayoshi et al. 1991). 
In addition, it has also been demonstrated that there are no 
detectable levels of HSP47 in cells that do not synthesize 
collagen type I, such as neuroblastoma and erythroleuke-
mic cell lines (Clarke et al. 1993). In fibroblasts of chick 
embryos transformed by Rous sarcoma virus, the expres-
sion of both collagen I and HSP47 is decreased (Nagata and 
Yamada 1986). This effect is also observed in F9 teratocarci-
noma cells. In these cells, the levels of HSP47 and collagen 
type I and type IV are not detectable. However, when these 
cells are differentiated by treatment with retinoic acid, both 
HSP47 and collagens show increased expression (TAKECHI 
et al. 1992).

Several types of cancer are associated with abnormal 
protein folding. In the last two decades, HSP47 has been 
described as an important chaperone in the control and 
maintenance of cellular proteostasis. In this paper, we 
review the importance of the interaction between HSP47 
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and collagen and the role of this chaperone in different types 
of malignant neoplasias.

HSP47 and collagen maturation

Collagen is the most abundant protein in the body and the 
major component of the extracellular matrix (ECM). Col-
lagen is composed of three α-chains, each with a triple-helix 
domain. These chains have three distinct domains: an N-ter-
minal propeptide, a central collagen domain and a C-termi-
nal propeptide. After translation, the C-terminal domains of 
the α-chains lead to recognition and the beginning of trim-
erization of the three α-chains. This process is accelerated 
by protein disulfide isomerase (PDI), which forms interchain 
disulfide bonds in this domain (Wilson et al. 1998). Subse-
quently, the molecule of collagen is transported and secreted 
via the ER–Golgi pathway (Fig. 1). When procollagen is 
in the extracellular environment, its N- and C-propeptide 
domains are cleaved by propeptidases, followed by ligation 
of collagen in the ECM (Layman and Ross 1973). HSP47 is 
capable of returning to the ER due to its RDEL ER-retention 
signal sequence and the KDEL receptors present in the Golgi 
membrane (Sauk et al. 1998).

HSP47 is essential for the correct folding of a collagen 
chain. During the formation of the collagen triple helix, 
regions of the molecule become hydrophobic. HSP47 binds 

to these regions and prevents aggregation of procollagens in 
the ER. The interaction between HSP47 and procollagens 
happens in a pH-dependent manner. In the range between 
pH 6.4 and 7, the fibril formation of type I collagen is inhib-
ited by HSP47 ligation. When pH is decreased to a value 
of 6.3 or lower, fibril formation is increased. This occurs 
because the HSP47 structure is altered at lower pH, and this 
conformational change inhibits the ligation between HSP47 
and collagen I (Thomson and Ananthanarayanan 2000). This 
explains why HSP47 is associated with procollagen in the 
ER, which has a neutral pH, and why it is dissociated from 
procollagen during the transport from the ER–Golgi com-
partment, which has a low pH (Nakai et al. 1992).

The central collagen domain is composed of 338 
Gly–Xaa–Yaa repeats, where Xaa and Yaa are normally a 
proline or a hydroxyproline. In a previous work, in which 
various collagen model peptides were synthesized, it was 
revealed that the dominant binding site of HSP47 in collagen 
is formed by an Xaa–Arg–Gly triplet. In addition, it was 
demonstrated that HSP47 was able to bind to a procollagen 
molecule only when arginine (Arg) residues were incorpo-
rated in the Yaa position (Koide et al. 2002).

Several modifications are necessary for the correct for-
mation and secretion of the collagen molecule. One key 
modification is hydroxylation of proline and lysine resi-
dues. These modifications only occur in unfolded chains 
and involve the three enzyme families prolyl 3-hydroxylases, 

Fig. 1   Collagen synthesis and HSP47: a newly synthesized col-
lagen is released into the ER, HSP47 binds to procollagen and pre-
vents aggregation in the ER (1). A protein complex formed by LH2, 
FKBP65, HSP47 and BiP regulates lysyl hydroxylation (2). Then, the 
molecule of collagen is transported and secreted via the ER–Golgi 

pathway (3). HSP47 returns to the ER due to its KDEL ER-retention 
signal sequence (4). During ER stress, HSP47 binds with IRE1α, 
which reduces the association between IRE1α and BiP, leading to the 
activation of IRE1α (5)
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prolyl 4-hydroxylases and lysyl hydroxylases. The activity 
of lysyl hydroxylase 2 (LH2) produces tissue-specific pat-
terns of hydroxylation. These patterns modulate intra- and 
intercrosslinking between molecules and hence modulate 
the ECM (Walker et al. 2005). Alterations of these patterns 
can lead to changes associated with cancer metastasis (Chen 
et al. 2015).

In a recent work, Duran et al. (2017) described a chaper-
one complex that involved LH2 and HSP47. This complex 
regulated lysyl hydroxylation in type I procollagen, and it 
was composed of LH2, FKBP65, HSP47 and immunoglobu-
lin heavy-chain-binding protein (BiP) (Fig. 1). BiP allows 
correct folding of nascent ER polypeptides and regulates 
the unfolded protein response (UPR). FKBP65 is a colla-
gen chaperone resident in the ER, and the loss of its func-
tion leads to a decrease in lysyl hydroxylation. However, in 
cells with a reduction in HSP47 protein levels, there is an 
increase in lysyl hydroxylation of type I collagen (Lindert 
et al. 2015). Finally, the data from Duran et al. (2017) sug-
gest that BiP participates in the formation of and affinity 
among the proteins in the complex. In addition, they also 
showed a balance between FKBP65 and HSP47 and that 
this balance is responsible for regulating lysyl hydroxylation 
(Duran et al. 2017).

Another important posttranslational modification that 
ensures collagen stability is glycosylation. Glycosyltrans-
ferases (GLT25D1 and GLT25D2) transfer galactose to the 
hydroxylysine residues of procollagen, preventing collagen 
from forming interchain crosslinks (Yamauchi et al. 1982).

HSP47 response to ER and Golgi stress

When misfolded/unfolded proteins accumulate in the ER, 
several signals lead to ER stress, triggering the UPR (Walter 
and Ron 2011). When the UPR is activated, expression of 
genes that improve protein folding is induced, and degrada-
tion of misfolded proteins is promoted as a way to re-estab-
lish ER homeostasis. A continuous ER stress state can lead 
to cell death, normally by apoptosis (Ma and Hendershot 
2004). Chronic ER stress is a relevant factor in the develop-
ment of pathological conditions, such as neurodegenerative 
diseases and cancer (Wang and Kaufman 2016).

Inositol-requiring enzyme 1 alpha (IRE1α) is an ER trans-
membrane protein and the most conserved ER stress signal 
transducer activated by the UPR. Activation of IRE1α leads 
to ER-associated degradation (ERAD), protein secretion and 
the expression of X-box binding protein 1 (XBP1), a tran-
scription factor of genes involved in protein folding (Wang 
and Kaufman 2016). In a recent study, it was shown that 
HSP47 increases the activation of IRE1α by binding with 
the ER luminal domain of IRE1α and reducing the associa-
tion between IRE1α and BiP (Sepulveda et al. 2018). The 

binding of BiP with the luminal domain of IRE1α preserves 
the inactive state of IRE1α (Kimata et al. 2003). Thus, a 
change in binding from BiP to HSP47 leads to activation 
of IRE1α (Fig. 1), and this results in ER stress attenuation 
(Sepulveda et al. 2018).

A major increase in protein secretion can cause insuf-
ficiency of Golgi apparatus functions and activation of the 
Golgi stress response. A disturbance in glycoprotein traf-
fic by inhibition of O-glycosylation is an effective stimulus 
for the activation of the Golgi stress response (Sasaki and 
Yoshida 2015). To elucidate the role of HSP47 in the Golgi 
stress response, the expression of HSP47 was downregulated 
by small interfering RNA (siRNA) in NIH3T3 cells and 
treated with O-glycosylation inhibitor. The results showed 
that induction of Golgi stress in HSP47 knockdown cells 
caused cell death. HSP47-knockdown cells also exhibited an 
increase in cleavage of Golgi-resident caspase-2 and activa-
tion of mitochondrial caspase-9. Furthermore, the induction 
of Golgi stress also induced a UPR response. These discov-
eries could indicate that HSP47 protects the Golgi apparatus 
from the effects of O-glycosylation inhibition and protects 
cells from the Golgi stress response (Miyata et al. 2013).

Relationship among cancer, collagen 
and HSP47

ECM is essential to the support, resistance and organiza-
tion of tissues. Moreover, it is responsible for numerous bio-
chemical signals that modulate cellular function. The ECM 
comprises several components, such as collagen, laminin, 
fibronectin, glycoproteins, proteoglycans, and matricellular 
proteins. To develop cancer, an extensive reorganization 
of the ECM is necessary (Schedin and Keely 2011). This 
reorganization drives tumor progression through prosur-
vival and proliferative signals, promoting tumor metastasis. 
Deposition of collagen is higher in breast cancer cells than 
in nonmalignant mammary cells (Curran and Keely 2013). 
Furthermore, collagen was identified as a prognostic marker, 
and its expression is associated with cancer recurrence (Hel-
leman et al. 2008).

HSP47 is encoded by the SERPINH1 gene, located on 
chromosome 11q13.5. This region is one of the most fre-
quently amplified in human cancer (Schwab 1998). HSP47 
promotes tumor growth and invasion, probably through 
regulation of the ECM network, and may be a possible 
biomarker and therapeutic target (Zhu et al. 2015). HSP47 
has a 3′-UTR region in messenger RNA that is regulated 
by microRNA(miR)-29. Several works have demonstrated 
that miR-29 repressed the expression of HSP47, controlling 
the levels of this protein in cells (Yamamoto et al. 2013; 
Zhu et al. 2015). The downregulation of miR-29, leading to 
the upregulation of HSP47, has been correlated with several 
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types of cancer, such as cervical, breast, pancreatic and gas-
tric cancer (Maitra et al. 2002; Hirai et al. 2006; Yamamoto 
et al. 2013; Zhu et al. 2015).

Gastric and colorectal cancer

Gastric cancer is the third most common type of malig-
nant neoplasm (Ferlay et al. 2015). Good patient progno-
sis depends on several factors, and the stage of the tumor 
detection is critical. Thus, finding good biomarkers for early 
gastric cancer detection is essential and has been the subject 
of diverse scientific works that applied proteomic, transcrip-
tomic and in silico analyses.

To determine novel biomarkers for gastric cancer, Zhang 
et al. (2010) performed an analysis with 22 genes imported 
into the public Affymetrix gene expression-profiling data-
set. Of these genes, eight showed a significant difference 
(p < 0.001) in expression levels between the gastric can-
cer samples (n = 22) and healthy gastric tissue (n = 8), and 
HSP47 was found to be upregulated in gastric cancer (Zhang 
et al. 2010).

Ulcerative colitis (UC) is a chronic condition that leads 
to inflammation and formation of ulcers in the colon and 
rectum. Patients with a longer disease duration seem to be at 
higher risk of neoplastic development (Ford et al. 2013). A 
proteomic approach for UC-associated cancer and sporadic 
colon cancer cell lines demonstrated elevated expression 
of HSP47 in UC-associated cancer compared with that in 
sporadic colon cancer. In addition, immunohistochemical 
analysis showed an increase in expression of HSP47 with 
the progression of cancer. Interestingly, HSP47 was also 
detected in the culture medium through a Western blot tech-
nique (Araki et al. 2009).

Association between HSP47 and colorectal cancer is also 
observed with the use of the isobaric tag for relative and 
absolute quantification (iTRAQ) method. In this study, Mori 
et al. (2017) identified proteins associated with lymph node 
metastasis in patients with colorectal cancer. A bioinfor-
matic analysis demonstrated that HSP47 was the main poten-
tial biomarker. In addition to these data, they also validated 
their results through immunohistochemistry. The analysis 
also demonstrated that expression of HSP47 was signifi-
cantly higher in lymph node metastasis than in colorectal 
cancer without metastasis (Mori et al. 2017). These data 
indicate a correlation between HSP47 and colorectal tumor 
aggressiveness, which can also be observed in obstructive 
colorectal carcinoma (OCC) (Xu et al. 2013).

OCC has a poor prognosis and a higher correlation with 
aggressive types of cancer (Fitchett and Hoffman 1986). 
The expression of HSP47 was strongly detected in obstruc-
tive carcinoma. OCC showed cancer cells with less differ-
entiation and stromal myofibroblast proliferation leading 
to a fibrotic process. Coexpression of HSP47 with basic 

fibroblast growth factor (bFGF) in inflammatory cells may 
contribute to stromal fibrosis formation (Xu et al. 2013). A 
relation between HSP47 and fibrotic process is also observed 
in scirrhous carcinoma of the stomach and in cirrhotic 
human liver (Hirai et al. 2006; Poschmann et al. 2009). The 
effect of HSP47 on the fibrotic process may occur through 
the regulation of endothelin receptors A and B (ETBRA, 
ETBRB) by HSP47 (Zhao et al. 2017).

Pancreatic cancer

In a study with 57 cases of primary invasive pancreatic 
ductal adenocarcinomas, the expression of HSP47 was 
detected in all neoplastic samples. Interestingly, the expres-
sion of HSP47 was most intense in the tumor-associated 
stroma. Only a dispersed immunoreactivity was found in the 
fibroblast cells of ductal adenocarcinomas, and in 35% of 
cases, these cells did not express HSP47 (Maitra et al. 2002). 
In addition, in analyses of stroma of nonductal pancreatic 
neoplasms, all tested cases were positive for HSP47 (Cao 
et al. 2005). However, when HSP47 expression was analyzed 
in the cells of this neoplasm, the results were similar only 
in cases of pancreatoblastomas, with 75% of cases showing 
cells positive for HSP47. In acinar cell carcinomas and solid 
pseudopapillary tumors, the cells were positive for HSP47 
in only 23 and 25% of cases investigated, respectively. Nev-
ertheless, 100% of the cases analyzed of osteoclastic-like 
giant cells showed cells with HSP47 protein expression (Cao 
et al. 2005).

Gynecological cancers

Cancers in women’s reproductive organs are referred to as 
gynecologic cancers and include cervical, ovarian, uterine, 
vaginal, and vulvar cancers (Tavassoli and Deville 2003).

In cervical squamous cell carcinoma (SCC), miR-29a is 
normally found to be downregulated (Li et al. 2011; Yama-
moto et al. 2013). When its expression was restored in SCC 
cell lines, the migration and invasion capacity decreased. 
Luciferase reporter assays demonstrated that miR-29a acts 
by directly regulating HSP47 (Yamamoto et al. 2013). In 
addition to these results, analyses with cervical normal tis-
sue, HPV16-positive SCCs, and HPV16-positive CIN2–3 
(abnormal cells found on the surface of the cervix) also 
demonstrated a relationship between miR-29a and malig-
nant transformation of cervical epithelial cells. Infection 
by human papillomavirus (HPV) is directly correlated with 
the development of invasive cervical cancer, and the results 
showed a small decrease in miR-29a in HPV16-positive 
CIN2–3 and a significant decrease in HPV16-positive SCCs 
when compared with that in normal tissue (Li et al. 2011).

17-AAG (17-allylamino-17-demethoxygeldanamycin) is 
a promising antitumor agent that acts through inhibition of 
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the molecular chaperone Heat shock protein 90 (HSP90). 
Despite the antitumor activity, treatment with 17-AAG 
increased expression of HSP47 (Maloney et  al. 2007). 
Conversely, 17-AAG disrupted the tumor suppressor path-
way LATS–MST2–YAP. These findings may suggest that, 
although 17-AAG has antitumor activity, it is also involved 
in signaling pathways that promote tumorigenesis (Huntoon 
et al. 2010).

Breast cancer

Using gene coexpression network analysis, Zhu et al. (2015) 
discovered a coexpression network that participates in ECM 
remodeling from breast cancer tissues. In this network, 
HSP47 appears as a nodal hub in the regulation of ECM, 
and their analysis showed that HSP47 expression was acti-
vated during breast cancer development and progression. To 
determine the function of HSP47 in breast tumor progres-
sion, silencing of HSP47 was carried out in breast cancer 
cell lines. Their results showed that HSP47 promotes cancer 
progression by increasing cell proliferation and invasion. In 
addition, silencing of HSP47 reduced the levels of collagen 
I and IV and fibronectin in the conditioned medium but did 
not alter the protein expression levels in cells, demonstrat-
ing the role of HSP47 in secretion of the ECM components 
(Zhu et al. 2015).

Human breast cancer cells silenced for HSP47 showed 
restricted tumor growth in xenograft assays. This prob-
ably occurs through a reduction in the secretion of colla-
gen and fibronectin and hence their deposition in the ECM. 
Coexpression network analysis also revealed that levels of 
microRNA-29b and 29c are associated with expression of 
HSP47 and ECM network genes (Zhu et al. 2015). TGF-β 
expression was linked to several molecules that are part of 
the ECM (Xu and Mao 2011). Treatment with TGF-β also 
induced HSP47 expression in nonmalignant breast cell lines. 
In addition, blocking the TGF-β pathway with a TGFBR 
inhibitor reduced HSP47 expression in breast cancer cell 
lines. These results could indicate that HSP47 is regulated 
by the TGF-β pathway (Zhu et al. 2015).

The TGF-β pathway involves the activation of several 
molecules including SMAD3. SMAD3 is associated with 
the transcription activation of GATA3 (Blokzijl et al. 2002), 
another protein correlated with HSP47 (Wang 1994).

GATA3 is a transcription factor that regulates lumi-
nal epithelial cell differentiation in the mammary gland 
(Kouros-Mehr et al. 2006). In breast cancer cells, there 
is a loss of GATA3 expression, and this fact is related to 
poor prognosis in patients. When expression of GATA3 
was induced in breast cancer cells, there was suppression 
of metastasis, modification of the cellular microenviron-
ment and increases in cellular differentiation. These effects 
are related to the induction of miR-29b expression through 

GATA3 (Chou et al. 2013). Interestingly, GATA3 is also 
related to the induction of HSP47 expression (Wang 1994). 
These data suggest a possible role for GATA3 in the balance 
of HSP47 expression.

Lung cancer

Lung tumors are classified into small cell lung carcinoma 
and non-small cell lung carcinoma. This last group consists 
of squamous cell carcinoma (SCC), lung adenocarcinoma, 
and large cell carcinoma (LCC). Cells from normal human 
bronchial epithelium and squamous cell carcinoma tumors 
were analyzed in a comparative proteomic approach. The 
results showed that 32 proteins were differentially expressed 
between the two groups of cells and that HSP47 was over-
expressed in squamous cell carcinoma. In addition to these 
data, immunohistochemical analysis of the different types 
of lung cancer revealed a significant coregulation between 
HSP47 and cytokeratins in squamous cell carcinoma 
(Poschmann et al. 2009).

Idiopathic pulmonary fibrosis is a chronic lung disease 
that can lead to lung cancer (Daniels and Jett 2005). Recent 
studies of miRNA expression demonstrated that miR-29a 
is downregulated in lung cancer and pulmonary fibrosis. 
Through a combination of gene expression analysis and in 
silico analysis of lung cancer cells and lung fibroblast cells 
lines, 24 possible targets of miR-29a were described. This 
microRNA is associated with the expression of LOXL2 
and HSP47. When the expression of miR-29a is restored in 
lung cancer cell lines, the aggressiveness and the fibroblast 
migration capacity were repressed (Kamikawaji et al. 2016).

Osteosarcoma

Collagen I is the principal protein found in mature bone. In 
addition to the presence of a binding site for HSP47, col-
lagen I also has a binding site for the serine protease inhibi-
tor (serpin) pigment epithelium-derived factor (PEDF). 
This protein has shown anti-osteosarcoma properties with 
a protective effect against osteolysis and lung metastasis 
(Ek et al. 2007b). PEDF was also capable of decreasing the 
angiogenesis, migration and invasion capacity in experi-
ments in vivo and in vitro with two osteosarcoma cell lines 
(Ek et al. 2007a). Nevertheless, it was observed that PEDF 
upregulates collagen I and HSP47 in osteosarcoma cells 
in vitro (Alcantara et al. 2014).

In a study by Uozaki et al. (2000), the expression of 
HSP27, HSP47, HSP60, HSP70 and HSP90 was analyzed 
by immunohistochemical staining in 70 cases of conven-
tional osteosarcoma in the bones of the extremities. The 
overexpression rate of HSP47 (94%) was higher than that 
of other HSPs. However, the expression of HSP47 does not 
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demonstrate a relationship with poor prognosis in patients 
(Uozaki et al. 2000).

Glioblastoma

Grade IV glioblastoma multiforme (GBM) is the most 
aggressive form of brain tumor. Overexpression of HSP47 
was described in analyses of tissues and glioma cell lines, 
and this expression was correlated with the grade of the dis-
ease (Wu et al. 2014, 2016; Zhao et al. 2014; Jiang et al. 
2016). Knockdown of HSP47 using small interfering RNAs 
inhibited growth, viability, migration and invasion capacity 
in glioma cells lines in vitro and decreased tumor volume 
in vivo (Zhao et al. 2014; Wu et al. 2016). The relationship 
between HSP47 and these cellular mechanisms was also 
demonstrated through overexpression of HSP47 by lenti-
virus infection. In this experiment, it was found that over-
expression of HSP47 promotes glioma formation, invasion 
and angiogenesis. The effect observed is probably caused by 
regulation of ECM components through the TGF-β pathway 
(Jiang et al. 2016).

In addition to the remodeling of the ECM, another fun-
damental mechanism for tumor growth and metastasis is 
angiogenesis (Sato 2003; Nishida et al. 2006). Thus, peri-
cytes have an important role in tumor development (Hosaka 
et al. 2016). Analyses with pericytes in glioma tissues dem-
onstrated that these cells express HSP47 (Wu et al. 2016; 
Hosono et  al. 2017). Knockdown of HSP47 in human 
umbilical vein endothelial cells decreased the proliferation 
and migration of the cells and inhibited tube formation. A 
decrease in HSP47 expression reduced the microvessel den-
sity in vivo. Furthermore, gene array and Western blot analy-
ses demonstrated that HSP47 promoted glioma angiogenesis 
via HIF1α-VEGFR2 signaling (Wu et al. 2016). Therefore, 
HSP47 can be considered as a potential therapeutic target 
of GBM.

Tumor immunotherapy treatment with directional targets 
for cytotoxic T lymphocytes (CTL) leads to tumor regression 
in several types of neoplasias (Azuma et al. 2016; Verma 
et al. 2016; Suekane et al. 2017; Wu et al. 2017). The tumor-
associated antigen can be a highly differentially expressed 
gene. In a prospective study, Wu et al. identified two pep-
tides of HSP47 that were candidate epitopes for CTL treat-
ment. The T-cell immune response was analyzed in GBM 
patients by stimulation with the peptide mixture. The results 
showed that the GBM patients with a positive CTL response 
to HSP47 experienced a prolonged progress-free survival 
time and overall survival (Wu et al. 2014).

Head and neck cancers

Cancers collectively known as head and neck cancers typi-
cally begin in the squamous cells and, rarely, in the salivary 

glands (Huntoon et al. 2010). To understand the role of 
HSP47 in these types of cancers, analyses of HSP47 were 
performed in lines of human squamous cell carcinoma of the 
head and neck (SCCHN) in a comparative mode with a pri-
mary gingival fibroblast cell line. The expression of HSP47 
was positive for all cell lines, but when the analysis was 
performed for cell surfaces only, the expression of HSP47 
was detected only in SCCHN lines. The invasion capacity of 
SCCHN cells was evaluated using modified Boyden cham-
bers. The results showed variance among the different cell 
lines, and this variance could be associated with the level 
of HSP47 expressed on the cell surface. Unexpectedly, cell 
lines expressing high levels of HSP47 revealed the lowest 
migratory index (Hebert et al. 1999).

To understand how HSP47 is anchored in the cell mem-
brane, several immunoprecipitation assays were performed, 
and the immunoprecipitation assays using anti-CD9 and 
anti-HSP47 antibodies confirmed that these proteins pre-
cipitated together. Reimmunoprecipitation of the CD9 with 
anti-HSP47 confirmed the interaction between these two 
proteins in all SCCHN lines. These findings indicated that 
HSP47 may be anchored in the cell membrane in a complex 
with CD9 (Hebert et al. 1999). In a previous work, Sauk 
et al. showed that HSP47 could be recycled and is not per-
manently anchored to the cell surface (Sauk et al. 2000).

HSP47 as a therapeutic target in cancer

To investigate the potential of HSP47 as a molecular target 
for chemotherapy, a water-soluble polymeric drug delivery 
system containing an HSP47-binding peptide sequence and 
the chemotherapeutic agent doxorubicin (Dox) was tested 
in SCCHN cell lines. The HSP47-binding peptide sequence 
WHYPWFQNWAMA (Hebert et al. 2001) and the chemo-
therapeutic agent Dox were attached to the polymer via a 
tetrapeptide spacer. The treatment of SCCHN cell lines with 
the polymer-drug conjugate proved that the drug delivery 
system is recognized by the HSP47 receptors and that after 
its recognition, drug internalization and intracellular release 
occur (Nan et al. 2005).

In the same way, an N-(2-hydroxypropyl) methacrylamide 
(HPMA) copolymer was bound with a peptide sequence 
WHYPWFQNWAMA (Hebert et al. 2001) as a targeting 
ligand and synthesized by a simple synthetic route. Subse-
quently, 1,3-dimethylol-5-FU, derived from 5-fluorouracil 
(5-FU), was attached to the polymer. After polymer forma-
tion and internalization of the polymer, cytotoxicity and 
apoptosis assays were evaluated in an SCCHN cell line. All 
experimental results were compared to those of treatment 
with 5-FU and a copolymer without the peptide sequence 
from HSP47. The results showed that the polymer with the 
HSP47 peptide exhibited the highest cytotoxic efficacy, 
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the fastest internalization, and an increased apoptotic and 
necrotic induction of tumor cells when compared to the other 
conditions (Xiang et al. 2012).

In the development of new chemotherapies, HSP inhibi-
tory molecules emerged as an important strategy. Inhibition 
of HSP47 is an attractive therapeutic intervention, because 
unlike other chaperones, HSP47 has collagen as a unique 
substrate. In this context, a screen with 2,080 compounds 
identified four molecules that have inhibitory activity 
against HSP47. After the definition of IC50 values, these 
compounds were tested in cell culture, and the inhibitory 
activity against HSP47 was proven (Thomson et al. 2005).

AK778 was described as an inhibitory molecule that com-
petitively inhibited the interaction between HSP47 and colla-
gen. When the cells were treated with AK-778, the molecule 
of collagen was destabilized. Further experiments demon-
strated that AK-778 was degraded into two fragments named 
Col002 and Col003, and the inhibitory effect on HSP47 was 
due to Col003. Experiments also demonstrated that Col003 
inhibited collagen secretion in vivo by binding with HSP47 
in its collagen-binding region (Ito et al. 2017).

Pirfenidone is an antifibrotic drug commonly used for the 
treatment of idiopathic pulmonary fibrosis (Sharbeen et al. 
2015). Pirfenidone exerts its antifibrotic effect by suppress-
ing HSP47 and collagen I expression through downregula-
tion of the TGFβ signaling pathway (Nakayama et al. 2008). 
Supported by positive clinicals studies, pirfenidone was 
approved for treatment of idiopathic pulmonary fibrosis. In 
a recent study by Polydorou et al., it was demonstrated that 
pirfenidone improves blood vessel perfusion and intensifies 
the antitumor efficacy of Dox, increasing the drug efficacy 
in chemotherapy (Polydorou et al. 2017).

Terutroban is a specific antagonist of the thromboxane 
receptor (TP) that has demonstrated a high antithrombotic 
efficacy (Siller-Matula et al. 2010). Gelosa et al. demon-
strated that terutroban suppresses the expression of HSP47 
in the aortic tissues of rats treated with this drug. In addi-
tion, quantitative PCR also showed a suppression of TGF-β 
expression (Gelosa et al. 2011). These discoveries suggest 
that terutroban could be a possible treatment for diseases 
that have altered HSP47 expression such as cancer.

Conclusions

HSP47 expression can be directly correlated with several 
types of cancer, and this protein is emerging as a possible 
biomarker and therapeutic target in malignant neoplasms. 
Nevertheless, the expression of HSP47 in different types of 
cancer has divergent effects. Although in some types of can-
cer, like glioblastoma and breast cancer, HSP47 is associated 
with aggressiveness (Zhu et al. 2015; Jiang et al. 2016), in 
osteosarcoma HSP47 has an indirect protective effect against 

osteolysis and lung metastasis (Alcantara et al. 2014; Kob-
ayashi et al. 2014). Therefore, more studies are necessary to 
understand the influence of HSP47 in tumor development.
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