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mechanisms, modulate tumor cell proliferation suggesting 
β-blockers can be a feasible therapeutic approach to antag-
onize β-adrenergic response or have a protective effect 
per se. This review highlight the need for intensifying the 
research not only on the molecular mechanisms underlying 
the β-adrenergic influence in cancer, but also on the impli-
cations of biased agonism of β-blockers as potential antitu-
mor agents.
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NA	� Noradrenaline
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VEGF	� Vascular endothelial growth factor
PKA	� Protein kinase A
cAMP	� Cyclic adenosine monophosphate
ERK	� Extracellular signal-regulated kinase
NFκB	� Nuclear factor κB

Abstract 
Purpose  In this review, we aimed to present and discuss 
the available preclinical and epidemiological evidences 
regarding the modulation of cancer cell proliferation by 
β-adrenoceptors (β-AR), with a specific focus on the puta-
tive effects of β-blockers according to their pharmacologi-
cal properties.
Methods  A comprehensive review of the published lit-
erature was conducted, and the evidences concerning the 
involvement of β-AR in cancer as well as the possible role 
of β-blockers were selected and discussed.
Results  The majority of reviewed studies show that: (1) 
All the cancer types express both β1- and β2-AR, with 
the exception of neuroblastoma only seeming to express 
β2-AR; (2) adrenergic agonists are able to increase pro-
liferation of several types of cancers; (3) the proliferative 
effect seems to be mediated by both β1- and β2-AR; (4) 
binding to β-AR results in a cAMP transient flux which 
activates two major downstream effector systems: protein 
kinase A and EPAC and (5) β-blockers might be putative 
adjuvants for cancer treatment.
Conclusions  Overall, the reviewed studies show strong evi-
dences that β-AR activation, through several intracellular 
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AP-1	� Activator protein 1
CREB	� CAMP response element binding protein
AA	� Arachidonic acid
GPCR	� G-protein-coupled receptor
EGF	� Epidermal growth factor

Introduction

Cancer figures among the leading causes of death world-
wide, accounting for 8.2 million deaths and 14 million new 
cases in 2012 (Ferlay et al. 2015). The burden of cancer is 
increasing in economically developed countries, and the 
number of new cases is expected to rise by about 70  % 
over the next 20 years, as a result of population aging and 
growth as well as of the adoption of cancer-associated life-
style choices (Torre et al. 2015).

 Over the last three decades, clinical and epidemiologi-
cal studies have identified psychosocial factors including 
stress, chronic depression and lack of social support as 
risk factors for cancer progression (Moreno-Smith 2010; 
Spiegel 1994; Spiegel and Giese-Davis 2003). A meta-
analysis by Chida et  al. (2008) showed that stress-related 
psychosocial factors are associated with higher cancer 
incidence even in healthy populations (Chida et al. 2008). 
Others reported that stressful life experiences are related 
to poor cancer survival and higher mortality, despite not 
affecting incidence (Chida et al. 2008).

Stress response is a key mechanism for the constant 
adaptation to changes in social and physical environments 
(Goldstein 2003). Multicellular organisms cope with stress 
through the activation of two main systems, the hypotha-
lamic–pituitary–adrenal axis and the sympathoadrenomed-
ullary (SAM) system, and the release of cortisol and the 
catecholamines (CAs), adrenaline (AD) and noradrenaline 
(NA), respectively. The effects of CA are mediated through 
interactions with α- and β-adrenoceptors (AR) (Guimaraes 
and Moura 2001).

A growing number of studies suggest that stress-related 
persistent stimulus can result in CA overproduction, which 
might impact cancer prognosis and mortality (Tang et  al. 
2013). Over the last years, chronic stress effects on cancer 
progression have been focused on tumor cell proliferation, 
resistance to apoptosis, invasion, metastasis, angiogen-
esis, stroma cells microenvironment and cellular immune 
responses (Cole and Sood 2012; Moreno-Smith 2010). 
Studies addressing the link between stress-activated path-
ways and cancer progression suggested that CA, besides 
affecting the antitumor immune response (Marino and 
Cosentino 2013), may also display direct tumor-promot-
ing effects in, but not limited to, breast, ovary, colorec-
tal, esophagus, lung, prostate, nasopharynx, melanoma, 

leukemia, hemangioendothelium and angiosarcoma (Tang 
et al. 2013).

Among therapeutic drugs acting on β-AR, β-AR 
antagonists, commonly known as β-blockers, are widely 
used to treat cardiac ailments, such as hypertension and 
arrhythmia and other ailments. Recently, antitumor 
effects involving the inhibition of multiple pro-survival 
pathways in tumor cells have been demonstrated for 
many of these drugs (Baker et al. 2011). Growing epide-
miological evidences have revealed strong correlations 
between both progression-free and long-term survival and 
β-blockers usage in cancer patients (Eng et  al. 2014). A 
meta-analysis assessing 12 studies using β-blockers in 
cancer patients showed a positive association with overall 
and disease-free survival (Choi et  al. 2014). Overall, the 
impact on survival was more pronounced for patients sub-
mitted to surgery, meaning that the perioperative period 
might be an opportunity to arrest tumor progression or to 
promote its eradication (Choi et  al. 2014). Tumor cells 
may express β-AR, which are associated with multiple 
intracellular signal transduction pathways involved in cel-
lular replication, inflammation, angiogenesis, apoptosis/
anoikis, cell motility and trafficking, activation of tumor-
associated viruses, DNA damage repair, cellular immune 
response and epithelial–mesenchymal transition (Cole 
and Sood 2012; Eng et al. 2014; Lutgendorf et al. 2010; 
Marino and Cosentino 2013). Although the involvement 
of β-adrenergic signaling in the progression of malignant 
diseases has been increasingly recognized, the underlying 
detailed cellular mechanisms remain elusive so far (Tang 
et al. 2013).

The aim of this review is to present and discuss available 
preclinical and clinical evidence regarding β-AR-mediated 
regulation of cancer cell proliferation, a crucial step in can-
cer development and progression, with a specific focus on 
the pharmacological properties and on the possible effects 
of β-blockers.

Physiology and pharmacology of β‑AR

NA is a neurotransmitter in the central and peripheral nerv-
ous systems. AD, synthesized from NA through demethyla-
tion, is produced by chromaffin cells in the adrenal medulla 
and released in the bloodstream upon stimulation by the 
sympathetic nervous system. In the central nervous system, 
NA is involved in attention, arousal and vigilance, while 
in peripheral tissues, NA is the main transmitter of sympa-
thetic postganglionic fibers.

NA and AD act on 7-transmembrane, G-protein-cou-
pled receptors named “adrenoceptors” (AR), which con-
trol blood pressure, heart rate and force, airway reactiv-
ity, glucose metabolism and many central nervous system 
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functions. AR include α1, α2 and β-AR types, each fur-
ther divided into three subtypes. In particular, β-AR are 
expressed in heart (β1 and a few β2, mediating contraction), 
in smooth muscle (β2, inducing relaxation) and in skel-
etal muscle (β2, inducing hypertrophy). β2-AR are possibly 
expressed in all normal human cell types. Usually, β1-AR 
are located close to sympathetic terminals and are tar-
geted mainly by NA released from nerves, while β2-AR are 
often extrajunctional receptors and may be preferentially 
acted upon by circulating NA and AD. β3-AR are mainly 
expressed in adipose tissue, where they control lipoly-
sis, and in skeletal muscle, where they contribute to ther-
mogenesis. Extensive information about physiology and 
pharmacology of AR can be found in Perez et  al. (2016) 
(Dianne Perez).

AR agonists and antagonists are used as therapeutics 
for several indications, including cardiovascular disease, 
asthma, benign prostatic hypertrophy and glaucoma. In par-
ticular, β-blockers are used in cardiac arrhythmias, in the 
secondary prevention of myocardial infarction, and as sec-
ond choice antihypertensives (reviewed in López-Sendón 
et al. 2004).

β‑AR influence proliferation of several cancer cell lines

In 1989, Schuller and Cole (1989) provided the first evi-
dence that β-AR activation promotes the proliferation of 
lung adenocarcinoma cells. Indeed, they demonstrated that 
isoprenaline (ISO), a synthetic agonist, was able to increase 
the proliferation of these cells and that β-AR blockade with 
propranolol (PRO) reverted this effect (Schuller and Cole 
1989). Afterward, several in vitro and in vivo studies have 
shown that both CA promote cell proliferation in different 
types of cancer (Bernabé et al. 2011; Lin et al. 2013; Liu 
et al. 2008; Wong et al. 2011).

Stimulation of β-AR change intracellular cAMP levels 
which, in turn, can affect cell proliferation, differentia-
tion and quiescence (Perez-Sayans et  al. 2010). However, 
low receptor density might indicate deficient production 
of cAMP, resulting in downregulation of cell growth and 
differentiation (Cole and Sood 2012). In vitro studies have 
shown that exogenous cAMP can inhibit or stimulate cell 
proliferation depending on the cell type, the oncogene con-
trolling growth or the amount of cAMP (Perez-Sayans et al. 
2010). A large number of studies have also suggested that 
hormones that stimulate Gαs-coupled receptors and cAMP/
PKA activity, such as CA, regulate a diverse array of cel-
lular processes in cancer cell biology. In a widely range of 
cancer cell lines, these mediators lead to the activation of 
signals and proteases that are active drivers of tumor behav-
ior such as PI3 K/Akt, Ras-ERK1/2, AP-1, Stat3, NF-kB, 
and CREB, and increased expression of VEGF, IL-6, IL-8 
and metalloproteases (MMP) (McCarty 2014).

Tables  1 and 2, respectively, summarize the variety of 
cancer cell lines from different types of tumors express-
ing β-AR, as the effect of adrenergic agonists upon cellular 
proliferation.

A study using the esophageal squamous cell carcinoma 
cell line, HKESC-1, demonstrated that AD, via β1/β2-AR/
ERK/COX-2 signaling pathways, stimulates cellular pro-
liferation, an effect abolished by the selective blockade 
of both β1- and β2-AR (Liu et al. 2008). Nonetheless, the 
authors did not advance the mechanisms by which β-AR 
activation leads to ERK1/2 phosphorylation and cycloox-
ygenase-2 (COX-2) induction. In the same cell line, they 
also showed that AD was able to increase protein levels of 
the cell cycle regulators, CDK-4, CDK-6, cyclin D1 and 
cyclin E2, an effect mainly reversed by β2-AR blockade 
(Liu et al. 2008). The same authors showed that β-AR are 
functionally activated by EGF (epidermal growth factor) 
which increases HKESC-1 cellular proliferation via up-reg-
ulation of PKA. They also suggest that EGF can indirectly 
affect proliferation through the increase in TH (tyrosine 
hydroxylase) expression and subsequently AD produc-
tion, which then will increase proliferation after binding to 
β-AR. Interesting enough, the blockade of β-AR with ATE 
and ICI almost completely reversed the proliferative effect 
of EGF (Liu et al. 2008).

Evidences have shown that there is an overexpression of 
β2-AR in human gastric cancer tissues (Shan et al. 2014). 
In a study using the gastric cancer cell lines, BGC-823 and 
SGC-7901, ISO-enhanced cellular proliferation (Liao et al. 
2010). PRO was able to decrease cell proliferation in a 
concentration-dependent manner by reducing NF-κB DNA 
binding activity and concomitantly inhibiting the expres-
sion of COX-2, MMP-2/9 and VEGF at both mRNA and 
protein levels (Liao et al. 2010).

Oral squamous carcinoma cell proliferation also seems 
to be affected by adrenergic activation. A retrospective 
clinical study showed that β2-AR expression is a favora-
ble prognostic factor for oral squamous carcinoma patients 
and could be a target for new antineoplastic pharmacologi-
cal strategies (Bravo-Calderon et al. 2011). Bernabé et al. 
(2011) showed that NA induces the proliferation of differ-
ent oral squamous carcinoma cell lines (SCC-9, SCC-15 
and SCC-25) through activation of both β1- and β2-AR, an 
action inhibited by PRO (Bernabé et al. 2011). In another 
study, NA was a potent mitogen for TCa8113 and ACC cell 
lines, an affect again abolished by PRO (Shang et al. 2009). 
In these cells, only β2-AR were expressed and, given their 
correlation with age, tumor size, clinical stage and with 
cervical lymph node metastasis, they putatively related 
with tumor development and clinical outcomes (Shang 
et al. 2009).

Zhang and colleagues (Zhang et al. 2010) demonstrated 
that the proliferation increase in the pancreatic cancer cells, 
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Table 1   β-Adrenoceptors 
expression in several types of 
cancer cells

Type of cancer cell Adrenoceptors References

β1 β2

mRNA Protein mRNA Protein

Esophageal cancer

HKESC-1 Yes1,2 Yes1,2 Yes1,2 Yes1,2

HKESC-3 Yes2 – Yes2 – Liu et al. (2008)1

KYSE-150 Yes2 – Yes2 – Liu et al. (2008)2

Gastric cancer

SGC-7901 Yes1 Yes1 Yes1 Yes1 Liao et al. (2010)1

BGC-823 Yes1 Yes1 Yes1 Yes1,2 Shi et al. (2013)2

NCI-N87 – – – Yes2

MGC-803 – – – Yes2

HGC-27 – – – Yes2

Oral squamous carcinoma

SCC9 Yes1 – Yes1 –

SCC15 Yes1 – Yes1 – Bernabé et al. (2011)1

SCC25 Yes1 – Yes1 – Shang et al. (2009)2

TCa8113 – – Yes2 Yes2

ACC – – Yes2 No2

Pancreatic cancer

MIA PaCa-2 Yes1 Yes1 Yes1 Yes1

BxPC-3 Yes1 Yes1 Yes1 Yes1 Zhang et al. (2010)1

PC-2 Yes2 – Yes2 – Shen et al. (2008)2

PC-3 Yes2 – Yes2 – Lin et al. (2012)3

Panc-1 – Yes3 – Yes3

Colon cancer

HT-29 Yes1,2 Yes2 Yes1,2 Yes1,2

SW116 Yes1 Yes2 Yes1,2 Yes1,2 Wu et al. (2005)1

SW480 Yes1 – Yes1 – Lin et al. (2013)2

LS174T Yes2 Yes2 Yes2 Yes2

Melanoma

C8161 Yes1 Yes1 Yes1 Yes1 Yang et al. (2009)1

1174MEL Yes1 Yes1 Yes1 Yes1 Moretti et al. (2013)2

Me18105 Yes1 Yes1 Yes1 Yes1

A375 Yes2 Yes2 Yes2 Yes2

HS29-47 Yes2 Yes2 Yes2 Yes2

Ovarian cancer

SKOV-3 Yes1 – Yes1 – Lutgendorf et al. (2003)1

EG Yes1 – Yes1 – Rangarajan et al. (2003)2

222 Yes1 – Yes1 –

Breast cancer

MCF-7 Yes1 – Yes1,3 Yes3

ZR-75 Yes1 – Yes1 –

MDA-MB-361 Yes1 – Yes1 –

MDA-MB-435 No1 – Yes1 – Cakir et al. (2002)1

MDA-MB-453 No1 – Yes1,3 Yes3 Pérez Piñero et al. (2012)2

MDA-MB-468 Yes1 – Yes1 – Shi et al. (2011)3

BT-474 – – Yes3 Yes3

MDA-MB-231 – – Yes2 –

IBH-4 – – Yes2
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MIA PaCa-2 and BxPC-3, probably occurred through the 
activation of β2-AR, given that both PRO and ICI were sig-
nificantly more effective than metoprolol (MET), a β1-AR 
selective antagonist (Zhang et al. 2010). Furthermore, they 
showed that β2-AR blockade suppressed proliferation by 
inhibition of both cAMP/PKA and Ras, which regulate 
activation of the MAPK pathway and transcription factors, 
such as NFκB, AP-1 and CREB, as well as expression of 
its target genes, MMP-9, MMP-2 and VEGF. However, the 
β1-adrenergic antagonists suppressed invasion by solely 
inhibiting the cAMP/PKA pathway, suggesting these drugs 
as novel preventive and therapeutic approaches for pancre-
atic cancer (Zhang et al. 2010).

A wide variety of studies have assessed the effect of 
stress hormones, and other adrenergic agonists, upon 
colon tumor biology. In fact, in this context, colon cancer 
seems to be the most well-studied tumor. In 2005, Wu et al. 
(2005) demonstrated that the activation of β-AR by ISO 
and NA results in an increase in colon cancer cellular pro-
liferation accompanied by the up-regulation of arachidonic 

acid (AA) cascade. Wong et al. (2011) also showed that AD 
was able to increase HT-29 cell proliferation probably by 
binding to both β1- and β2-AR (Wu et  al. 2005). Results 
from our group were also consistent with these previous 
reports, by showing that stress hormones and ISO were 
able to increase HT-29 colon cancer cell proliferation, most 
likely through the involvement of both β-AR (Coelho et al. 
2015). Lin et  al. (2013) demonstrated that AD, NA and 
ISO enhanced cell proliferation through β-AR-dependent 
pathways in three human colon cancer cell lines (HT-29, 
SW116 and LS174T). These findings were similar to an 
in  vivo study where a chronic restraint stress model was 
used to show the effect of stress upon tumor growth (Lin 
et al. 2013). All together, these results strongly support the 
role of stress hormones in the promotion of colon cancer 
cell proliferation through β-AR activation.

A study of Yang et  al. (2009) in melanoma tumor cell 
lines showed that NA can stimulate the aggressive poten-
tial of C8161, 1174MEL and Me18105 cells, not only via 
the promotion of cellular proliferation, but also by evolving 

Table 1   continued Type of cancer cell Adrenoceptors References

β1 β2

mRNA Protein mRNA Protein

IBH-6 – – Yes2

Prostate cancer

LNCap Yes2 – Yes2 – (Penn et al. 1996)1

PC3 – Yes1 – Yes1 Ramberg et al. (2008)2

Lung cancer

H322 Yes – Yes – Schuller et al. (1999)

H441 Yes – Yes –

Nasopharyngeal

HONE-1 Yes Yes Yes Yes Yang et al. (2006)

Neuroblastoma

IMR-32 – – Yes –

LAN-5 – – Yes –

LAN-6 – – Yes –

CHLA-15 – – Yes –

CHLA-20 – – Yes –

CHLA-90 – – Yes –

SK-N-SH – – Yes –

SH-EP – – Yes – Wolter et al. (2014)

SK-N-Be1 – – Yes –

SK-N-Be2 – – Yes –

SK-N-Be(2)c – – Yes –

SK-N-FI – – Yes –

KELLY – – Yes –

SK-N-AS – – Yes –

SK-N-DZ – – Yes –

Expression of both β1- and β2-AR (mRNA and protein levels) in several human cancer cell lines
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the release of pro-angiogenic factors, such as VEGF, IL-8 
and IL-6. Besides the solid data about the role of β1- and 
β2-AR on melanoma progression, recent works have shown 
that β3-AR as well play a key role in this tumor. In 2014, 
Dal Monte et al. (2014) using B16F10 cells, a murine mel-
anoma cell line, demonstrated that β3-AR modulate mela-
noma cell proliferation and survival through nitric oxide 
signaling. The iNOS-produced NO acted as a downstream 
effector of β3-AR proving that the beneficial effects of 
β3-AR blockade on cell proliferation and apoptosis were 
functionally linked to reduced iNOS expression and NO 
production (Dal Monte et  al. 2014). Studies by Chiarugi 
P. and colleagues (Calvani et al. 2015; Moretti et al. 2013) 
reported that β3-AR expression in human melanoma is 
correlated with tumor aggressiveness, being up-regulated 
in malignant and advanced lesions when compared with 
melanocytic lesions. Moreover, they also showed that 
NA, through β3-AR, stimulates the activation of cancer-
associated macrophages, the recruitment of monocytes as 
well as their polarization into M2 macrophages (pro-tum-
origenic type), and sustains the secretion of pro-inflamma-
tory cytokines (Calvani et  al. 2015; Moretti et  al. 2013). 
β3-AR are also involved in the recruitment of bone mar-
row-derived precursors to tumor cells and promote their 
differentiation into mature cancer-associated fibroblast and 
endothelial cells, sustaining tumor inflammation, angiogen-
esis and ultimately promoting melanoma malignancy (Cal-
vani et al. 2015). These findings suggest that β3-AR exert 
an extensive influence on the tumor microenvironment and 
open new and promising perspectives for the role of β3-AR 
in cancer biology.

The paradoxical nature of AR action in breast cancer 
cells was reviewed by Luthy et  al. (2009). In breast can-
cer cells, the proliferative effect of adrenergic drugs seems 
to be dependent on the cellular experimental model and 
the activated AR-subtype (Luthy et  al. 2009). Cakir et  al. 
(2002) investigated the adrenergic influence upon breast 
cancer cell proliferation in six different cell lines (estrogen-
responsive and non-responsive). These authors showed that 
ISO was able to enhance proliferation of two estrogen non-
responsive cell lines (MDA-MB-435 and MDA-MB-453), 
but did not affect any of the estrogen-responsive cell lines 
(MCF-7, ZR-75, MDA-MB-361). Interestingly enough, 
PRO was able to significantly inhibit cell proliferation, 
regardless the estrogen-responsiveness. In addition, ATE 
and ICI also inhibited the proliferation of all the above 
mentioned cancer cell lines, with ICI having the greater 
effect. These authors also suggested that AA cascade is 
directly triggered by β-AR activation, as MD-MB-435 
cells after exposure to ISO released high levels of AA. Shi 
et al. (2011) showed that ISO, in a concentration-dependent 
manner, markedly increased the proliferation of the breast 
cancer cells, MCF-7. In this study, the overexpression of Ta

bl
e 

2  
c

on
tin

ue
d

C
el

l l
in

e
A

R
 a

go
ni

st
β

-B
lo

ck
er

β
-B

lo
ck

er
 +

 A
R

 a
go

ni
st

β
-A

R
Si

gn
al

in
g 

pa
th

w
ay

s
Pr

ol
if

er
at

io
n 

as
sa

y
R

ef
er

en
ce

s

L
un

g 
ca

nc
er

H
32

2
Sh

an
g 

et
 a

l. 
(2

00
9)

 A
D

 
(1

 µ
M

) 
↑

PR
O

 (
1 

µM
) 
↔

A
D

 (
1 

µM
) 
+

 P
R

O
 (

1 
µM

) 
↔

a
–

–
[3 H

]-
th

ym
id

in
e 

in
co

rp
or

at
io

n
A

l-
W

ad
ei

 e
t a

l. 
(2

01
2a

)
H

44
1

↑,
 ↓

 a
nd

 ↔
 r

ep
re

se
nt

 a
 s

ig
ni

fic
an

t i
nc

re
as

e,
 d

ec
re

as
e 

or
 a

 n
on

-e
ff

ec
t u

po
n 

ca
nc

er
 c

el
l p

ro
lif

er
at

io
n,

 r
es

pe
ct

iv
el

y

A
D

 a
dr

en
al

in
e,

 N
A

 n
or

ad
re

na
lin

e,
 I

SO
 is

op
re

na
lin

e,
 A

T
E

 a
te

no
lo

l, 
IC

I 
IC

I-
11

8,
55

1,
 P

R
O

 p
ro

pr
an

ol
ol

, C
A

R
 c

ar
ve

di
lo

l, 
M

E
T

 m
et

op
ro

lo
l

a  C
om

pa
re

d 
to

 th
e 

un
tr

ea
te

d 
gr

ou
p

b  T
he

 a
ut

ho
rs

 s
ug

ge
st

 th
at

 a
ct

io
ns

 a
re

 m
ed

ia
te

d 
by

 α
2



283J Cancer Res Clin Oncol (2017) 143:275–291	

1 3

Her2 increased AD release from these cells, through the 
activation of ERK by phosphorylation, resulting in the up-
regulation of β2-AR expression. A positive feedback loop 
is afterward established when, after stimulation of these 
receptors with different agonists (including AD), there is an 
increase in Her2 expression (Shi et al. 2011). Pérez Piñero 
et al. (2012) clearly showed that AD significantly enhanced 
proliferation of the human cell lines, IBH-4, IBH-6 and 
MDA-MB-231. Nevertheless, AD seems to increase or 
decrease breast cancer cell proliferation, depending on its 
binding to α2 or β-AR, respectively (Pérez Piñero et  al. 
2012). In addition, PRO did not completely abolish AD-
induced proliferation, also suggesting the involvement of 
α-AR. These authors also showed that both ISO and sal-
butamol (SALB, β2-AR agonist) repressed cell prolifera-
tion, probably by the inhibition of ERK1/2 phosphorylation 
mediated by PKA, but not by EPAC. Madden et al. (2011) 
concluded that β-AR activation with ISO and terbutaline 
(TER, β2-AR agonist) did not alter MDA-MB-231 breast 
cancer cell proliferation. However, these authors reported 
that in cells with high β-AR density, stimulation of these 
receptors regulates VEGF production through the classical 
β/AR/cAMP/PKA pathway. Gargiulo et al. (2014) showed 
that both AD and ISO are able to decrease cell proliferation 
of the non-tumorigenic cell lines, MCF-10A and HBL-100, 
mainly via β-AR, and to increase proliferation of the tumor 
cell lines, MCF-7 and MDA-231, through α2-AR.

The majority of studies performed in lung cancer men-
tion that the nicotine-derived nitrosamine NNK induces 
its development in experimental in vitro and in vivo ani-
mal models, thereby indicating a direct causative asso-
ciation between smoking and lung cancer incidence (Al-
Wadei et al. 2012b; Hoffmann et al. 1991; Schuller 2013; 
Schuller et  al. 1990). Interestingly enough, NNK seems 
to act as a high affinity agonist for both β1- and β2-AR 
leading to the development and progression of lung can-
cer through the activation of AA cascade and related cel-
lular events (Schuller et al. 1999). Al-Wadei et al. (2012a) 
showed that AD increased NCI-H322 and NCI-H441 lung 
cancer cell proliferation, and PRO was able to revert this 
effect. Indeed, proliferation of these cells seems to be reg-
ulated by both nicotinic and β-AR (Al-Wadei et al. 2012b; 
Hoffmann et  al. 1991; Schuller 2013; Schuller et  al. 
1990). The activation of nicotinic receptors by nicotine 
increases NA production, that, by interacting with β-AR, 
ultimately leads to cellular proliferation through p-ERK 
and p-CREB overexpression (Al-Wadei et  al. 2012a). 
Once smoking is the most lethal risk factor associated 
with lung cancer cell proliferation, current literature has 
shed light upon the multiple molecular mechanisms by 
which components of tobacco smoke can initiate tumor 
development, induce cell cycle progression and prolif-
eration in multiple cancer types (Al-Wadei et  al. 2012b; 

Hoffmann et al. 1991; Schuller 2013; Schuller et al. 1990, 
1999).

In 2011, Zang et al. (2011) showed that β2-AR activa-
tion by ISO-enhanced proliferation of the prostatic cancer 
cells, LNCaP and PC3, and that PRO reverted this effect. 
Furthermore, the scaffold protein β-arrestin2 was found to 
be involved in both β2-AR-mediated activation of ERK1/2 
and proliferation increase in LNCaP cells overexpress-
ing this protein (LNCaP-βArr2). Besides, the activation of 
β2-AR in these cells leads to the formation of the complex 
β-arrestin2/c-Src, an effect that disappears with the inhibi-
tion of c-Src (Zhang et al. 2011).

Overall, the above studies show that adrenergic agonists 
mainly through β-AR are able to increase cancer cell pro-
liferation. However, a few studies showed that these drugs 
have antiproliferative effects upon some cancer types. For 
instance, NA decreases proliferation of pancreatic (Zhang 
et al. 2010) and melanoma cancer cells (Yang et al. 2009) 
and ISO of breast cancer cells (Pérez Piñero et  al. 2012). 
In this type of cancer, proliferation increase seems to be 
mainly mediated by α2-AR (Pérez Piñero et al. 2012). On 
the other hand, the finding by our (Coelho et al. 2015) and 
other groups (Cakir et  al. 2002; Coelho et  al. 2015; Liao 
et al. 2010; Shang et al. 2009; Wang et al. 2012; Wong et al. 
2011; Wu et al. 2005; Zhang et al. 2010) that β-blockers per 
se are able to decrease cellular proliferation suggests that 
they act as inverse agonists.

β‑AR signaling on tumor microenvironment

Despite the clear importance of the cell proliferation on 
cancer progression, it is well established that tumor cells 
do not proliferate and progress as isolated entities. During 
carcinogenesis, the acquisition of malignant traits is influ-
enced by the surrounding microenvironment (Hanahan and 
Weinberg 2011). Activation of β-AR through physiologi-
cal or pharmacological stimuli induces a pro-metastatic 
gene expression signature in the tumor microenvironment 
(Cole and Sood 2012). These alterations remodel the pri-
mary tumor architecture and increase the possibility of cell 
dissemination through several ways, including: recruitment 
of macrophages into the tumor microenvironment (Lam-
kin et al. 2016), influences on immune response (Eng et al. 
2014) and remodeling of blood vessels (Chakroborty et al. 
2009) and lymph vessels (Le et  al. 2016). Cancer-related 
molecular pathways can be influenced not only by β-AR 
expressed on tumor cells (which is the focus of the present 
review) but also by activation of β-AR expressed on other 
cell types present in the tumor microenvironment (Cole 
et  al. 2015). For instance, macrophages play a key role 
in mediating inflammation, modulating the tumor micro-
environment and promoting metastasis (Pimentel et  al. 
2012), and β-AR signaling strongly enhances macrophage 



284	 J Cancer Res Clin Oncol (2017) 143:275–291

1 3

recruitment into tumor parenchyma through at least two 
different mechanisms: by stimulating production of chemo-
tactic factors from tumor cells and by promoting myelopoi-
etic development of monocyte precursors in the bone mar-
row and spleen (Armaiz-Pena et  al. 2015; Scanzano and 
Cosentino 2015). In addition, in macrophages, the expres-
sion of several genes related to tumor progression such as 
TGF-β, VEGF, IL-6, MMP9 and PTGS2 is substantially 
increased in response to β-AR stimulation, suggesting a 
shift toward an immunosuppressive M2-like myeloid phe-
notype (Lamkin et al. 2016; Sloan et al. 2010). β-AR sign-
aling is also involved in the reduction in lymphocyte pro-
liferation, decrease in NK cell cytotoxicity and reduction 
in T cell response to mitogen stimulation, which strongly 
contribute to cancer progression (Inbar et al. 2011; Marino 
and Cosentino 2013).

Several authors also showed that AD and NA may up-
regulate the expression of important pro-angiogenic fac-
tors such as VEGF, interleukin 6 (IL-6), IL-8, MMP-2 and 
MMP-9 in several types of cancer cells through β-AR sign-
aling (Chakroborty et  al. 2009; Cole et  al. 2015; Moretti 
et al. 2013; Thaker et al. 2006; Yang et al. 2009). These fac-
tors are crucial catalysts of angiogenesis, which is essential 
in the support of tumor growth and metastasis. Recently, 
Le et  al. (2016) demonstrated that the activation of β-AR 
promotes tumor dissemination also by increasing the den-
sity of intratumoral lymph vessels in a process mediated by 
PGE2 and VEGFC.

Another interesting point is in the tumor microenvi-
ronment immune cells themselves may also be a source 
of CAs, thus possibly contributing to trigger local β-AR-
dependent mechanisms involved in tumor progression. 
Indeed, results from non-tumor models show that the syn-
thesis of CAs occurs in both macrophages (Flierl et  al. 
2007; Nguyen 2011) and T lymphocytes (Cosentino et al. 
2000, 2015). No evidences of CA synthesis by these cells 
have been shown so far within tumor microenvironment, 
and the possible contribution of immune cells-derived CAs 
to tumor progression and the antitumor immune response 
deserves consideration.

β‑blockers: a novel class of antitumor agents?

β-blockers, one of the most currently widely prescribed 
classes of drugs, represent a heterogeneous group of agents 
with distinct pharmacological properties (Baker et al. 2011; 
Poirier and Tobe 2014). These drugs differ in β-AR speci-
ficity, intrinsic sympathomimetic activity, vasodilatory 
effects and ability to cross the blood–brain barrier (Frish-
man and Saunders 2011). β-blockers are usually divided 
into three categories according to their β1/β2-AR selectivity. 
Non-selective β-blockers show equal antagonistic activity 
at both β1- and β2-AR; selective β-blockers display higher 

affinity for β1-AR. In addition, α/β-AR blocking agents 
differ from the previous categories as they are also antago-
nists at α-AR (Table 3).

Given the high expression of β-AR in tumor cells, and 
the tight relationship between stress response and can-
cer progression, a significant amount of epidemiological 
studies have emerged to clarify the association between 
β-blockers use and mortality (Monami et  al. 2013; Thiele 
et  al. 2015; Watkins et  al. 2015). The majority of these 
studies showed that oncological patients, treated with 
β-blockers for other clinical conditions, present lower 
mortality rates comparing to their counterparts (Diaz et al. 
2012; Johannesdottir et al. 2013b). Since β-adrenergic sign-
aling can modulate multiple intracellular pathways under-
lying tumor progression and metastasis, β-blockers may be 
highly desirable for therapeutic intervention (Ji et al. 2012; 
Vaklavas et al. 2011).

Grytli et al. (2014) investigated the potential association 
between β-blockers use and prostate cancer-specific mor-
tality. These authors observed a reduction in prostate can-
cer mortality among patients with high-risk or metastatic 
disease taking β-blockers, regardless the clinical character-
istics at diagnosis and the use of statins or acetylsalicylic 
acid.

Wang et  al. (2012, 2013) tested the hypothesis of 
β-blockers use for reducing the rates of disease progression 
and improving overall survival in locally advanced non-
small cell lung cancer (NSCLC). This study concluded that 
the incidental use of β-blockers in patients with NSCLC 
was associated with improved distant metastasis-free sur-
vival, disease-free survival and overall survival, but not 
with locoregional progression-free survival, after radiother-
apy. These findings were in accordance with those of pre-
vious preclinical studies, suggesting that β-blockers have 
specific effects on the metastatic cascade (Armaiz-Pena 
et  al. 2009; Moreno-Smith 2010; Schuller 2010; Thaker 
et al. 2007).

A recent large population-based cohort study aimed 
to investigate whether the use of β-blockers increase sur-
vival in patients with malignant melanoma (Lemeshow 
et  al. 2011). This study showed an association between 
β-blockers use and reduced mortality risk in patients diag-
nosed with malignant melanoma, a finding supporting the 
hypothesis that CA affects melanoma progression and that 
β-blockers may have unrecognized therapeutic applications 
(Colucci and Moretti 2016; Lemeshow et al. 2011).

In a cohort of patients with epithelial ovarian cancer, the 
potential correlation between β-blockers use and survival in 
woman with advanced stage disease was investigated (Diaz 
et  al. 2012). An association between β-blockers use and 
progression-free and overall survival was identified, sug-
gesting that these drugs may improve clinical outcomes in 
advanced epithelial ovarian carcinoma (Diaz et  al. 2012). 
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Nonetheless, another population-based studies cohort 
examined whether ß-blockers affect mortality, following 
ovarian cancer diagnosis and found no association (Heitz 
et al. 2013; Johannesdottir et al. 2013a).

Powe et al. (2010) hypothesized whether patients started 
on, and maintained with, antihypertensive β-blocker ther-
apy, prior to a breast cancer diagnosis, would show reduced 
distant metastasis compared to both non-hypertensive 
breast cancer patients and those treated with other anti-
hypertensive drugs. These authors evaluated 466 women 
with invasive breast cancer and found that those taking 
β-blockers showed a significant reduction in tumor recur-
rence and longer disease-free interval. Furthermore, this 
study reported 57 % reduced risk of metastasis and 71 % 
reduction in breast cancer mortality after 10 years. Barron 
et al. (2011) evaluated 5801 women with stages I–IV breast 
cancer and matched those taking PRO or ATE to those not 
taking β-blockers. They found that PRO users were sig-
nificantly less likely to present metastatic disease and had 
significantly lower cumulative probability of breast cancer-
specific mortality, compared with nonusers. Surprisingly, 
there was no difference between ATE users and nonusers. 
These data suggest improved outcomes in patients with 
breast cancer under non-selective β-blockers therapy. In a 
very recent meta-analysis, Childers et  al. (2015) showed, 
for the first time, that the use of β-blockers significantly 
reduced the risk of breast cancer death (Childers et  al. 
2015).

Recently, Choi et  al. (2014) published a very interest-
ing meta-analysis about the association between β-blockers 
and survival of cancer patients. Twelve studies published 
between 1993 and 2013 were included in this meta-anal-
ysis, that showed that β-blockers use was associated with 
prolonged survival, especially in patients with early-stage 
cancer who had been primarily submitted to surgery. The 
authors argued that β-blockers can be considered a standard 
approach for adjuvant therapy in various types of cancer.

The observation that β-blockers exert multiple anti-
cancer effects and improve survival opens a novel way of 
research about the role of β-adrenergic signaling in cancer. 
Nevertheless, the majority of studies do not distinguish the 
affinity of the β-blockers more often associated with posi-
tive outcomes, and the signaling pathways implicated in 
these responses remain poorly understood.

Indeed, biased agonism may be relevant for β-blockers 
therapeutic use in cancer, since distinct signaling through 
several pathways is considered to have specific functional 
consequences (Galandrin and Bouvier 2006; Rajagopal 
et  al. 2010). In fact, β-blockers are not solely antagonists 
for the G-protein pathways, but may independently regu-
late more than one pathway, behaving as partial agonists, 
inverse agonists or pure antagonists in each pathway 
(Galandrin and Bouvier 2006; Rajagopal et  al. 2010). 

Inverse agonists means that rather than just occupying the 
binding site and blocking the action of the agonists, they 
are associated with conformations of the receptor that turn 
off signaling leading to a suppression of basal receptor 
activity, while partial agonists can block one effector path-
way but stimulate one or more alternative pathways (Baker 
et al. 2011; Evans et al. 2010; Luttrell et al. 2015). Actu-
ally, among β-blockers described in Table 3, the most part 
of them are already described as inverse agonists or partial 
agonists (Galandrin and Bouvier 2006; Grazia Perrone and 
Scilimati 2010). For example, ICI-118,551 and proprano-
lol, which act as inverse agonists on the β2-AR toward 
the adenylyl cyclase signaling pathway, were shown to be 
partial agonists when tested on the extracellular signal-
regulated kinase (ERK) activity which display a great com-
plexity in terms of biased agonism (Fig. 1). In this context, 
compounds can be agonist for the two pathways, inverse 
agonist for the two pathways or have opposite efficacies on 
each of the pathways. (Azzi et al. 2003; Baker et al. 2003; 
Galandrin and Bouvier 2006).

In addition, several studies, aiming to characterize 
the properties of clinically relevant β-blockers at β1- and 
β2-AR level, have shown that these drugs have divergent 
effects on GαS- and β-arrestin-mediated signaling (Evans 
et  al. 2010). For instance, β-blockers per se are able to 
diminish the proliferation of oral, gastric, pancreatic, colon 
and breast cancer cell lines (Cakir et al. 2002; Coelho et al. 
2015; Liao et al. 2010; Shang et al. 2009; Wong et al. 2011; 
Wu et al. 2005; Zhang et al. 2010). However, the intracel-
lular ramifications of these findings and the implications 
of either GαS or β-arrestin-mediated signaling via β-AR in 
general, and specifically in cancer, are mostly unknown.

Various authors have suggested the use of β-blockers 
as chemotherapy adjuvants (Ji et  al. 2012; Nagaraja et  al. 
2013). In fact, several clinical trials are currently studying 
the effect of β-blockers and chemotherapy agents in lung, 
breast and ovarian cancers (Nagaraja et al. 2013). In addi-
tion, future prospective trials are needed to confirm the ret-
rospective findings and establish whether the timing and 
extent of β-blocker use impact cancer survival outcomes.

On the other hand, knowledge about the expression of 
β-AR according to tumor type could help to fit therapy, 
maximizing benefits and decreasing side effects (Nagaraja 
et al. 2013).

The majority of studies reviewed here show that: (1) 
All the cancer types express both β1- and β2-AR, with the 
possible exception of neuroblastoma which only seems to 
express β2-AR; (2) adrenergic agonists are able to increase 
proliferation of several types of cancers; (3) the prolifera-
tive effect seems to be mediated by both β1- and β2-AR 
and (4) binding to β-AR results in a cAMP transient flux 
which activates two major downstream effector sys-
tems: protein kinase A (PKA) and EPAC. More recently, 
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signaling mediated by β-arrestin is known to have distinct 
functional and physiological consequences from that medi-
ated by G-proteins. “In vitro” studies exploring the under-
lying mechanisms involved in cellular response to CA 
through β-AR are lacking.

Concluding remarks

The association between stress and cancer has been 
described and well-studied over time, and evidences seem 
to support that chronic stress increases cancer progression 
(Cole and Sood 2012; Tang et al. 2013). In the last years, 
many clinical and epidemiological studies were performed 
in order to clarify this association (Chida et al. 2008; Lut-
gendorf et al. 2010; Tang et al. 2013). In the present review, 
we discuss the role of β-adrenergic signaling on prolifera-
tion of several human cancer types. Overall, the scrutinized 
studies display strong evidence that adrenergic agonists, 
through multiple intracellular mechanisms, enhance tumor 
cell proliferation and that β-blockers can be used to reverse 
this effect.

Unraveling the β-signaling pathways involved in can-
cer cell proliferation eventually will repurpose β-blockers 
currently in use as novel adjuvants drugs for cancer. Some 
open issues that should be addressed by future research are: 
(1) evaluation of β-AR expression on human tumor tissues 
which may be an useful tool to select which patients can 
benefit with β-blockers treatment; (2) to characterize the 
β-blockers more often associated with positive outcomes 
and which are more likely to benefit cancer patients; (3) To 
characterize the properties of clinically relevant β-blockers 
in terms of their action on Gαs and β-arrestin-mediated 
signaling, given that their implications in vivo are mostly 
unknown.
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