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also suppresses STAT3 phosphorylation. Furthermore, 
Dasatinib and HDACi combinations are effective against 
CML cells.
Conclusion HDACs sustain the ACK1-STAT3 signaling 
node and leukemic cell growth. Consistent with their dif-
ferent effects on ACK1 stability or auto-phosphorylation, 
Dasatinib and HDACi combinations produce beneficial 
antileukemic effects.

Keywords ACK1 · Apoptosis · Caspase · HDACi · 
Leukemia · STAT3

Introduction

The non-receptor tyrosine kinase (TK) ACK1 critically regu-
lates the growth and development of solid tumors (Mahajan 
and Mahajan 2015). Increasing evidence suggests that ACK1 
also controls leukemic cell fate (Maxson et al. 2013, 2016; 
Nonami et al. 2015). For example, in chronic neutrophilic 
leukemia and atypical BCR-ABL1-negative CML, activat-
ing mutations in the receptor for colony-stimulating factor-3 
induce signaling involving ACK1 (Maxson et al. 2013). Fur-
thermore, NRAS and ACK1 are often dysregulated in human 
cancers, and the selective RAS antagonist GNF-7 inhibits 
NRAS-dependent AML and acute lymphoblastic leuke-
mia cell growth through a combined inhibition of ACK1 
and other kinases (Nonami et al. 2015). Moreover, ACK1 
point mutations leading to oncogenic alterations occur in 
patients with AML and chronic myelomonocytic leukemia. 
Cells with such mutations are sensitive to Dasatinib and 
other ACK1 inhibitors (XMD8-87/XMD16-5) (Maxson 
et al. 2016). Dasatinib is useful for patients suffering from 
BCR-ABL-positive CML and other malignancies (Mace 
et al. 2015). It is known that Dasatinib also inhibits ACK1 
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in prostate and breast cancer cells (Liu et al. 2010; Mahajan 
et al. 2014), and in CML clones (Shah et al. 2016).

HDACi are epigenetic drugs that target the acetylation/
deacetylation balance of histones and non-histone pro-
teins (Afifi et al. 2015; Ma et al. 2016; Müller and Krämer 
2010; Seto and Yoshida 2014). The HDACi Panobinostat 
(LBH589), Depsipeptide (FK228), Vorinostat (SAHA), 
and Belinostat (PXD101) are approved drugs against cuta-
neous and peripheral T-cell lymphoma, and the FDA per-
mits LBH589 for the treatment of multiple myeloma (Afifi 
et al. 2015; Ma et al. 2016). As for other chemotherapies, 
HDACi give optimal benefits in combinatory schedules. 
Optimal application schemes as well as markers showing 
the therapeutic efficacy of HDACi need to be established 
(Graham et al. 2009; Müller and Krämer 2010).

ACK1 has a large number of cancer-relevant down-
stream targets (Mahajan and Mahajan 2015; Maxson et al. 
2013, 2016; Nonami et al. 2015). Recent evidence suggests 
that ACK1 also promotes the phosphorylation of signal 
transducer and activator of transcription-1 (STAT1) (Fuji-
moto et al. 2011), but it is unknown if the related molecule 
STAT3 is also controlled by ACK1. Given that STAT3 is 
an important regulator of tumorigenesis (Yu et al. 2014), 
it could be therapeutically relevant to address a putative 
ACK1-STAT3 signaling node, e.g., with HDACi and/or 
Dasatinib. As HDACi accelerate the proteasomal degrada-
tion of certain proteins (Krämer et al. 2013) and as ACK1 
undergoes lysosomal and proteasomal degradation (Buch-
wald et al. 2010, 2013; Knauer et al. 2015), we hypothe-
sized that such drugs attenuate ACK1 levels.

We addressed these questions. We analyzed whether 
HDACi modulated ACK1 and we additionally investi-
gated whether combinations of HDACi and Dasatinib were 
effective against leukemic cells (Liu et al. 2010; Mahajan 
et al. 2014). We reveal that HDACi induce a z-VAD-FMK-
sensitive destruction of ACK1, an ensuing reduction of 
p-STAT3, and that Dasatinib/HDACi combination sched-
ules efficiently kill leukemic cells.

Materials and methods

Cell lines

K562 (human chronic myeloid leukemia, CML), HEL, and 
MV4-11 (human acute myeloid leukemia, AML) cells were 
purchased from the German Collection of Microorganisms 
and Cell Cultures (DSMZ, Braunschweig, Germany). The 
identity of the cell lines was verified by DNA fingerprint 
(Hennig et al. 2015). Cells were grown in RPMI-1640 
medium supplemented with l-glutamine, 10 % fetal bovine 
serum and 1 % penicillin/streptomycin, at 37 °C in a 5 % 
CO2 atmosphere.

Drugs and chemicals

MS-275, LBH589, z-VAD-FMK, and Staurosporine were 
purchased from Selleckchem. Lactacystin and Hydroxyu-
rea were obtained from Sigma-Aldrich. Dasatinib was pro-
vided by Santa Cruz Biotechnology.

Western Blot

Cells were seeded into 60-mm dishes at a density of 
2 × 105 cells/mL. After 24 h, cells were exposed to drugs 
for 24–48 h. z-VAD-FMK was applied 1 h before HDACi 
treatment and Lactacystin 6 h before harvesting the cells. 
Cell pellets were lysed with 80–150 µL NETN lysis buffer 
containing protease and phosphatase inhibitors. Protein 
concentrations of these whole cell extracts were determined 
by Bradford assay. Cell lysis, SDS-PAGE, and Western 
blot are described (Buchwald et al. 2013). Fluorescence-
coupled secondary antibodies (goat-anti-mouse/rabbit 800 
CW, LI-COR) were used to detect protein expression with 
an infrared imager (Odyssey®, LI-COR). Densitometric 
evaluations were performed with Image Studio Lite 4.0. 
Antibodies for Western blot analyses were obtained from 
Abcam: α-Tubulin, ab176560; BD Pharmingen™: cleaved 
PARP1 (D214); Cell Signaling Technology: cleaved Cas-
pase-3 (D175), #9661; Enzo Life Sciences: HSP90 (AC88), 
ADI-SPA-830-F; Merck Millipore: p-ACK1 (Y284), 
09-142; acetyl-Histone H3, 06-599; Santa Cruz Biotech-
nology: ACK1, sc-28336; β-Actin, sc-47778; STAT3, 
sc-482; pY705-STAT3, sc-7993-R; Sigma-Aldrich: Ubiqui-
tin, U5379.

Flow cytometry

Apoptosis was measured by cell cycle analysis of propid-
ium iodide-stained cells. These were seeded on 12-well 
plates at a density of 2 × 105 cells/mL. After 24 h adap-
tion, cells were stimulated with drugs for 24–48 h. Cells 
were transferred into flow cytometry tubes and centrifuged 
at 317×g for 5 min. The cell pellet was once washed with 
PBS. After another centrifugation step, cells were resus-
pended in 100 µL cold PBS. Subsequently, 1 mL ice cold 
ethanol (80 %) was added to the cell suspension while vor-
texing. Samples were fixed for at least 1 h at −20 °C. After 
the fixation step, cells were centrifuged at 751×g for 5 min. 
The cell pellet was resuspended in a mixture of 333 µL 
PBS and 1 µL RNase (stock solution 10 mg/mL) and incu-
bated for 1 h at room temperature. Following steps were 
performed in the dark. Cellular DNA was stained by add-
ing 164 µL propidium iodide (stock solution 50 µg/mL) to 
each sample. Samples were kept on ice and directly meas-
ured on a FACSCanto II flow cytometer (BD-Biosciences). 
Cell cycle distribution including subG1 fractions (dead cell 
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population) was evaluated with the FACSDiva software 7.0 
(BD-Biosciences).

Statistical analyses

We used one-way ANOVA (Bonferroni multiple compari-
sons test) and unpaired two-tailed t-test to assess the signif-
icance of control cells with stimulated cells. Analyses were 
performed with the GraphPad Prism 6 software.

Results

HDACi decrease ACK1 levels and the phosphorylation 
of STAT3

MS-275 is a class I HDAC-specific inhibitor that only 
blocks HDAC1, 2, 3, and LBH589 can inactivate all 11 
zinc-dependent HDACs (Fig. 1a) (Bradner et al. 2010). We 
treated K562 CML cells with 5 µM MS-275 or 100 nM 
LBH589 for 48 h and analyzed lysates from these cells by 
Western blot. We chose these concentrations of HDACi 
because they induced roughly equal levels of histone hyper-
acetylation (Fig. 1b), which is a marker for HDAC inhibi-
tion (Göttlicher 2004). We found that both MS-275 and 
LBH589 significantly reduced the levels of ACK1. Moreo-
ver, we noted that LBH589 was more potent than MS-275 
against ACK1 (Fig. 1b, c).

As ACK1 promotes the phosphorylation of STAT1 (Fuji-
moto et al. 2011), we suspected that ACK1 also controls 
STAT3. Figure 1b shows that the attenuation of ACK1 cor-
relates with decreased phosphorylation of STAT3 at Y705. 
Total STAT3 levels though remained constant (Fig. 1b).

Since HDACi can promote proteasomal degradation 
of TKs (Buchwald et al. 2010; Knauer et al. 2015), we 
hypothesized that HDACi accelerate a proteasome-depend-
ent turnover of ACK1. Consequently, we applied HDACi 
with the highly selective proteasomal inhibitor Lactacystin 
(Corey and Li 1999). While Lactacystin potently induced 
the accumulation of poly-ubiquitinylated protein species, 
it failed to rescue ACK1 in HDACi-treated K562 cells 
(Fig. 1b, c). Hence, HDACi unlikely accelerate the protea-
somal degradation of ACK1 in leukemic cells.

These data suggest that HDACi induce a decline of 
ACK1 and p-STAT3.

Decreased expression of ACK1 correlates 
with apoptosis

When we investigated the cell cycle profiles of K562 
cells that had been treated with MS-275 and LBH589 for 
48 h, we found that MS-275 mainly stalled cells in the 

G1 phase and that LBH589 depleted cells in G1 (Fig. 1d). 
About 10 % of cells had fragmented genomic DNA in 
response to MS-275 (subG1 cells with DNA content <2 N) 
and LBH589 increased the subG1 population up to 35 % 
(Fig. 1e).

Immunoblotting for the pro-apoptotic conversion of 
Caspase-3 and its target PARP1 in MS-275- and LBH589-
treated K562 cells demonstrated the occurrence of both 
processes (Fig. 1f). At first glance, these results for MS-275 
contradict data shown in Fig. 1e. However, it appears logi-
cal that the manifestation of cell death within the cell popu-
lation by flow cytometry lags behind the activation of the 
pro-apoptotic caspase cascade.

To corroborate these results, we analyzed leukemic 
cells that are more sensitive to MS-275 than K562 cells. 
In response to 5 µM MS-275, 32 % of MV4-11 AML cells 
and 25 % of HEL AML cells showed DNA fragmentation 
(Fig. 2a–c) and cleaved forms of Caspase-3 and PARP1 
(Fig. 2b–d). LBH589 induced similar effects in MV4-11 
cells (30 % dead cells; Fig. 2a). Compared to K562 cells 
(about 10 % of cell death) (Fig. 1e), ACK1 protein levels 
dropped more strongly in HEL and MV4-11 cells when 
they were treated with MS-275 (Fig. 2b–d). These data 
suggest that cytotoxic effects, and not the variable spec-
trum of HDACs that are blocked by MS-275 and LBH589 
(Fig. 1a), are responsible for the reduction of ACK1 in 
HDACi-treated cells.

Due to these results, we aimed to delineate further if 
HDAC inhibition or cytotoxic stress was a requirement to 
regulate ACK1 negatively. We treated HEL cells with HU, 
a ribonucleotide reductase inhibitor, which causes replica-
tive stress by a depletion of dNTPs (Stauber et al. 2012). 
This cell system was chosen based on preliminary experi-
ments that showed its high sensitivity to HU. We noticed 
that HU induced a subG1 fraction of 32 % (Fig. 2e) and 
decreased ACK1 levels (Fig. 2f).

Hence, a degradation of ACK1 correlates with the induc-
tion of cell death and therefore appears druggable with var-
ious agents.

Caspase activation reduces ACK1 protein levels

A common feature of drugs that evoke a degradation of 
ACK1 is the induction of caspases, which are the main 
executers of apoptosis (Mukhopadhyay et al. 2014). To ana-
lyze whether caspase activity is also crucial for the HDACi-
induced demise in ACK1, we blocked these enzymes 
with z-VAD-FMK. This cell-permeable caspase inhibitor 
restricted the cleavage of Caspase-3 and PARP1 in LBH589-
treated K562 cells (Fig. 3b). Immunoblot analyses fur-
ther showed that z-VAD-FMK reduced the HDACi-evoked 
decrease in ACK1 and phosphorylated STAT3 (Fig. 3a).
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Fig. 1  HDACi-reduced ACK1 levels in CML cells correlate with 
apoptosis. a Chemical structure of HDACi and their activity against 
HDACs. b K562 cells were treated with 5 µM MS-275, 100 nM 
LBH589 and/or 10 µM Lactacystin for 48 h. Lysates were analyzed 
by Western Blot for ACK1, pY705-STAT3, STAT3, acetyl-Histone 
H3 (ac-H3) and poly-Ubiquitin; β-Actin, loading control. c Densi-
tometric evaluation of ACK1 band intensity normalized to β-Actin; 
n = 2 ± SD; one-way ANOVA (Bonferroni’s multiple comparisons 

test); **P ≤ 0.01, ****P ≤ 0.0001. d K562 cells were treated with 
HDACi as indicated for 48 h; Ctrl, untreated. PI-stained cells were 
subjected to flow cytometry. Shown is a representative cell cycle 
distribution. e Quantification of cell cycle distribution of K562 cells 
treated as stated; n = 3 ± SD. f Extracts of K562 cells were analyzed 
for cleaved PARP1 and cleaved Caspase-3; α-Tubulin, loading con-
trol; cl., cleaved
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 Next, we used the bacterial kinase inhibitor STS, which 
is a potent inducer of caspases (Fig. 3c) (Omura et al. 
1977). STS causes a significant time- and dose-dependent 
increase in the subG1 population of K562 cells (Fig. 3d, e). 

This cytotoxicity tied in with significantly decreased ACK1 
levels (Fig. 3f).

These results show that caspase activation leads to a 
reduction of ACK1.

Fig. 2  HDACi-reduced ACK1 levels in AML cells correlate with 
apoptosis. a MV4-11 cells were treated with 5 µM MS-275 or 
100 nM LBH589 for 24 h. Cell death was measured by cell cycle 
analysis after propidium iodide staining. The subG1 population rep-
resents the apoptotic fraction; n = 3 ± SD; one-way ANOVA (Bon-
ferroni’s multiple comparisons test); ****P ≤ 0.0001. b MV4-11 
cell lysates were analyzed by Western Blot for ACK1 and cleavage 
of PARP1/Caspase-3. HDACi stimulation evokes the advent of a 
cleavage product of ACK1 (100 kDa); α-Tubulin, loading control; 

cl., cleaved. c SubG1 population of HEL cells treated with 2-5 µM 
MS-275 or 48 h; n = 3 ± SD; one-way ANOVA (Bonferroni’s mul-
tiple comparisons test); **P ≤ 0.01, ****P ≤ 0.0001. d Lysates of 
HEL cells were analyzed for ACK1 and cleaved Caspase-3. The 
ACK1 cleavage product can be observed in HDACi-treated extracts; 
α-Tubulin, loading control; cl., cleaved. e SubG1 population of HEL 
cells treated with 1 mM HU for 24 h; n = 3 ± SD; unpaired two-
tailed t-test; **P = 0.0058. f Extracts of HEL cells were analyzed for 
ACK1 and its cleavage product; α-Tubulin, loading control
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Fig. 3  Pro-apoptotic caspase activation reduces ACK1 levels. a 
K562 cells were treated with 100 nM LBH589 and/or 50 µM z-VAD-
FMK for 48 h. Lysates were analyzed for ACK1, pY705-STAT3, 
and STAT3. By adding z-VAD-FMK, ACK1 is partially rescued in 
LBH589-treated cells. b Cleaved PARP1 and cleaved Caspase-3 
were also detected by Western Blot. α-Tubulin, loading control; cl., 

cleaved. c Chemical structure of Staurosporine. d Flow cytometry 
profiles of K562 cells treated with 1–10 µM STS for 24–48 h; Ctrl, 
untreated. e SubG1 population of K562 cells treated as indicated; 
n = 3 ± SD; one-way ANOVA (Bonferroni’s multiple comparisons 
test); *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. f Extracts of K562 cells 
were analyzed for ACK1 levels; HSP90, loading control
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Fig. 4  Dasatinib blocks ACK1 phosphorylation and stalls cells in the 
G1 phase. a Chemical structure of Dasatinib. b Flow cytometry pro-
files of K562 cells treated with 5–100 nM Dasatinib for 24 h; Ctrl, 
untreated. c Distribution of the cell cycle phases of K562 cells treated 

as stated; n = 3 ± SD. d Lysates of K562 cells were analyzed by 
Western Blot for ACK1, pY284-ACK1, pY705-STAT3, and STAT3; 
β-Actin, loading control
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Dasatinib inhibits the phosphorylation of ACK1 
and STAT3 and blocks cell cycle progression

HDACi reduce ACK1 and p-STAT3 (Fig. 1b). To assess 
the biological relevance of this finding, we treated K562 
cells with Dasatinib (Fig. 4a), a clinically relevant inhibi-
tor of ACK1 (Liu et al. 2010; Mahajan et al. 2014; Shah 
et al. 2016). While 5 nM Dasatinib was sufficient to halt 
K562 cells in the G1 phase, even 100 nM Dasatinib did not 
induce cell death after 24 h (Fig. 4b, c).

Analysis of ACK1 and STAT3 signaling by Western blot 
revealed that already 5 nM Dasatinib abrogated the activat-
ing phosphorylation of ACK1 at Y284 and the phosphoryl-
ation of STAT3 at Y705 (Fig. 4d). Such data suggest that 
an inhibition of ACK1 decreases the phosphorylation of 
STAT3 irrespective of cell death (Fig. 1b). Consistent with 
the finding that pro-apoptotic processes are involved in the 
reduction of ACK1 (Figs. 2, 3), total ACK1 levels were 
only marginally reduced and STAT3 remained stable in the 
presence of 100 nM Dasatinib (Fig. 4d).

We conclude that Dasatinib blocks the phosphorylation 
of STAT3 through the inhibition of the catalytic activity of 
ACK1 and irrespective of cytotoxicity.

Dasatinib and HDACi combine favorably against K562 
cells

Having found that HDACi and Dasatinib inactivated ACK1 
either by degradation or by the inhibition of its phospho-
rylation, we speculated that combinations of these drugs 
would generate beneficial antileukemic effects.

We exposed K562 cells to 1.5–5 µM MS-275, 
30–100 nM LBH589, and a fixed dose of Dasatinib. West-
ern blot analyses showed that Dasatinib abrogated ACK1 
phosphorylation and slightly increased the HDACi-induced 
attenuation of ACK1 (Fig. 5a).

Flow cytometry disclosed that the combined application 
of Dasatinib with 1.5–5 µM MS-275 and 30 nM LBH589 
increased the portion of subG1 cells after 24–48 h (Fig. 5b, 
c). The already very strong pro-apoptotic effect of 100 nM 
LBH589 was not augmented further in this assay (Fig. 5b, 
c).

These data demonstrate that HDACi/Dasatinib combi-
nations can produce additive to synergistic antileukemic 
effects, particularly at lower doses of HDACi.

Discussion

HDACi, HU, and STS attenuate the expression of ACK1 
in AML and CML cells. Furthermore, HDACi combine 
favorably with Dasatinib against notoriously chemoresist-
ant K562 cells (BCR/ABL-positive/p53-null) (Boschelli 

et al. 2010). We additionally demonstrate that the caspase 
inhibitor z-VAD-FMK partially rescues ACK1 in HDACi-
treated cells. Likewise, the extent of caspase activation 
by HDACi, HU, and STS in various cell types correlates 
with the processing of ACK1 and with the occurrence of a 
smaller ACK1 fragment; such fragments are typical signs 
of proteolytic cleavage. Inspection of the ACK1 sequence 
with ExPASy unfortunately gave no hints for typical cas-
pase cleavage sites. This discrepancy might be explained 
by uncommon cleavage site(s) or by alternative protease(s) 
acting downstream of caspases. Examples for such 
enzymes may include mitochondrial proteases (Mukhopad-
hyay et al. 2014), and HDACi-activated z-VAD-FMK-sen-
sitive cathepsins (Cheriyath et al. 2011; Rozman-Pungercar 
et al. 2003). Further studies are underway to answer which 
of the plethora of protease(s) cleave(s) ACK1 in response 
to HDACi.

SIAH ubiquitin ligases accelerate the proteasomal turn-
over of ACK1 (Buchwald et al. 2013), but we found no 
evidence that HDACi accelerate this process. This finding 
does rather not result from strong pro-apoptotic effects of 
Lactacystin/HDACi combinations, as these are hardly more 
cytotoxic than HDACi for K562 cells (data not shown). 
While others also found that one should carefully examine 
whether HDACi propel an accelerated proteasomal degra-
dation of oncoproteins (Newbold et al. 2013), we cannot 
exclude that HDACi promote the proteasomal turnover of 
ACK1 in other cell systems. Another possibility, a loss of 
ACK1 mRNA expression in response to HDACi appears 
unlikely, as HDACi increase ACK1 mRNA levels in leuke-
mic cells (Starkova et al. 2007).

ACK1 phosphorylates STAT1 in hepatocellular carci-
noma cells (Fujimoto et al. 2011). We demonstrate that an 
inactivation of ACK1 by HDACi and Dasatinib attenuates 
the phosphorylation of STAT3, which shares high homol-
ogy with STAT1 (Wieczorek et al. 2012). In contrast to its 
phosphorylation, STAT3 levels are stable in response to 
such treatments. Consistent with this observation, HDACi 
do not reduce STAT3 in HDACi-treated, apoptotic acute 
promyelocytic leukemia cells (Licht et al. 2014). The 
option that HDACi reduce STAT3 phosphorylation through 
increased acetylation is not likely, since most studies noted 
that acetylation regulates the phosphorylation of STAT3 
positively (Wieczorek et al. 2012). Whether or not the five 
other members of the STAT family are targets of ACK1, 
and if this has an impact on cancer cells, remains unclear.

STAT3 is an important regulator of tumor growth and 
development (Yu et al. 2014) and STAT3 can promote the 
resistance of primary and permanent CML cells to the BCR/
ABL-inhibitor Imatinib (Wang et al. 2016). Therefore, the 
inactivation of p-ACK1 and p-STAT3 by Dasatinib/HDACi 
combinations might be therapeutically useful. The find-
ing that Dasatinib combines favorably with LBH589 and 
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Fig. 5  Favorable effect of Dasatinib and MS-275 against CML 
cells. a K562 cells were treated with 1.5–5 µM MS-275, 30–100 nM 
LBH589, and/or 50 nM Dasatinib for 24 h. Western Blot analy-
ses show levels of ACK1 and pY284-ACK1; β-Actin, loading con-

trol. b Flow cytometry profiles of K562 cells treated as indicated 
for 24–48 h. c SubG1 population of K562 cells treated as stated; 
n = 3 ± SD; one-way ANOVA (Bonferroni’s multiple comparisons 
test); *P ≤ 0.05, ***P ≤ 0.001, ****P ≤ 0.0001
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PXD101 against thyroid cancer cells (Chan et al. 2013) sup-
ports to test Dasatinib/HDACi regimen further. As ACK1 
is an important factor for the migration and metastasis of 
cells (Ahmad et al. 2012; Mahajan and Mahajan 2015), the 
HDACi-induced attenuation of ACK1 might as well contrib-
ute to the known anti-metastatic effect of HDACi, see e.g., 
(Göttlicher et al. 2001). It is also tempting to speculate that 
the suppression of androgen receptor (AR) signaling by 
HDACi (Stempin et al. 2013; Trtkova et al. 2010) involves 
their negative effect on ACK1, which activates AR by 
direct phosphorylation (Karaca et al. 2015; Liu et al. 2010; 
Mahajan et al. 2012). Therefore, we expect that the data pre-
sented here have significant relevance for additional systems.
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