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VAFs displayed the ability to undergo adipogenic differ-
entiation, all cases of the CAFs did not. CAFs clones pre-
sented varying degrees of osteogenic differentiation. Four 
clones displayed comparable levels of osteogenic potential 
with that of the VAFs, and two clones were completely 
negative. As compared to the CAFs clones that possessed 
lower osteogenic potential, CAFs clones with higher osteo-
genic potential did not confer proliferative activity in A549 
cells. On the contrary, these clones significantly promoted 
the migration of A549 cells as compared to the clones with 
lower osteogenic potential.
Conclusion Our studies clearly indicate that CAFs 
derived from lung cancer are heterogeneous population 
that consists of cells with varying osteogenic potentials and 
that CAFs with higher osteogenic potential have a greater 
tumor-promoting function through the enhancement of can-
cer cell migration.

Keywords Mesenchymal progenitor cell · 
Cancer-associated fibroblast · Lung cancer · Tumor 
microenvironment · Osteogenic potential ·  
Single-cell-derived clones

Introduction

Fibroblasts are stromal cells, which constitute organ struc-
tures together with epithelial cells. The functions and gene 
expressions of fibroblasts are heterogeneous, but not uni-
form while their morphologies are same (Koumas et al. 
2001). It has been reported that various kinds of fibroblasts 
with diverse differentiation potentials intermix even within 
the same organ (Nombela-Arrieta et al. 2011). Mesen-
chymal stem cells (MSCs) are the most undifferentiated, 
multipotent cells that can differentiate into several cell 

Abstract 
Background Cancer-associated fibroblasts (CAFs) consist 
of heterogeneous cell population in terms of their differen-
tiation potential. The functional differences in tumor pro-
gression between CAFs with mesenchymal stem/progeni-
tor cells (MSCs/MPCs) characteristics and CAFs without 
MSCs/MPCs characteristics are not clarified.
Methods CAFs and vascular adventitial fibroblasts 
(VAFs, which contain MSCs/MPCs) were isolated from 
nine primary lung cancers and were cultured in osteogenic 
or adipogenic medium to assess their multi-lineage dif-
ferentiation. Next, we established nine single-cell-derived 
clones from the primary culture of CAFs and examined 
their differentiation potential. The effects of each single-
cell-derived clone on the proliferation and migration of 
lung adenocarcinoma cell line, A549, were analyzed.
Results The nine samples of VAFs and CAFs showed 
various degrees of osteogenic differentiation. Although the 
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types, including osteoblasts, adipocytes, and chondrocytes. 
However, mesenchymal progenitor cells (MPCs) are more 
restricted in their differentiation and proceed to form more 
particular cell types as compared to MSCs. Furthermore, 
fibroblasts that have no differentiation potentials also exist.

MSCs/MPCs are known to exist in various tissues (Bie-
back et al. 2004; Campagnoli et al. 2001; Hoshino et al. 
2008; Toma et al. 2001). Therefore, MSCs are expected to 
be a more convenient biomaterial for regenerative therapy. 
The frequency of MSCs/MPCs within fibroblast popula-
tion is presumed to differ depending on the kind of tissues 
(Riekstina et al. 2009). However, specific surface markers 
to distinguish between MSCs, MPCs, and fibroblasts with-
out their differentiation potentials are not yet determined 
(Lv et al. 2014).

An issue worth mentioning is that mixed cell populations 
were used in some previous studies, which made it difficult 
to confirm whether there were specific MSCs/MPCs within 
the population (Pevsner-Fischer et al. 2011). Thus, in order to 
reveal the frequency and existence of MSCs/MPCs in a cell 
population, analysis using single-cell-derived clones should 
be necessary (Muraglia et al. 2000; Okamoto et al. 2002).

Within cancer microenvironments, fibroblasts form the 
main compartment of host stromal cells, and are called can-
cer-associated fibroblasts (CAFs). CAFs directly communi-
cate with the cancer cells and acquire a specific biological 
phenotype that plays an important role in tumorigenesis 
and tumor progression (Cirri and Chiarugi 2012; Ishii et al. 
2015; Xing et al. 2010). CAFs consist of fibroblasts from 
different origins and represent heterogeneous tumor-related 
functions (Bauer et al. 2010; Sugimoto et al. 2006). MSCs 
are known to be recruited into cancer tissues and can be one 
component of the CAFs. MSCs have been reported to have 
several functions in tumor progression, including prolifera-
tion (Scherzad et al. 2015), migration (Karnoub et al. 2007; 
Martin et al. 2010), oxidant stress resistance (Fiaschi and 
Chiarugi 2012), stemness (Kabashima-Niibe et al. 2013; 
Kuhn and Tuan 2010; Pauwels and Rabe 2004), and periph-
eral cells interaction (Huang et al. 2013; Liu et al. 2011; 
Ono et al. 2015; Uchibori et al. 2013). Previous reports 
have confirmed that MSCs/MPCs can be isolated from sev-
eral human tumor tissues (Ding et al. 2012; Gottschling 
et al. 2013; Hossain et al. 2015; Hu et al. 2013; Lin et al. 
2013; Liotta et al. 2015; McLean et al. 2011; Xu et al. 
2011; Yan et al. 2012). However, most of these reports used 
mixed cell populations to argue about the characteristics of 
MSCs/MPCs as compared to non-cancerous tissue-derived 
MSC/MPCs. To identify the actual biological characteris-
tics of MSCs/MPCs residing in the cancer microenviron-
ment, comparison between the populations of CAFs might 
be necessary.

As for cancer cells, most immature stem cell-like 
cells, cancer stem cells, are at the apex of a malignant 

differentiation hierarchy (Magee et al. 2012; Plaks et al. 
2015). Past studies suggest that CAFs hierarchy based on 
the differentiation potential also present, as such hierarchy 
exists in cancer cells. In this study, we attempted to identify 
the specific functions of lung cancer tissue-derived CAFs 
with MSCs/MPCs characteristics by comparison with 
CAFs without MSCs/MPCs characteristics, using single-
cell-derived CAFs clones.

Materials and methods

Cell culture

Human pulmonary vascular adventitia fibroblasts (hVAFs) 
and cancer-associated fibroblasts (CAFs) were obtained 
from the surgically resected human lung tissues of lung 
cancer patients and cultured in mesenchymal stem cell 
medium (MF) (TOYOBO, Japan) as previously reported 
(Hoshino et al. 2008). Human lung adenocarcinoma cell 
line A549 (RIKEN BioResource Center, Japan) were cul-
tured in DMEM F12 HAM (Sigma–Aldrich, St. Louis, 
MO) supplemented with 10 % fetal bovine serum (FBS) 
(Life Technologies, Grand Island, NY) in a 5 % CO2 incu-
bator. All specimens were collected after the subjects gave 
their written informed consent, approved by the Institu-
tional Review Board of the National Cancer Center.

Collection of conditioned medium

A549 cells were cultured for 2 days and replaced by MF 
medium. After 24 h, the supernatants were harvested and 
filtered using a 0.45 µm Millex-HV Syringe Filter Unit 
(Merck Millipore, Darmstadt, Germany). VAFs were 
treated to this conditioned medium for 3 days followed by 
osteogenic or adipogenic induction. As for the collection of 
conditioned medium for each CAFs clone, the semi-conflu-
ent CAFs were cultured in serum-free DMEM F12 HAM 
for 24 h and conditioned medium was obtained.

Osteogenic induction and alkaline phosphatase 
(ALP)/von Kossa staining

When the hVAFs and CAFs were plated, the medium 
was replaced with fresh osteogenic induction medium 
(LONZA, Walkersville, MD). After complete stimulation, 
alkaline phosphatase was detected by an alkaline phos-
phatase staining kit (Muto Chemical, Japan), according to 
the manufacturer’s instructions. Calcium deposition was 
detected by von Kossa’s method. Cells were fixed with par-
aformaldehyde buffer, and then stained with silver sulfate 
under ultraviolet rays. After washing with sodium thiosul-
fate and water, cells were counterstained with nuclear fast 
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red solution (Sigma–Aldrich). Control cells were subjected 
to the same assay with MF medium instead of the osteo-
genic induction medium.

Adipogenic induction and Oil red O staining

The hVAFs and CAFs were plated and cultured until con-
fluence. The cells were then alternately cultured in adipo-
genic induction medium (LONZA) and adipogenic mainte-
nance mediums (LONZA). After three complete cycles of 
induction/maintenance medium stimulation, the cells were 
fixed with paraformaldehyde buffer and incubated with 
isopropanol. The cells were then stained with oil red O 
(Sigma–Aldrich) solution and counterstained with Meyer’s 
hematoxylin.

Measurement of staining‑positive area

The slides were photographed by the plate scanner, Nano 
Zoomer (Hamamatsu Photonics, Japan). More than 3 spots 
in an area of 0.64 cm2 were selected for analysis from the 
staining images of each group. Staining-positive areas were 
characterized by colors, which were blue in case of ALP 
staining, black in case of von Kossa, or red in case of oil 
red O, respectively, and measured by Win ROOF (Mitani-
corp., Japan) image analysis software. Quantitative values 
were calculated as rates of staining-positive areas against 
whole cell areas.

Lifetime extension by lentivirus‑mediated gene transfer

For lifetime extension, the lentiviruses were produced by 
the 293T cells transfected with CSII-CMV-RfA-IRES2-
Venus-hTERT plasmid (Neri et al. 2015), pCMV-VSV-G-
RSV-Rev (RIKEN BioResource Center), and pCMV-HIV 
(RIKEN BioResource Center), using Lipofectamine 2000 
transfection reagent (Invitrogen, Carlsbad, CA). Vector-
containing medium was filtered through a 0.45-µm filter 
(Merck Millipore), and 8 µg/mL of polybrene (Santa Cruz 
Biotechnology, Dallas, TX) was added for target cell trans-
duction. The fluorescent of Venus proteins were observed 
by fluorescence microscope.

Quantitative Real‑Time Polymerase Chain Reaction

Cells were suspended in 1 mL of TRIzol (Life Technolo-
gies) and total RNA was extracted. cDNA was synthesized 
using the PrimeScript RT reagent Kit (Takara Bio, Japan), 
according to the manufacturer’s instructions. Quantitative 
Real-Time Polymerase Chain Reaction (qRT-PCR) was 
performed in a Smart Cycler System (Takara Bio) with 
SYBR Premix Ex Taq II (Takara Bio). The primers used 
are shown in supplemental Table 2.

Generation of single‑cell derived clones

The hTERT-transfected CAFs were sowed in 96-well 
Prime Surface plates (Sumitomo Bakelite Corp., Japan) 
at a concentration of 1.0 × 10 cells/mL, one by one. By 
visually confirming whether it was a single cell using the 
light microscope, the fibroblasts were replated on 384 well 
culture plates (BD Biosciences, Franklin Lakes, NJ). Then, 
these were repeatedly passaged onto a larger plate until 
confluency was achieved on the 10-cm dish.

WST‑8 cell proliferation assay

A549 cells were seeded in 96-well plates (Corning, Corn-
ing, NY). The next day, the medium were replaced with 
serum-free DMEM F12 HAM or conditioned medium 
from each CAF-derived clone. Two days later, a cell count-
ing kit-8 (DOJINDO, Japan) was used in accordance with 
the manufacturer’s instructions. Then, the absorbance was 
measured at 450 nm wavelength by a micro plate reader, 
Spectra Max 190 (Molecular Devices Corp., Japan).

Cell scratch assay

A549 cells were seeded in 96-well image lock plates 
(Essen BioScience, Ann Arbor, MI). The cell single layer 
was scratched by wound maker (Essen BioScience). After 
washing with PBS, the medium was exchanged with the 
conditioned medium for each CAF-derived clone. The pho-
tographs of the scratched cells were taken by a microscope 
with an imaging system, Incucyte (Essen BioScience), at 
intervals of 6 h until 18 h had passed.

Statistical analysis

Statistical analysis was performed using Microsoft Excel 
(Microsoft, Redmond, WA). Statistical significance was 
assessed by student t test. Error bars represent the SEM. P 
values of <0.05 were considered statistically significant.

Result

Osteogenic and adipogenic differentiation potential 
of CAFs from lung cancer patients

Patient’s characteristics from which CAFs were isolated 
were summarized in Supplementary Table 1. The cells 
grown were spindle-shaped and similar to those of the 
non-cancerous tissue-derived fibroblasts (Supplementary 
Fig. 1). We used hVAFs as the positive control for lung 
MSC/MPCs (Hoshino et al. 2008). For visualization of 
osteogenic differentiation, we performed ALP staining 
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and von Kossa staining (Fig. 1a). The area of ALP-posi-
tive CAFs and hVAFs was 13.8 ± 1.0 and 21.2 ± 1.7 %, 
respectively. CAFs and hVAFs showed equivalent positive 
areas with von Kossa staining (5.7 ± 0.7 vs. 5.3 ± 0.3 %) 
(Fig. 1b and Supplementary Fig. 2a, b). After adipogenic 
induction, hVAFs formed large lipid drops in the cyto-
plasm, which is a typical feature of adipocytes. In contrast, 
oil red O-positive cells were not found in all of the CAFs 
cases (Fig. 1c, d and Supplementary Fig. 2c).

Correlations between osteogenic differentiation 
of CAFs and clinicopathological factors

We examined the correlation between osteogenic differ-
entiation of 9 CAFs and their clinicopathological factors 
(Fig. 2). CAFs from patients with a positive smoking his-
tory showed significantly higher rate of positive areas with 
von Kossa staining (p = 0.04) (Fig. 2b). On the other hand, 
there were no significant correlations between the von 
Kossa-positive areas and other clinicopathological factors 
(Fig. 2a, c, d).

Effect of lung adenocarcinoma supernatant 
on differentiation potential of hVAFs

To examine whether humoral factors secreted from the 
carcinoma cells inhibit the adipogenic potential of MSCs/
MPCs (Fig. 3a), we treated hVAFs with the conditioned 
medium from A549 cells (A549-CM). The ALP-positive 
areas were found to be 32.4 ± 4.1 %, which is similar to the 
result of the control group. In von Kossa staining, the posi-
tive area of hVAFs treated with A549-CM was 7.0 ± 1.6 %, 
and that of the control was 8.7 ± 1.7 % (Fig. 3b, c). There 
was no significant difference between the two groups.

As for the adipogenic induction, positive area of 
A549-CM treated hVAFs was significantly lower than the 
control hVAFs (17.7 ± 3.3 vs. 31.9 ± 5.3 %, p < 0.01) 
(Fig. 3 d, e).

Generation of single‑cell‑derived clones from CAFs

We transduced hTERT gene into specimen number 2 using 
lentivirus vectors. The increase in the hTERT mRNA 
expression was confirmed by RT-PCR (Fig. 4a). hTERT-
transfected CAFs did not change the cell shape (Fig. 4b). 
hTERT-transfected CAFs showed higher ALP-positive 
area (9.3 ± 0. 9 vs. 1.7 ± 0.2 %) and same degree of von 
Kossa-positive area as compared to control (3.0 ± 0. 4 vs. 
2.4 ± 0.2 %) (Fig. 4c, d). We confirmed that CAFs trans-
fected with hTERT gene retained osteogenic potential.

Next, we performed single cell cloning of hTERT-
transfected CAFs by limiting dilution and established 9 
CAFs clones (Fig. 4e). Each clone obtained displayed the 

spindle-shape form; however, the morphology of each 
clone was slightly different (Supplementary Fig. 4).

Osteogenic differentiation potential of CAFs clones

We performed osteogenic induction of nine CAF clones. 
Four clones (clone 1, 3, 5, 9) had over 5 % of von Kossa-
positive area, which was as much as that of the hVAFs. On 
the other hand, 2 clones (7, 8) did not show any positive 
areas (Fig. 5a, b). The values of the other clones were lower 
than that of the hVAFs. We also calculated ALP-positive 
areas; however, this result did not correlate with von Kossa-
positive areas (Supplementary Fig. 4). The von Kossa stain-
ing reflects a more mature and specific osteogenesis than 
the ALP staining. We collected the supernatants of clones 
1, 3, and 9 having a higher osteogenic potential and clones 
2, 7, and 8 that had a lower osteogenic potential, for further 
investigations.

Effect of CAFs clones with higher osteogenic potential 
on A549 cells proliferation

Proliferation of A549 cells treated with the conditioned 
medium from each CAFs clone was measured (Fig. 6a). 
Both higher and lower osteogenic potential clones showed 
similar effect on the proliferation activity of A549 cells, 
and no statistical significance was observed (Fig. 6b).

Effects of CAFs clones with higher osteogenic potential 
on A549 cell migration

Next, we performed scratch assay to examine whether A549 
cell migration was affected by the CAFs clones-derived 
condition medium (Fig. 6c). After 18 h, the wound area of 
the serum-free culture medium (control) was 98.3 ± 0.8 %. 
The wound area treated with the condition medium from 
CAF clones 1, 3, and 9 was 89.0 ± 0.4, 87.7 ± 0.2 and, 
89.2 ± 0.3 %, respectively. On the other hand, the wound 
area treated with the condition medium from clone 2, 
7, and 8 was 91.8 ± 0.2, 92.8 ± 0.2, and 91.5 ± 0.2 %, 
respectively (Fig. 6d). The average wound area treated 
with clones having a higher osteogenic potential was sig-
nificantly lower than that treated with clones having a 
lower osteogenic potential (88.7 ± 0.3 vs. 92.0 ± 0.2 %, 
p < 0.01) (Fig. 6e).

Discussion

In the current study, we found that cultured bulk CAFs 
derived from lung cancer tissue showed osteogenic but not 
adipogenic potential. Thus, lung cancer-derived CAFs were 
considered not to contain MSCs and adipogenic MPCs. 
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Fig. 1  Differentiation potential of CAFs and hVAFs. a The stain-
ing images of osteogenic differentiation using ALP and von Kossa 
methods. b Quantitative analysis of ALP and von Kossa stainings. 
c The staining images of adipogenic differentiation by oil red O. d 

Quantitative analysis of oil red O staining. Each result was calculated 
from the averages of nine specimens. Bar = 100 μm. Values are the 
mean ± SEM. *p < 0.05; **p < 0.01 between control versus induc-
tion
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Using single-cell-derived clones, we confirmed the pres-
ence of osteogenic MPCs and found that there were clones 
with both higher as well as lower osteogenic differentiation 
potential among the CAFs.

To explore heterogeneous characters of fibroblasts 
within mixed population, analysis using clones is an effec-
tive method (Hiraoka et al. 2016; Neri et al. 2015). This 
is the first study to reveal that lung CAFs are configured 
from cells with varied osteogenic potentials by using CAFs 

clones. In the current study, we found that clones with a 
higher osteogenic differentiation potential had a stronger 
effect on cancer cell migration than those with a lower dif-
ferentiation potential.

In the current study, we found that clones with a higher 
osteogenic differentiation potential had a stronger effect on 
cancer cell migration than those with a lower differentia-
tion potential. This phenomenon may be supported by the 
results obtained in Fig. 2. The von Kossa-positive area was 

Fig. 2  Correlation between 
osteogenic differentiation 
potential and clinicopathologi-
cal factors. a gender, b smoking 
history, c pathological stage and 
d presence of vascular invasion. 
Values are the mean ± SEM. 
*p < 0.05; **p < 0.01 between 
control versus induction
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significantly higher in the CAFs from patients with a smok-
ing history (Fig. 2b). Benzo[a]pyrene, a carcinogen found 
in cigarette smoke, was reported to inhibit adipogenesis 
of MSCs (Podechard et al. 2009). Tumor necrosis factor 
(TNF-α) which is a mediator of cigarette smoke-induced 
disease (Churg et al. 2002) reportedly promoted osteo-
genesis of MSCs (Ding et al. 2009). Therefore, smoking 
might decrease adipogenic potential and enhance osteo-
genic potential of lung CAFs. Maeda et al., investigated 

the association between cigarette smoking and the patho-
logical features seen in clinical stage IA lung adenocar-
cinoma (Maeda et al. 2012). They found that a history of 
heavy smoking was a statistically significant predictor 
of histologic vascular invasion. The association between 
smoking history and the frequency of osteogenic MPCs 
may explain the underlying mechanism why patients with 
a smoking history exhibited frequent vascular invasion. 
Indeed, although not significantly, CAFs from vascular 

Fig. 3  Changes in the dif-
ferentiation potential of hVAFs 
treated by A549 supernatants. 
a Scheme of experimental 
protocol. hVAFs were cultured 
in A549-derived supernatants 
for 3 days, and then cultured 
in osteogenic or adipogenic 
medium. b The staining images 
of osteogenic differentiation by 
ALP and von Kossa stainings. 
c Quantitative analysis of ALP 
and von Kossa stainings. d The 
staining images of adipogenic 
differentiation by oil red O. e 
Quantitative analysis of oil red 
O staining. Each result was 
calculated from three examina-
tions. Bar = 100 μm. Values are 
the mean ± SEM. *p < 0.05; 
**p < 0.01 between control 
versus induction
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invasion-positive patients displayed a higher von Kossa 
area (6.7 ± 0.5 vs. 4.3 ± 0.2 %, p = 0.12) (Fig. 2d). On 
the contrary, no correlations were observed between rates 
of von Kossa-positive areas and pathological stage of the 
cancer, indicating that osteogenic MPCs could be recruited 
into the cancer microenvironment even in the early stages 
of tumor formation.

The current study revealed that MSCs and adipogenic 
MPCs are an extremely rare population in our collected 

CAFs. There are two possibilities for the lack of adipo-
genic differentiation potential in lung cancer-derived CAFs. 
One possibility was that primary lung tissue does not have 
MSCs. Actually, fibroblasts from the non-cancerous tissue 
did not contain oil red O-positive cells in our study (Sup-
plementary Fig. 3). Another possibility was the recruitment 
of MSCs/MPCs from other organs or peripheral blood into 
tumor microenvironments through blood vessels (Kidd 
et al. 2009). Peripheral-blood-derived MSCs/MPCs were 

Fig. 4  Generation of single-
cell-derived CAFs clones. 
a Quantitative RT-PCR 
for hTERT mRNA expres-
sion of primary CAFs and 
hTERT- transfected CAFs. b 
Morphological appearance of 
CAFs transfected with control 
vector and hTERT vector. c The 
staining images of osteogenic 
differentiation by ALP and von 
Kossa methods. d Quantita-
tive analysis of ALP and von 
Kossa stainings. e The method 
of generation of single-cell-
derived CAFs clones by 
limiting dilution. The single 
cells were sowed into 96-well 
plates and confirmed using light 
microscope (asterisk). Later, 
the cells were seeded 384-well 
plates and continued cultur-
ing. Bar = 100 μm. Values are 
the mean ± SEM. *p < 0.05; 
**p < 0.01 between control 
versus induction
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obtained by culture of mononuclear cells in lung can-
cer patients’ pulmonary arterial blood (Chiba et al. 2008). 
Effects of cancer-derived humoral factors against differen-
tiation potential of MSCs/MPCs were also reported (Fritz 
et al. 2011; Tu et al. 2014). Considering these possibilities, 
we treated the hVAFs to the supernatant from A549 cells 
and observed decreased adipogenic differentiation levels, 
although osteogenic differentiation remained. On the con-
trary, another lung adenocarcinoma cell line, PC9, had no 
effect on both types of differentiation (data not shown). The 
regulation of MSCs differentiation is governed by mas-
ter regulators, such as runt-related transcription factor 2 
(RUNX2) for osteogenesis (Komori 2010) and peroxisome 
proliferator-activated receptor γ (PPARγ) for adipogenesis 
(Lefterova et al. 2014), respectively. Activation of extracel-
lular signal-regulated kinase (ERK) is known to promote 
osteogenesis and suppress adipogenesis (Ge et al. 2016). 
It is possible to think that A549-derived humoral factors 
which activate ERK signaling could affect to the differen-
tiation potential of hVAFs.

Kuribayashi et al. reported that lung cancer with hetero-
topic ossification expressed bone morphogenetic protein 2 
(BMP2) at high frequency (Kuribayashi et al. 2009). BMP2 
is a bone-growth regulatory factor and could be produced 

by cancer cells. BMP and transforming growth factor-β 
(TGF-β) pathways reportedly promote cancer cell migra-
tion (Hsu et al. 2011; Kang et al. 2010) and expand cancer 
stem cell (CSCs) population (Choi et al. 2015). Therefore, 
BMP2-rich tumor microenvironment can differentiate oste-
ogenic potential-positive CAFs into bone (heterotopic ossi-
fication) and also might be effective for promoting tumor 
progression.

ALP and mineralization of calcium, which can be 
detected by von Kossa staining, are both known as osteo-
genesis markers (Bonewald 2011). In fact, primary bulk 
CAFs showed both ALP- and von Kossa-positive areas. 
However, ALP-positive rates of single-cell-derived CAFs 
clones were not correlated with von Kossa-positive rates. A 
similar result was also found in the analysis of single-cell-
derived hVAFs clones (Supplementary Fig. 7). During oste-
ogenesis, ALP is upregulated at an early stage and is then 
downregulated with progressing of bone maturation, which 
is a mineralization stage (Komori 2010). The discordance 
between ALP- and von Kossa-positive rates suggested that 
a hierarchy on differentiation potentials may be present in 
osteogenic MPCs.

In this study, we proved the presence of fibroblasts with 
varying osteogenic potentials in CAFs derived from lung 

Fig. 5  Osteogenic differen-
tiation potential of single-
cell-derived CAFs clones. 
a The staining images of 
osteogenic differentiation by 
von Kossa staining (clone 1 
and 7). b Quantitative analysis 
of osteogenic differentiation 
potential of each CAFs clone. 
Bar = 100 μm. Values are the 
mean ± SEM
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cancer tissues through the analysis of single-cell-derived 
clones. Moreover, osteogenic MPCs with higher differen-
tiation potential promoted the migration of A549 cells to a 
great extent compared to CAFs with lower differentiation 
potential. In the tumor microenvironment, heterogeneous 
CAFs populations that have various degrees of differen-
tiation potential are intermingled, and more tumor-pro-
moting niches could be formed inside the area that osteo-
genic MPCs were present. Our current study highlights the 
importance of the classification of CAFs according to the 
presence of MPCs and non-MPCs phenotypes. Moreover, 
it provides new insight into the understanding of CAFs 

hierarchy based on the differentiation potential, as such 
hierarchy exists in cancer cells. A subject for future studies 
may be in comprehending the molecular mechanisms how 
the osteogenic MPCs promote cancer cell migration. The 
single-cell-derived clonal method used in this study would 
be a very effective tool for further analyses in this regard.

Acknowledgments This work was supported by National Cancer 
Center Research and Development Fund (23-A-12 and 26-A-16), the 
Foundation for the Promotion of Cancer Research, 3rd-Term Compre-
hensive 10-Year Strategy for Cancer Control, Program for the Promo-
tion of Fundamental Studies in Health Sciences of the National Insti-
tute of Biomedical Innovation, and JSPS KAKENHI (24659185).
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are the mean ± SEM (n = 6)
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