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Introduction

Prostate cancer is the most common cancer diagnosed in 
North American men, excluding skin cancers (Siegel et al. 
2015). It is estimated that in 2015, approximately 220,800 
new cases and 27,540 prostate cancer-related deaths will 
occur in the USA (Siegel et al. 2015). While the increased 
use of the relatively nonspecific (PSA) testing and sub-
sequent biopsy has led to an increase in incidence rates, 
mortality figures have seen much less variation (Ross et al. 
2008). The overall high death toll of PCa is mostly due to 
recurrence of previously treated cases and progression to 
a largely incurable hormone refractory metastatic disease 
(Denmeade and Isaacs 2002; Feldman and Feldman 2001). 
It is becoming obvious that more specific diagnostic and 
therapeutic modalities are a critical unmet need in prostate 
cancer research.

ERG was discovered in 2005, to be the most frequently 
over-expressed proto-oncogene in prostate cancers, by 
quantitative RT-PCR, with 72 % of cases overexpress-
ing ERG (Petrovics et al. 2005). In the same year, Tom-
lins et al. (2005) reported a recurrent genomic rearrange-
ment in prostate cancer, resulting in the fusion of the 5′ 
untranslated region of the androgen-responsive transmem-
brane serine proteinase TMPRSS2 with E26 transforma-
tion-specific (ETS) family genes. While fusion to a num-
ber of ETS genes, including ETV1, ETV4 and ETV5, has 
been reported, the most common gene fusion identified is 
between TMPRSS2 (21q22.3) and ETS-related gene (ERG) 
(21q22.2), present in about half of all prostate cancers stud-
ied (Kumar-Sinha et al. 2008).
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ERG background and discovery

The ETS-related gene (ERG) was first described by Reddy 
et al. (1987), assigned to the ETS oncogene family (Reddy 
et al. 1987; Rao et al. 1987), and is located on human chro-
mosome 21, band q22 (Rao et al. 1988). The unique fea-
ture of the ETS family, including ERG, is the presence of 
the highly conserved ETS DNA-binding domain that binds 
to sequences containing a central GGA motif (Hollenhorst 
et al. 2011). Genes in the ETS family regulate embryonic 
development, cell cycle control, cell proliferation, differen-
tiation and migration, apoptosis, and angiogenesis (Shar-
rocks 2001). It has been reported that ERG is required for 
hematopoiesis, adult hematopoietic stem cell function, as 
well as the maintenance of normal peripheral blood platelet 
numbers (Loughran et al. 2008).

ERG gene rearrangements in human have been found 
in various malignancies. Chromosomal translocation t (16; 
21) (p11; q22), resulting in fusion of TLS/FUS to ERG, was 
identified in acute myeloid leukemia (Shimizu et al. 1993; 
Kanazawa et al. 2005) and acute lymphoblastic leukemia 
(Oh et al. 2010). ERG deletion was also described in a sub-
set of acute lymphoblastic leukemia (Mullighan et al. 2007). 
Five to ten percent of patients with Ewing’s sarcoma showed 
t (21; 22) translocation resulting in expression of a hybrid 
EWS/ERG protein (Sorensen et al. 1994). Moreover, ERG 
rearrangements have now been well documented in prostate 
cancer. The landmark study by Tomlins et al. (2005) discov-
ered gene fusion of the 5′ untranslated region of TMPRSS2 
(which encodes transmembrane protease, serine 2) to the 
ETS family members ERG or ETV1 in the majority of the 
prostate cancer cases studied. These findings have now been 
independently corroborated by a number of researchers, 
with increased ERG protein expression thought to be reflec-
tive of ERG gene rearrangement in prostate cancer (Chaux 
et al. 2011; Miettinen et al. 2011; van Leenders et al. 2011; 
Furusato et al. 2010; Lotan et al. 2011; Park et al. 2010). 
Of note, the prevalence of Prostate cancer shows a great dif-
ference between western and Asian patients (Siegel et al. 
2013). It was reported that the incidence of PCa in western 
countries is 20 times higher than in Asian countries (Ferlay 
et al. 2013). Furthermore, recent studies have shown lower 
frequency of TMPRSS2-ERG fusion in Asian countries 
(21 and 28 % in Korea and Japan, respectively) compared 
to USA (42–60 %) (Wang et al. 2012). This geographical/
ethnic variation might pertain to different molecular mecha-
nisms of prostate tumorogenesis in these populations.

TMPRSS2 is constitutively expressed, downstream of 
androgen, in prostate tissues (Burdova et al. 2014). In cultured 
prostate cancer cells, androgen-dependent ERG gene overex-
pression was noted in the VCaP cell line which is androgen 
sensitive and harbors the TMPRSS2-ERG gene fusion, but 
not in LNCaP cells which are also androgen sensitive but do 

not harbor the TMPRSS2-ERG gene fusion (Tomlins et al. 
2005). Similarly, in human prostate cancer xenografts, ERG 
expression was restricted to samples carrying the TMPRSS2-
ERG fusion, but not in the androgen-insensitive samples and 
fusion-negative samples (Hermans et al. 2006). The focus of 
recent studies have been related to understanding the func-
tional consequence of these reported gene fusions, in addition 
to uncovering any potential diagnostic or prognostic value.

Biological and molecular features of ERG gene 
rearrangements

The TMPRSS2 and ERG genes are located about 3Mbp 
apart on chromosome 21, and the most common gene rear-
rangement seen involves the deletion of all or part of the 
intervening sequence (Iljin et al. 2006; Mertz et al. 2007; 
Perner et al. 2006). Mani et al. (2009) showed an androgen-
mediated fusion mechanism in which androgen not only 
facilitated the chromosomal proximity between TMPRSS2 
and ERG gene partners, but also mediated recombinogenic 
double-strand breaks (DSBs) to form the gene fusion. The 
ERG gene belongs to the ETS family (29 members in five 
subfamilies) and has at least nine reported splice variants 
(Rao et al. 1987; Owczarek et al. 2004; Duterque-Coquil-
laud et al. 1993). ERG upregulation is seen in about half 
of all prostate cancers, and the upregulation is thought to 
occur as a result of fusion transcripts consisting of the 5′ 
sequences of the androgen-regulated TMPRSS2 and the 3′ 
sequence of ERG (Mani et al. 2009).

At least twenty different break points have been identi-
fied, However, of the most common variants that exist for 
TMPRSS fusion with ERG, two encode full-length ERG 
protein, eight encode N-truncated ERG sequences, and one 
encodes a TMPRSS2-ERG fusion transcript (Hermans et al. 
2008). The most common fusion transcripts involve the 
fusion of TMPRSS2 exon 1 to ERG exon 4 and TMPRSS2 
exon 1 fused to ERG exon 5 (Clark et al. 2007; Svensson 
et al. 2014). Of note, certain TMPRSS2-ERG fusion isoforms 
have been implicated as mediators of PCa progression (Wang 
et al. 2006). For instance, fusion between first two exons of 
TMPRSS2 and exon 4 of ERG tends to be associated with 
lethal PCa (Wang et al. 2006). There is increasing evidence 
showing that TMPRSS2 is involved in metastasis and inva-
sion pathways in the prostate via triggering protease-activated 
receptor-2 (Wilson et al. 2005). In vivo mice studies showed 
that either overexpressing of ERG or inducing TMPRSS2-
ERG fusions did not develop invasive prostate cancer (Klezo-
vitch et al. 2008). Interestingly, microinvasive cancers were 
found enriched in ERG mice with PTEN-loss heterozygous 
background (Carver et al. 2009). These findings raise the pos-
sibility that ERG cross talk with other oncogenes or tumor 
suppressors to develop prostate cancer pathology.
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Several studies have correlated whole-genome gene 
expression profiling with clinical data, obtained from ERG-
overexpressing PCa samples, to pinpoint relevant signal 
transduction pathways. For example, Iljin et al. (2006) 
demonstrated that the WNT pathway was associated with 
ERG overexpression in PCa cancer. Another study reported 
the role of the transforming growth factor β (TGF-β) path-
way in ERG-overexpressing PCa pathology (Brase et al. 
2011). Although the exact regulating mechanism of ERG-
associated genes remains unclear, quite a few studies have 
reported multiple genes regulated by ERG, either directly 
or indirectly (Iljin et al. 2006; Brase et al. 2011; Bismar 
et al. 2014). However, despite the magnitude of informa-
tion published on this subject in the recent few years, an 
important question about whether ERG and ETV1 func-
tion the same way in PCa pathology remains unanswered. 
Although ERG and ETV1 belong to the same ETS super-
family and both have common binding sites, they exert 
opposite effects on AR-mediated gene pathway (Baena 
et al. 2013). Using expression data from localized PCa 
samples, ERG and ETV1 downstream genes show differen-
tial clustering patterns (Boormans et al. 2010). The exact 
biological and molecular mechanisms of ETV1 overexpres-
sion in PCa remain to be investigated.

ERG‑related gene signatures and potential targets

TMPRSS2-ERG fusion has been reported present in about 
50 % of surgically treated PCa cohorts (radical prosta-
tectomy series); it is less common in high-grade prostatic 
intraepithelial neoplasia (HGPIN) averaging about 11 % 
(Mosquera et al. 2008; Park et al. 2014). Additionally, in 
mice models, overexpression of TMPRSS2-ERG alone is 
not sufficient to induce prostate neoplasia, which is accel-
erated in the presence of PTEN genomic deletions (Carver 
et al. 2009; King et al. 2009). This has led to the ques-
tion of whether TMPRSS2-ERG is an early event in PCa 
pathogenesis and whether it can predict pathways related 
to HGPIN progression to invasive cancer. Previous stud-
ies have focused on identifying genetic signatures related 
to ERG, i.e., potential associated genes/pathways that may 
explain how ERG functions in promoting PCa progression. 
Recently, several groups identified a prognostic gene sig-
nature that was able to reflect ERG status and was at some 
points, considered to be more robust than ERG itself, there-
fore reflecting downstream targets of ERG overexpression 
as summarized in Table 1 (Bismar et al. 2014; Barfeld et al. 
2014; Gasi Tandefelt et al. 2013; Mochmann et al. 2014; 
Rajan et al. 2014; Setlur et al. 2008).

Other studies focused on identification of potential tar-
gets for ERG, which could act to explain disease progres-
sion or be of potential therapeutic targets. For example, Ta
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TMRSS2-ERG gene fusion, combined with disrupted 
androgen receptor, induced the epigenetic regulators of 
transcription polycomb-group protein H3K27 methyl-
transferase EZH2-mediated repression of gene function 
to regulate PCa progression (Yu et al. 2010). Addition-
ally, altered DNA methylation landscapes of polycomb-
repressed loci were documented to be associated with 
PCa progression and ERG oncogene expression in PCa 
(Kron et al. 2013).

Genetic ERG knockdown in TMPRSS2-ERG-expressing 
PCa cells interfered with cell differentiation by repress-
ing genes implicated in epithelial differentiation (PSA and 
SLC45A3/Prostein) and induced morphological changes; 
ERG knockdown also inhibited cancer cell growth in vitro 
and in mouse xenografts (Sun et al. 2008). Another study, 
using siRNA-treated cells, provided evidence that the acti-
vation of C-MYC oncogene was ERG-mediated (Sun et al. 
2008). Reports also show that the N-myc downstream-reg-
ulated gene 1 (NDRG1) is fused to ERG in PCa (Pflueger 
et al. 2009).

The loss of homeodomain-containing transcription fac-
tor NKX3.1, a known prostate tumor suppressor, leads to 
epithelial cell overgrowth (Chen et al. 2002). Studies have 
established that loss of function of NKX3.1 cooperates with 
the activation of TMPRSS2-ERG fusions in prostate tumo-
rigenesis (Thangapazham et al. 2014). Defects of NKX3.1, 
such as allelic loss, haploinsufficiency, attenuated expres-
sion, or decreased protein stability, represent established 
pathways in prostate tumorigenesis that may be related to 
regulation by TMPRSS2-ERG fusion and ERG gene rear-
rangement (Chen et al. 2002). Another protein that is linked 
to ERG gene rearrangement and that represents a clini-
cally relevant subgroup of prostate cancer is cysteine-rich 
secretory protein 3 (CRISP3) (Ribeiro et al. 2011; Grupp 
et al. 2013a; Al Bashir et al. 2014). It has been documented 
that CRISP3 expression was markedly increased in PTEN-
deleted, ERG-positive tumors and that the combined status 
of ERG, PTEN, and CRISP3 may be a strong predictor of 
PCA tumors with the worst outcome (Ribeiro et al. 2011; 
Al Bashir et al. 2014).

Recently, Gasi Tandefelt and colleagues reported on 
a 36-gene expression signature that identifies a subset 
within the TMPRSS2-ERG class of PCa that had a par-
ticularly poor clinical outcome (Gasi Tandefelt et al. 
2013). These subsets of patients were characterized by 
tumor growth factor-β, signaling-dependent genes, lead-
ing to enhanced PCa progression. The proposed role of 
TGF-β in aggressive tumors is in line with other studies 
showing an important role for stromal cells and fibroblast 
to myofibroblast differentiation in tumor progression 
(Franco and Hayward 2012; Hagglof et al. 2014; Tidehag 
et al. 2014).

ERG linkage to phosphoinositol 3‑kinase and AKT 
signaling

An early event in prostate cancers is the alteration of genes 
leading to inappropriate activation of the phosphoinosi-
tol-3 kinase/protein kinase-B (PI3K/AKT) signaling path-
way (Li et al. 1997). This occurs most often through loss 
of function mutations or deletions of phosphate and tensin 
homologs on chromosome ten (PTEN), a lipid phosphatase 
that acts as a negative regulator of the PI3k/AKT signal-
ing pathway (Li et al. 1997). Since PTEN loss is reported 
in a much larger percentage of HGPIN patients (Bet-
tendorf et al. 2008), Carver and colleagues investigated 
the cooperative action of PTEN and ERG rearrangements 
(Carver et al. 2009). In a series of experiments combining 
human prostate cancer genetic assessment with transgenic 
mice, they showed that when PTEN loss occurs concomi-
tantly with ERG aberrant expression, the role of ERG on 
cell migration and invasion rapidly promotes progression 
of HGPIN to invasive cancer (Carver et al. 2009). Loss 
of function mutations or rearrangements in the PTEN-
associated protein, membrane-associated guanylate kinase 
inverted (MAGI), is also reported in prostate cancer (Mah-
dian et al. 2014). MAGI acts as a scaffold protein and aug-
ments the ability of PTEN to suppress AKT1 activation, 
and the loss of this protein would replicate the phenotype 
seen with PTEN loss. Although ERG has been shown to 
associate with PTEN genomic deletions, its clinical prog-
nostic value has not been straightforward. An adverse out-
come has been reported in tumors with combined PTEN 
loss and TMPRSS2-ERG rearrangement (Yoshimoto et al. 
2008). Other studies suggested slightly better prognosis 
and documented that only PTEN deletions/decrease expres-
sion is of added adverse clinical outcome (Leinonen et al. 
2013; Nagle et al. 2013). No matter the potential clinical 
implication, it is well established that ERG, PTEN, and AR 
are closely related and may reflect on molecular subtypes 
of PCa (Bismar et al. 2011; Bismar et al. 2012a).

ERG‑related pathways and cellular responses

A clear picture of ERG-regulated genes in prostate cancer 
has not yet fully been elucidated. ERG overexpression in 
PCa cells in vitro conveys invasiveness and induces plas-
minogen activation, as well as matrix metalloproteinase 
pathways (Tian et al. 2014). Studies have noted that ERG 
modulates prostaglandin signaling in prostate cancer cells 
(Mohamed et al. 2011). A role for prostanoid signaling in 
enabling invasiveness of PCa has been shown, with the 
regulation of MMP2 and MMP9 proposed as the mecha-
nistic basis for prostanoid regulation of tumor invasiveness 
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(Attiga et al. 2000). These data are in line with the long 
established observation of prostanoid and eicosanoid sign-
aling being involved in the development of various carcino-
mas, including those of the prostate (Badawi 2000). In vitro 
overexpression of ERG is also reported to promote cell 
migration, a property necessary for tumorigenesis, without 
affecting proliferation and another member of the MMP 
family (Carver et al. 2009). A disintegrin and metallopro-
teinase with thrombospondin motifs 1 (ADAMTS1) (along 
with CXCR4) was found to be among genes strongly 
upregulated in the presence of ERG overexpression (Carver 
et al. 2009). Thus, regulation of the matrix metalloprotein-
ase action in the tumor microenvironment is a likely conse-
quence of ERG gene rearrangement.

Another protease pathway that is important in prostate 
cancer, but expressed markedly in ERG-negative cancers, 
is related to the serine peptidase inhibitor, Kazal type 1 
(SPINK1). SPINK1 encodes a 6-kDa trypsin inhibitor that 
is overexpressed in about 10–15 % of ERG-negative pros-
tate cancers (Helgeson et al. 2008) and represents a sub-
group of tumors positive for Trefoil3 (TFF3) (Terry et al. 
2015). SPINK1 expression is also tightly linked to 6q15- 
and 5q21-deleted ERG fusion-negative prostate cancers, 
but was unrelated to PSA recurrence (Grupp et al. 2013b). 
SPINK1 overexpression was associated with an aggressive 
subset of prostate cancer cell lines, and the genetic knock-
down of SPINK1 attenuated the invasive phenotype and 
was further shown to mediate its oncogenic effects in part 
through epidermal growth factor receptor (EGFR) (Helge-
son et al. 2008). Therefore, it was hypothesized that thera-
peutic targeting of either SPINK1 or EGFR with monoclo-
nal antibodies could suppress proliferation and invasion of 

prostate cancer cells (Ateeq et al. 2011). While previous 
clinical trials of anti-EGFR monoclonal antibody (cetuxi-
mab) in metastatic CRPC were disappointing, subsets 
of patients did show benefits and were likely a SPINK1-
overexpressing patients (Slovin et al. 2009). There is now 
convincing evidence that SPINK1 may be associated with 
increased risk of biochemical recurrence, and its inhibi-
tion is a promising therapeutic strategy (Terry et al. 2015; 
Leinonen et al. 2010).

Acetylation and deacetylation of core histones (H2A, 
H2B, H3 and H4) play a key role in epigenetic repression 
and are important for transcriptional regulation cell cycle 
progression and development (Ng and Bird 2000). Histone 
deacetylase 1 is a protein responsible for deacetylation of 
lysine residues on the core histones and serves an important 
role in the regulation of eukaryotic gene expression. Impor-
tantly, overexpression of HDAC1 is reported to induce 
angiogenesis by negatively regulating p53 and von Hippel-
Lindau tumor suppressor genes (Kim et al. 2001; Ropero 
and Esteller 2007). Since HDAC1 is reported to be over-
expressed in cancers with ERG rearrangement (Iljin et al. 
2006), such regulation of tumor suppressor genes could 
represent another mechanism by which ERG rearrange-
ments promote prostate cancer. One point in regard to ERG 
association with other molecular markers, mainly SPINK1, 
PTEN and CRISP3, is that a combination of two or more 
markers is likely to affect disease prognosis and may sig-
nify subclass of PCa depending on the site where they occur 
(Fig. 1). Lastly, a study has demonstrated that miR-221 
downregulated in TMPRSS2-ERG-positive PCa cells, hence 
providing an evidence of the cross talk between ERG gene 
fusion and miRNA expression (Gordanpour et al. 2011). 

Fig. 1  Molecular classes and 
association of gene alterations 
in prostate cancer. Approxi-
mately 50 % of all prostate can-
cers show ERG gene fusion or 
other ETS gene rearrangement. 
In patients with positive ERG 
rearrangement, a concomitant 
deletion of PTEN and over-
expression of CRISP3 lead to 
poor prognosis. In PCa with no 
ERG rearrangement, approxi-
mately 6 % show overexpres-
sion of SPINK1 that promotes 
metastatic disease. All of the 
SPINK1-overexpressing cells 
also showed PTEN deletion. 
SPINK1 overexpression has 
been reported in association 
within the same focus of PTEN 
homozygous deletions in nonlo-
calized PCa but not in localized 
disease
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Still, the molecular mechanisms underlying the expression 
of ERG-regulated genes remain to be investigated.

The diagnostic and prognostic value 
of TMPRSS2‑ERG gene fusion

The diagnostic and prognostic value of ERG expres-
sion remains to be fully established. Several studies have 
examined the prognostic value of TMPRSS2-ERG fusion 
status in PCa. As summarized in Table 2, thirteen studies 
have shown a significant association between ERG fusion 
marker and PCa outcome. It is worth noting that although 
TMPRSS2-ERG has been frequently associated with poorer 
prognosis and more aggressive tumors, other studies have 
failed to show such prognostic value (Falzarano et al. 2010; 
Toubaji et al. 2011; Minner et al. 2011; Hoogland et al. 
2012).

Mehra and colleagues identified TMPRSS2-ERG rear-
rangement to be associated with a high pathological 
grade in a cohort of 96 surgically treated patients (Mehra 
et al. 2007). However, Darnel et al. (2009) reported that 
TMPRSS2-ERG is more frequent in less aggressive tumors 
with Gleason grade 3. TMPRSS2-ERG gene fusion, ERG 
expression or composite intensity score was also identi-
fied as a prognostic factor of increased rates of biochemi-
cal recurrence and cancer-specific mortality in patients 
that had undergone surgical treatment for primary cancers 
(Nam et al. 2007a, b; Spencer et al. 2013). In another study, 
TMPRSS2-ERG gene rearrangement was associated with 
poor survival of prostate cancer patients with a combina-
tion of 5′ ERG deletion and TMPRSS2-ERG (25 % survival 
at 8 years), compared to patients negative for this rear-
rangement (90 % survival at 8 years) (Attard et al. 2008). 
Although, in another study assessing the gene fusion sta-
tus in a cohort of patients managed expectantly, only 15 % 
of patients were found to have TMPRSS2-ERG rearrange-
ment, this group of patients showed higher incidence of 
prostate cancer-specific death (Demichelis et al. 2007). 
This observation of less frequent ERG gene rearrangements 
in patients not managed surgically was validated in subse-
quent cohorts of patients with unsuspected, advanced, and 
castrate-resistant prostate cancer (CRPC) (Falzarano et al. 
2010; Liu et al. 2011). Using ERG protein expression as a 
surrogate for ERG gene rearrangements in a cohort of men 
treated with hormonal therapy, we reported that high ERG 
intensity was associated with lower Gleason score, better 
response to hormonal therapy, better overall and cancer-
specific survival, and longer free progression times to cas-
tration-resistant disease (Bismar et al. 2012b). In a reveal-
ing recent study, 1590 men with biopsy-diagnosed HGPIN, 
a precursor lesion of prostate cancer, showed that patients 
with ERG expression were more likely to develop prostate 

cancer (Park et al. 2014). While only 11.1 % of the HGPIN 
patients had ERG rearrangement, over a 3-year follow-up, 
53 % of ERG rearrangement-positive patients and 35 % 
of ERG-negative patients progressed to prostate cancer, 
highlighting that HGPIN patient with ERG overexpression 
might need more rigorous clinical monitoring (Park et al. 
2014).

However, as noted above, the data on the clinical sig-
nificance of ERG are not all in agreement. Studies have 
demonstrated some contrasting results. Teng et al. (2013) 
showed that although there is significant association 
between ERG protein levels, extra-prostatic extension, and 
higher pathological stage, ERG progression is not asso-
ciated with an adverse clinical outcome and is of limited 
prognostic value in localized prostate cancer. This was 
recently confirmed, using gene expression data to predict 
ERG status, where ERG was noted more often with lower 
grade Gleason scores and in association with extra-pros-
tatic extension, but with no significant association to bio-
chemical relapse (BCR) (Tomlins et al. 2015a).

Minner et al. (2011) showed no clinical difference 
between ERG-positive and ERG-negative PCa in the 
absence of antihormonal therapy. Hoogland et al. (2012) 
demonstrated that ERG expression by immunohistochem-
istry had no predictive value for prostate cancer recur-
rence or progression after radical prostatectomy and that 
increased ERG levels were associated with the upregula-
tion of androgen receptor expression in clinical specimens. 
Furthermore, TMPRSS2-ERG fusion was found to be not 
prognostic for recurrence after radical prostatectomy for 
clinically localized prostate cancer, although men with 
ERG gene copy number gain without fusion were twice 
more likely to recur (Toubaji et al. 2011). When character-
izing ERG in early onset PCa, ERG expression was noted 
to be present at higher rates of close to 60–65 % in two 
studies (Huang et al. 2014; Steurer et al. 2014). Further-
more, ERG was found to be associated with increased rates 
of biochemical recurrence postradical prostatectomy in one 
of those studies (Huang et al. 2014). In light of the contra-
dictory results above, it seems that the significance of ERG 
expression in PCa is likely dependent on the heterogeneity 
of studied cohorts, the methods used to detect ERG, and the 
clinical outcome endpoint being investigated. For example, 
ERG expression shows a prognostic significance in local-
ized prostate cancer in men below the age of 50 (Huang 
et al. 2014). Another study shows that ERG may also play 
a prognostic role in men treated expectantly by hormonal 
therapy or active surveillance (AS) as it reflects higher 
stage and higher tumor volume (Teng et al. 2013).

In a cohort of AS, positive ERG at diagnosis was sug-
gested to be used to estimate the risk of progression during 
AS (Berg et al. 2014). ERG prognostic and diagnostic value 
in urine samples has been investigated and documented in 
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several studies to provide added value to serum PSA in 
detecting PCa and high-grade PCa in biopsies (Tomlins 
et al. 2015b). In summary, it is clearly established that ERG 
fusion marker is considered a key genomic marker and 
should be taken into consideration when the prognostic val-
ues of other genomic events are investigated.

Clinical utility of TMPRSS2‑ERG gene fusion 
and ERG expression

Although PSA is still widely used to monitor PCa progres-
sion, it is too far from ideal to be considered as an early 
carcinogenic biomarker (Tomlins et al. 2005). It is note-
worthy that PSA can early detect merely 23–44 % of PCa 
pathology (Draisma et al. 2009). Thus, it is mandatory, for 
the sake of better diagnostic sensitivity, to discover more 
efficient biomarkers. Consistent with this notion, Leyten 
et al. (2014) showed that TMPRSS2-ERG fusion, as a uri-
nary biomarker, improves PCa detection and considerably 
reduces the frequency of unnecessary prostate biopsies. 
Furthermore, detection of ERG alterations is beneficial to 
determine the cancer origin and hence differentiate between 
aggressive PCa variants such as prostate small cell carci-
noma from other small cell carcinomas with different ori-
gins (e.g., bladder or lung) (Guo et al. 2011). Recent works 
have introduced invaluable insights on using ERG as a ther-
apeutic target. It has been demonstrated that either geneti-
cally knocking down TMPRSS2-ERG fusion or inhibiting 
its upstream signaling inhibits PCa growth (Wang et al. 
2008; Dasgupta et al. 2012). A number of clinical trials 
are taking the advantage of the ability of TMPRSS2-ERG 
fusion product to exert tumorigenic activity, via its inter-
action with PARP1 [Poly (ADPRibose) Polymerase 1], 
to assess whether modulating this axis would benefit PCa 
patients (Brenner et al. 2011). Currently, ERG overexpres-
sion is considered a valuable tool in the diagnosis of PCa 
pathology.

Association and significance of ERG 
in radiation‑treated patients

Data are mixed on the issue of ERG and radiosensitivity. 
An earlier study documented that TMPRSS2-ERG fusion-
positive tumors were not more radiosensitive than the 
fusion-negative tumors and ERG rearrangement is there-
fore unlikely to be a predictive factor of image-guided 
radiotherapy response (Dal Pra et al. 2013). However, 
another study documented that patients with both ERG and 
PTEN genetic aberrations are at significant adverse BCR 
following brachytherapy (Fontugne et al. 2014). A previ-
ous study has shown the potential of ERG and PTEN to Ta
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assess the prognostic value in Brachytherapy patients, but 
these data require further validation (Fontugne et al. 2014). 
NKX3.1 haploinsufficiency is prognostic for prostate can-
cer relapse following surgery or image-guided radiotherapy 
(Locke et al. 2012). A recent study has shown that loss of 
NKX3.1 promotes TMPRSS2-ERG fusion gene expres-
sion (Thangapazham et al. 2014), suggesting that the two 
molecular events may therefore be related. The full prog-
nostic value in patients treated by radiotherapy still needs 
full exploration.

ERG and its potential diagnostic value in prostate 
pathology

ERG has been investigated in several studies as a diagnos-
tic tool for prostate biopsies in conjunction with basal cell 
markers and AMACR (Shah et al. 2013; Yaskiv et al. 2011; 
Lee et al. 2014; Shah 2013). Specifically, it was assessed 
in atypical glands and suspicious foci (Shah et al. 2013). 
Overall, ERG is not a useful marker by itself to replace 
basal cell markers or AMACR, as it is expressed in only 
half of PCa as compared to AMACR, which is overex-
pressed in about 90 % of PCa (Yaskiv et al. 2011). ERG is 
thought to be more specific, but less sensitive as a diagnos-
tic maker for PCa (Lee et al. 2015). The conclusion of these 
studies is that ERG, in combination with AMACR and 
basal cell makers, may offer added value in prostate biop-
sies, but the potential improvement in such a diagnostic test 
could be limited.

Conclusion

There is tantalizing evidence that ERG overexpression and 
ERG gene rearrangement is a useful predictive marker of 
metastatic potential or recurrence of prostate cancer. There 
is now a fairly good genetic and biological understanding 

of changes in prostate cancer. A number of clinical efforts 
to translate this knowledge to better diagnostic modalities 
and therapeutic strategies are underway. A key target is the 
rearrangement of the ERG gene and its interaction with 
other tumor-regulating pathways (Fig. 2). Further work to 
fully understand the functional consequence of these rear-
rangements and regulated cell signaling pathways promises 
exciting new advances in the diagnosis and management of 
prostate cancer.
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