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acquired data set was used to generate a random forest clas-
sification model with 101 iterations of sevenfold cross-val-
idation. The models obtained during cross-validation were 
also used to predict regions of tumor margin (n = 8) aside 
from independent testing.
Results Raman spectra differed between malignant and 
non-malignant tissue regions. Based on these spectral data, 
a random forest classification model calculated a predic-
tion accuracy of 86 % (76 % sensitivity and 93 % speci-
ficity). The ten most important variables were identified at 
2895, 2856, 1439, 1298, 1080, 1063, 1023, 937, 920, and 
719 cm−1.
Conclusions In this study, Raman imaging spectroscopy 
was applied successfully for liver tissue to differentiate, 
classify, and predict with high accuracy malignant and non-
malignant tissue regions. Furthermore, the most important 
differences were identified as the Raman signature of fatty 
acids. The demonstrated results highlight the enormous 
potential which vibrational spectroscopy techniques have 
for the future diagnostics and prognosis estimation of HCC.

Keywords Raman spectroscopic imaging · 
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Introduction

The dramatic increase in the incidence of hepatocellular 
carcinoma (HCC) causes worldwide 692,000 deaths per 
year (Iavarone and Colombo 2013). Surveillance strategies 
and the early diagnosis of the tumor are essential for cura-
tive treatment option. Histopathological diagnosis of HCC 
is based essentially on the cytohistologic criteria according 
to the International Consensus Group for Hepatocellular 

Abstract 
Purpose Patients with hepatocellular carcinoma (HCC) 
can only be treated curatively at early stages and then have 
a favorable prognosis of this often fatal disease. For this 
reason, an early detection and diagnostic confirmation are 
crucial. Raman imaging spectroscopy is a promising tech-
nology for high-resolution visualization of the spatial dis-
tribution of molecular composition in tissue sections. The 
aim of this study was to investigate molecular information 
of liver tissue by Raman imaging for classification and 
diagnostic prediction.
Methods Unstained cryosections of human hepatic tis-
sues (23 patients) were measured by Raman spectroscope 
in the regions of HCC (n = 12) and fibrosis (n = 17). The 
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Neoplasia. However, morphological criteria alone still pose 
problems for the differential diagnosis and depend upon 
location and size of liver biopsy as well as doctors’ exper-
tise. Therefore, gene expression profiles and more cost-
efficient immunohistochemical stainings for glypican 3 
(GPC3), heat shock protein 70 (HSP-70), and glutamine 
synthetase (GS) are recommended by current international 
clinical practice guidelines to establishing a diagnosis 
(European Association for the Study of the Liver and Euro-
pean Organisation for Research and Treatment of Cancer 
2012). Nevertheless, always a panel of several markers 
is necessary to achieve a required level of accuracy and a 
more standardized diagnosis of HCC, but the rate of false 
negative diagnosis is still high (Di Tommaso et al. 2009; 
Bruix and Sherman 2011).

Against this background, completely new approaches 
should be explored that are able to detect various mark-
ers in the tissue at once and to use this “fingerprint” for 
an objective tumor differentiation. Moreover, these inno-
vative approaches could also be used for a classification 
of the severity of the disease and perhaps even for a risk 
stratification of the patients. Vibrational spectroscopic 
techniques such as infrared or Raman spectroscopy are 
efficient tools for investigating rapidly and non-destruc-
tively a wide variety of biochemical compounds in parallel 
directly in cells or tissue and without any need of labeling. 
Raman spectroscopy uses the inelastic scattering of visible 
or near-infrared light to analyze vibrational modes of mol-
ecules. One advantage of Raman imaging spectroscopy in 
comparison with the conventional Raman spectroscopy is 
high resolution (<1 µm, i.e., subcellular resolution) which 
allows to determine the spatial distribution of biochemical 
compounds in tissue sections and to correlate the obtained 
molecular information with the morphological structures 
at the very same sample location. Using pattern recogni-
tion and classification algorithms, tissue-specific patterns 
can be discovered and used to develop predictive models. 
To date, Raman imaging has already been successfully 
applied in several studies to elucidate the molecular infor-
mation in colon, cervical, brain, and stomach malignant tis-
sues (Beljebbar et al. 2009; Kamemoto et al. 2010; Bergner 
et al. 2012; Bergholt et al. 2010). As Raman spectroscopic 
data will become available for various tumor tissue types, 
this approach will provide a common disease-wide method-
ology that can be applied to a variety of clinical questions.

Materials and methods

Tissue collection and sample preparation

The research project was approved by the local medical eth-
ics committee, and written informed consent was obtained 

from all patients. In the Department of General, Visceral 
and Vascular Surgery (Jena University Hospital, Germany) 
surgically resected liver tissue samples were obtained from 
23 patients diagnosed with HCC. Immediately after liver 
resection, tissue samples of the tumor margins were shock 
frozen in liquid nitrogen and stored at −80 °C. For diag-
nosis, a histological examination of the resected tissue was 
performed in the Institute of Pathology (Jena University 
Hospital, Germany). Table 1 shows the pathological char-
acteristics of these samples.

On the day of Raman measurements, a microtome (Cry-
ostat Leica 3050 S, Leica Biosystems, Germany) was used 
to prepare two parallel sections of each tissue sample. The 
first section was mounted onto microscope glass slide and 
processed with standard hematoxylin and eosin (HE) stain-
ing to define the areas of interest for Raman analysis. The 
second tissue section was deposited onto a calcium fluoride 
slide (CaF2; Vacuum-UV quality, Crystal GmbH, Berlin) 
and transferred to the Raman spectrometer in a vacuum 
desiccator. According to the pre-defined region of the HE-
stained tissue section, Raman images were acquired from 
the correlating region of the parallel section. After the 
measurements, the tissue sections on CaF2 slides remained 
intact and were also stained with HE, microscopic images 
were taken and correlated with the obtained Raman maps.

Raman image acquisition

Raman images were collected using a confocal Raman 
microscope (WITec, Ulm, Germany, Model CRM 2000) 
with 300 lines/mm grating (blaze wavelength 750 nm) and 
a 785 nm diode laser as excitation. The laser power was 
50 mW. The laser light was focused on the sample with a 
50× NA 0.95 objective (EC Epiplan-Apochromat, Zeiss, 
Germany) coupled to the microscope by a single mode 
optical fiber. The scattered Raman signal was detected by 
a back-illuminated deep-depletion CCD camera operat-
ing at −65 °C. The Raman system was calibrated to the 
520.7 cm−1 spectral line of silicon. Raman spectral images 
of the selected tissue regions were acquired with a meas-
urement area of 75 × 75 µm2 for tumor center and fibrotic 
regions and a measurement area of 75 × 100 µm2 for the 
tumor margin. As lateral resolution of the Raman image a 
1 µm step size in the spectral region of 3200–200 cm−1 was 
set in the mapping mode of WITec Control. Dark tissues 
such as kidney and liver have often caused problems for 
Raman spectroscopy because they are highly absorbing and 
fluorescent at most visible and NIR wavelengths (Matousek 
and Stone 2009). Therefore, pre-bleaching of the autoflu-
orescence of 2 s followed by an integration time for each 
spectrum of 5 s was necessary. The mounting material CaF2 
was chosen to avoid interfering fluorescence background 
from usually used glass slides.
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Data analysis

The chemometric analysis of the Raman data set of all 
maps was performed with CytoSpec (CytoSpec Inc., USA), 
OPUS (Bruker Optik GmbH, Germany) and R (R Core 
Team 2014).

As an important first step of our data analysis, a data 
pre-processing was performed. Therefore, interfering sig-
nals such as fluorescence, burning artifacts, and present 
contaminants were determined and removed according 
to defined upper and lower thresholds for intensity of the 
CH-stretching region using a quality test included in the 
CytoSpec software. Artifacts from the recording due to 
cosmic radiation were removed from the data set by suit-
able algorithms. Furthermore, baseline correction and vec-
tor normalization were applied to the spectral region of 
3100–600 cm−1. These spectral pre-processing steps are 
appropriate for vibrational spectroscopy and were already 

successfully applied for Raman imaging (Neugebauer et al. 
2010; Mazur et al. 2013; Bielecki et al. 2012). A detailed 
description is published by Lasch (2012).

After that, average spectra from Raman maps of the 
tumor center and fibrotic tissue region were calculated with 
the CytoSpec software. In addition, by use of the OPUS 
software, a difference spectrum of these average spectra 
was generated by subtraction.

All further data analysis was performed in R using pack-
ages hyperSpec (Beleites and Sergo 2014) for import and 
handling of the data as well as lattice (Sarkar 2008) and 
ggplot2 (Wickham 2009) for graphical display. For the anal-
yses in R, further preprocessing steps were used: firstly, the 
uninformative spectral range between 1800 and 2800 cm−1 
was deleted, and secondly, the spectra were laterally binned 
2 × 2 in order to gain signal to noise ratio. Last but not least, 
the spectra were normalized to the mean intensity of the 
C–H stretching region between 2800 and 3050 cm−1.

Table 1  Pathological characteristic of HCC samples

TNM classification for hepatocellular carcinoma: Primary tumor (T): TX—Primary tumor cannot be assessed, T0—No evidence of primary 
tumor, T1—Solitary tumor without vascular invasion, T2—Solitary tumor with vascular invasion or multiple tumors, none >5 cm, T3a—Multi-
ple tumors >5 cm, T3b—Single tumor or multiple tumors of any size involving a major branch of the portal or hepatic vein, T4—Tumor(s) with 
direct invasion of adjacent organs other than gallbladder or with visceral peritoneum; Regional lymph nodes (N): NX—Regional lymph nodes 
cannot be assessed, N0—No regional lymph node metastasis, N1—Regional lymph node metastasis; Distant metastasis (M): M0—No distant 
metastasis, M1—Distant metastasis

X—unknown, 0—no, 1—yes

No Gender Age Grade of differentiation pT pN pM Invasion into lymphatic vessels Microvascular invasion

1 M 78 Moderate 2 0 0 0 X

2 F 75 Moderate 1 0 0 0 0

3 M 22 Moderate 3 1 X 1 0

4 M 63 Moderate 2 0 X 0 1

5 M 77 Moderate 3 0 X 0 1

6 M 56 X 2 0 X 0 0

7 M 70 Moderate 2 0 0 X 1

8 M 70 Well X X X X X

9 M 62 Moderate 2 0 X 0 0

10 F 75 Moderate 1 0 0 0 0

11 M 78 Well 2 0 0 0 X

12 M 65 X 2 X X X 1

13 M 71 Moderate 3 0 X X 1

14 M 86 Moderate 1 0 0 0 0

15 F 51 Moderate 3 0 X 0 0

16 F 81 Poor 3 0 X 0 1

17 M 75 Moderate 3 0 X 0 1

18 M 66 X 3 X X X 1

19 F 81 X 1 X X 0 0

20 M 62 X X 0 X X X

21 M 67 Well 3 0 1 X 1

22 M 62 Poor 4 0 0 X 1

23 F 47 Moderate 3 0 X 0 0
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In order to receive a first overview of the inter-indi-
vidual tissue variability and to detect different chemical 
components in the tissue samples, all spectral image data 
were initially subjected to N-FINDR analysis (Winter 
1999). N-FINDR is an unsupervised so-called endmem-
ber extraction or spectral unmixing algorithm. It is based 
on the assumptions that the spectra are stemming from a 
mixture of a known (pre-specified) number of pure com-
ponent spectra, and that somewhere in the data these pure 
component spectra (“endmembers”) are available. Inter-
nally, N-FINDR uses a representation of the data which 
corresponds to a mixture diagram and the endmembers 
are determined as corners of that mixture diagram. Since 
this algorithm does not perform an exhaustive search, the 
results may be sensitive to the selection of initial endmem-
bers (Plaza and Chang 2005). However, this is typically a 
symptom that the assumptions are not sufficiently well met, 
in particular that the specified number of endmembers may 
have not been appropriate. When replicating the N-FINDR 
analysis 100 times with randomly chosen initial conditions, 
we always obtained the same set of endmembers, indicat-
ing that the obtained solution is stable. In a second step, 
for each spectrum the so-called abundances which corre-
spond to the concentrations in the mixture are calculated. 
Abundances were subjected to a non-negativity constraint 
as concentrations can take positive values only.

N-FINDR has been used to visualize the variability of 
Raman spectra within malignant and non-malignant brain 
tissue regions (Bergner et al. 2012) and within single cells 
(Hedegaard et al. 2011; Stiebing et al. 2014). Our calcu-
lations were carried out using package unmixR (McManus 
et al. 2013) specifying that 6 endmembers should be 
extracted. The endmember spectra were compared with 
Raman spectra of reference substances (proteins, collagen, 
triglycerides, and cholesterol ester) (De Gelder et al. 2007; 
Bonifacio et al. 2010; Bonifacio and Sergo 2010; Krafft 
et al. 2005; Köhler et al. 2009).

As the N-FINDR results indicate a high variability 
of the biochemical composition within each tissue class 
(see “Results” section), we chose a nonlinear algorithm 
for classification. High variability between a comparably 
small number of patients implies that any kind of spec-
troscopic classification can become unstable, that is, the 
model and its predictions change substantially if, e.g., new 
patients become available in the training data. We meet 
this difficulty in two ways: Firstly, our choice of classifi-
cation algorithm is an ensemble model. Ensemble models 
account for this instability by internally varying the train-
ing data base. Briefly, the process is like obtaining the aver-
age of multiple noisy measurements—just that here it is 
the model that is considered “noisy” (Beleites and Salzer 
2008). Ensemble models of vibrational spectroscopic data 
have been successfully used for detection of a variety of 

diseases (Beleites and Salzer 2008; Menze et al. 2007; Teh 
et al. 2009; Kallenbach-Thieltges et al. 2013; Ollesch et al. 
2013). The random forest algorithm applied here was first 
described by Breiman (1996). Briefly, decision trees are 
grown that partition the data according to thresholds for 
individual wavenumber positions. The “forest” consists 
of a number of such decision trees which are grown on a 
randomly chosen (“bootstrapped”) subset of spectra and 
wavenumbers. We used package random Forest (Liaw and 
Wiener 2002) to grow an ensemble of 500 trees, limiting 
the leaf node size to not less than 100 spectra. It should be 
noted that the algorithm is not aware of the hierarchical 
nature of the data, namely that many spectra are available 
of each patient. Therefore, the usual out-of-bag classifica-
tion error estimate (Breiman 1996) cannot be used.

Instead, the performance of the classifier was measured 
with 101× iterated patient-wise sevenfold cross-validation, 
(Kohavi 1995; Beleites et al. 2005) which was parallel-
ized using package snow (Tierney et al. 2013). The iterated 
setup here allows to measure not only the average perfor-
mance but also the stability of the predictions (Beleites and 
Salzer 2008).

Results

Comparative analysis of Raman maps

Three regions of interest, including tumor center, fibrotic 
tissue and tumor margin, of in total 23 tissue samples from 
23 patients were measured with Raman imaging spectros-
copy, pre-processed, analyzed and correlated with HE-
stained microscopy images of the same tissue regions. After 
the Raman measurements all cryosections were examined 
a second time by a pathologist and classified into malig-
nant regions of HCC (n = 12, 243713 spectra), cancer-free 
regions of fibrosis (n = 17, 330876 spectra) and regions of 
tumor margin (n = 8, 44709 spectra). Raman spectroscopy 
allows detecting all substances in the sample at the same 
time. Despite the strong similarities between the spectra of 
many biomolecules, there are significant differences in the 
band positions for different cellular compounds such as 
lipids and proteins. The chemometric data analysis tools can 
be used to evaluate precisely the spectral data and find spec-
tral differences for the classification of malignant tumors.

Figure 1 shows the Raman spectra of the main biologi-
cal components that were found in the tissue sections. The 
protein spectrum reflects the typical Raman features of the 
protein backbone and its residues. The CH-stretching vibra-
tions are located between 2800 and 3100 cm−1, the stretch-
ing of the C=O of the amide groups (usually referred to 
as Amide I band) is centered around 1655 cm1, CH2 defor-
mations are observed at 1450 cm−1. The spectral region 
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between 1200 and 1350 cm−1 is due to bending vibrations 
of the amide bonds (usually referred to as Amide II band) 
and other CH deformations. The small but reproducible 
band at 1003 cm−1 is associated with phenylalanine. The 
spectrum of collagen is very similar to those other proteins, 
but exhibits some additional features due to its unique tri-
ple helical structure as for instance the bands at 940 and 
920 cm−1. The bands of the Raman spectra of triglycerides 
and cholesterol esters can all be assigned to deformations 
of the alkyl chains and the steran skeleton.

For each Raman map, the average spectra were calcu-
lated and grouped according to the tissue type. Higher band 
intensities appeared at 2932, 2898, 1654, 1441, 1299, 1261, 
1123, 1076, 1001, 953, 923, 851, 748, 721, and 645 cm−1 
in regions of HCC (Fig. 2a) and 2944, 1661, 1448, 1341, 
1257, 1001, 937, 856, 747, and 668 cm−1 in regions of 
fibrosis (Fig. 2b).

The spectral changes of the two tissue types can be 
analyzed more precisely by difference spectra, which are 
plotted in Fig. 2c. The positive and negative bands of the 

difference spectra correspond to the main differences in 
cancer and fibrotic tissue, respectively. The identified band 
positions of the intracellular constituents were correlated 
with reference databases of Raman spectra (De Gelder et al. 
2007; Movasaghi et al. 2007). The positive bands relating 
to regions of HCC showed characteristic bands of lipids 
or rather saturated and unsaturated fatty acids at the CH-
stretching region 2800–3200 cm−1 and at the wavelengths 
of 1655, 1439, 1298, 1087, 1063, and 890 cm−1. The nega-
tive bands of the difference spectra relating to regions of 
fibrosis showed the characteristic features of collagen near 
1387, 1343, 1242, 937, 857 cm−1. In addition, in both tis-
sue types (HCC and fibrosis), different protein bands were 
identified (1677, 1017, 851, 754, 668, 645, 637 cm−1).

Unsupervised unmixing of Raman microspectroscopic 
images using N-FINDR

Using the N-FINDR algorithm, four endmembers were 
obtained in all tissue regions that reveal spectral signatures 

Fig. 1  Abundance plots of HCC regions (n = 12) and fibrosis 
regions (n = 17) using the N-FINDR algorithm: proteins (row No 1, 
yellow), collagen (row No 2, green), triglycerides (row No 3, blue) 

and cholesterol ester (row No 4, red). The Raman spectra of the refer-
ence substances were acquired with the same Raman instrument and 
can be seen in the upper-left corner
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of proteins, triglycerides, collagen, and cholesterol esters. 
The color-coded Raman maps of the obtained endmem-
bers in regions of HCC and fibrotic tissue can be seen in 
Fig. 1. HCC tissue mostly included proteins or triglycerides 
as main components and only small amount of collagen or 
cholesterol esters were found. The fibrotic tissue consists of 
collagen, proteins, and small amount of cholesterol ester. 

No triglyceride signatures were found in the Raman maps 
of fibrotic regions. These results correlate well with the 
typical chemical composition of HCC and fibrotic tissue 
(George and Chandrakasan 2000). Although none of these 
identified endmembers showed a significant difference 
in the visualized Raman maps, the results of the analysis 
demonstrates the heterogeneity and complexity of our data 
set. Because the N-FINDR analysis resulted in a high inter-
individual variability of the tissue samples and a heteroge-
neous distribution of typical chemical components of HCC 
and fibrotic tissue was identified, the data analysis was sup-
plemented by a nonlinear classification algorithm.

Random forest classification model and variables 
importance plot

In order to identify relevant signatures and to classify 
malignant and non-malignant liver tissue, a random forest 
classification model was applied to the complete data set 
of regions of HCC and fibrosis. A 101× iterated sevenfold 
cross-validation estimating classifier performance char-
acteristics resulted in an accuracy of 86 % (sensitivity of 
76 % and specificity of 93 %) to predict HCC. The spectral 
bands used by the random forest classifier were ranked by 
importance. In Fig. 3, the variables importance plot of the 
random forests is demonstrated. Based on the importance 
intensities of variables, the ten most discriminating bands 
were determined at 2895, 2856, 1439, 1298, 1080, 1063, 
1023, 937, 920, and 719 cm−1.

Prediction maps

In addition, the calculated cross-validated classification 
model was used to generate color-coded prediction maps 

Fig. 2  Average Raman spectra of (a) HCC (n = 12) and (b) fibrosis 
(n = 17) regions in the spectral range of 3100–600 cm−1. c Differ-
ence spectrum (×5) of HCC versus fibrosis. Identified Raman bands 
are indicated by the corresponding wavenumber (in cm−1). The num-
bers colored in blue can be assigned to lipids and colored in green to 
collagen. Shaded areas of the spectra a and b represents the standard 
deviations

Fig. 3  Variables importance plot. The importance of variables is ranked in this plot according to the height of the bands. Shaded areas represent 
the standard deviations
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of unknown regions of tumor margins. Consequently, each 
Raman map of the region in-between cancer and fibro-
sis was predicted and assembled as a color-coded image 
(Fig. 4). The color-intensity scale illustrates the positive 
decisions of the tree predictors in percentage. The dark blue 
color is consistent with 0 % positive decisions for HCC and 
the color red is consistent with 100 % positive decisions for 
HCC. In total, 8 unknown regions of tumor margin were 
predicted into HCC and fibrosis. By correlating the color 
intensity of the prediction maps with the corresponding 
tissue architecture of the same sample location in the HE-
stained tissue section, the classifier discriminates between 
regions of HCC and fibrosis with high accuracy using a 
cut-off value of 50 %.

Discussion

To develop innovative and effective diagnostic methods and 
therapeutic strategies, it is crucial to first identify the target 
molecules of the underlying disease. By the combination of 
highly specific Raman spectroscopic information and the 
spatial resolution of microscopic imaging, the novel Raman 
imaging technology is a very promising and powerful tool, 
especially in terms of sensitivity and specificity, to detect 
and localize a variety of unknown molecules at the cellular 
level in a label-free tissue manner. Thus, this technique pro-
vides spectral information at molecular level of the under-
lying tissue structure.

Following on a previous study, Tolstik et al. (2013) 
in which we investigated liver cancer cell lines of HCC 
(HepG2) and adenocarcinoma (SK-Hep1) by Raman imag-
ing, we analyzed in this study a number of different regions 
of human HCC and fibrosis in sections of cirrhotic liver tis-
sue with this spectroscopic technique. For this approach, 
acquired Raman imaging data of predefined malignant and 
non-malignant tissue regions were subjected to a compara-
tive analysis and were used to establish a classification 
model based on a random forest algorithm. A cross-vali-
dation technique was performed to estimate the prediction 
accuracy of this model. Furthermore, we applied the devel-
oped algorithm to Raman imaging data of tumor margins 
and the adjacent fibrotic tissue to verify the predictive per-
formance of the resulted classifier.

For diagnostic use, the obtained Raman pattern was 
applied in the above-described random forests model. Esti-
mating classifier performance characteristics, a cross-vali-
dation was performed that resulted in a sensitivity of 76 % 
[95 % c.i. using an effective sample size of 12 patients 
(Dorai-Raj 2014): 49–93 %] and specificity of 93 % (73–
99 %). The prediction maps of the tumor margin regions 
(Fig. 4) visualize the prediction accuracy of the classifica-
tion algorithm in form of a color-coded map. Besides the 

tumor area, even minimal amounts of tumor cells dispersed 
over the tumor margin might be detectable in the tissue sec-
tion using this high-resolution detection method. For some 
other tumor entities, the assessment of tumor margin by 
Raman spectroscopy has already been successfully dem-
onstrated for in vivo (using an optical fiber Raman probe) 
and ex vivo experimental approaches (Hughes et al. 2010; 
Haka et al. 2006). The results of these studies and our find-
ings indicate that vibrational spectroscopy techniques, such 
as Raman spectroscopy, have an enormous potential for the 
future to assess intraoperatively the tumor margin of HCC 
in real time during liver resection and with potential appli-
cation in other malignancies.

In addition to these results, the random forest model pro-
vides the so-called variable importance measure, which is 
shown in Fig. 3. Here, the measure depends on the increase 
in classification errors if the wavenumber channel in ques-
tion is not available (Liaw and Wiener 2002). It is important 
to realize that the vibrational spectrum of one substance 
consists of a number of different bands due to the different 
vibrational modes that are possible within the molecule. In 
principle, all these bands are equivalent to each other. Thus, 
while high importance implies that the band in question and 
therefore also the biochemical substance giving raise to this 
band is important for the distinction of HCC from fibrosis, 
we cannot conclude anything from low importance values: 
Not allowing the use of one specific band (say, a symmet-
ric stretching band), the random forest may just switch over 
to use one of the other vibrations (e.g., the antisymmetric 
stretching or a deformation) of the molecule in question.

The ten most important spectral channels were identi-
fied at the wavenumbers 2856, 1298, 937, 920, 1439, 1080, 
2895, 1023, 1063, and 719 cm−1 (ranked in order of impor-
tance). By comparison of these most important bands with 
the difference spectrum of malignant and non-malignant 
tissue regions, four bands at the wavelength 2856, 1298, 
1439, and 1063 cm−1 were assigned to regions of HCC, 
whereas only one band (937 cm−1) among the ten most 
important bands corresponds to regions of fibrosis (Table 2, 
column 1, 2). In addition to the ten most important vari-
ables, two other Raman bands 1655 and 889 cm−1 of the 
variables importance plot were positive (HCC) and five 
other important variables at 1677, 1387, 1242, 856, and 
668 cm−1 were negative (fibrosis) in the difference spec-
trum. The Raman bands at 2895, 1080, 1023, 920, and 
719 cm−1 of the importance plot could not be attributed 
to a specific tissue region. However, the bands at 1080 and 
719 cm−1 were assigned to the phospholipid phosphatidyl-
choline. The occurrence of the choline band at 719 cm−1 
was not expected because a difference band was not evi-
dent (Fig. 2). The role of phosphatidylcholine in detection 
of fibrosis and HCC will be studied in more detail, after 
more specimens are available.
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Using independent reference databases of Raman 
spectra for biological molecules (De Gelder et al. 2007b; 
Bonifacio et al. 2010; Bonifacio and Sergo 2010; Krafft 

et al. 2005; Köhler et al. 2009) (Table 2, column 3, 4), the 
most discriminating bands detected in HCC tissue regions 
could be correlated with Raman signature of the palmitic 

Fig. 4  HE-stained tissue section and color-coded prediction maps of tumor margin regions. The color-intensity scale illustrates the positive 
decisions of the random forest predictors. X—parallel tissue sections
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acid at 1438, 1296, 1063, and 893 cm−1. In contrast to 
this, the most discriminating band at 937 cm−1 detected in 
fibrotic tissue regions was assigned to collagen. Further-
more, additional bands of the variables importance plot 
that simultaneously appeared in the difference spectrum 
were attributed to unsaturated or saturated fatty acids 
(vaccenic acid near 889 cm−1 and oleic acid near 1080, 
1023 cm−1, or stearic acid near 890 cm−1) in regions of 
HCC and other Raman bands of collagen (1246, 940, 820, 
and 857 cm−1) in regions of fibrosis (Table 2) (De Gelder 
et al. 2007).

The results of this study are in good agreement with 
our previously obtained spectral data and classification 
algorithm of liver cancer cell lines using the Raman imag-
ing technique Tolstik et al. (2013) (Table 2, column 5) 
and are in accordance with the current state of research 
relating to the “de novo lipogenesis” in cancer (Menen-
dez and Lupu 2007; Currie et al. 2013). In a very recently 
published study, Tolstik et al. (2013) we were able to dis-
criminate and classify liver cancer cells, including cell 
lines of HCC (HepG2) and adenocarcinoma of the liver 
(SK-Hep1), and their proliferative stages with Raman 
imaging. The main detected differences in Raman spectra 
were attributed to a higher expression of fatty acids in the 
HCC cell line and in the exponential phase of tumor cell 
growth.

Currently, it is already known that aberrant lipid bio-
synthesis is an important mechanism in pathogenesis of 
liver diseases and HCC. A small-scale study of 10 HCC 
tissue samples published in 2005 described already an 
elevated expression of mRNA for fatty acid synthase 
(FASN), acetyl-CoA carboxylase (ACAC) and ATP citrate 
lyase (ACLY) in HCC tissue (Yahagi et al. 2005; Calvisi 
et al. 2011; Gao et al. 2006). In 2011, a large-scale study 
demonstrated a progressive upregulation from non-malig-
nant liver tissue toward the HCC of all relevant lipogenic 
enzymes, which are involved in the fatty acid synthesis 
(FASN, ACAC, ACLY, ME, and SCD1), the cholesterol 
biosynthesis (SREBP2, HMGCR, MVK, and SQS) and 
their upstream inductors (chREBP, SREBP1, and LXR-β). 
This latter study showed as well that a higher expression 
of these enzymes correlate with an activation of a lipogenic 
pathway (AKT-mTORC1-RPS6) and the clinical aggres-
siveness, characterized by shorter and longer patient sur-
vival (Calvisi et al. 2011).

These results have recently been substantiated by 
another published study that identified lipid biomark-
ers associated with progression of HCC and patient out-
comes using a combination of gene expression and meta-
bolic profile analysis. In this study, the authors identified 
28 metabolites and 169 genes associated with aggressive 
HCC. Lipid metabolites of stearoyl-CoA-desaturase (SCD) 
activity were associated with aberrant palmitate signaling 

in aggressive HCC samples. Expression of gene products 
associated with these metabolites, including SCD, were 
associated independently with survival times and tumor 
recurrence in the test and validation sets. Combined expres-
sion of SCD and α-fetoprotein were associated with out-
comes of patients with early-stage HCC. Levels of palmitic 
acid, the product of SCD activity, were increased in aggres-
sive HCCs; palmitic acid increased migration and invasion 
of cultured HCC cells and colony formation by HCC cells. 
HCC cells that expressed small interfering RNA against 
SCD had decreased cell migration and colony formation in 
culture and reduced tumorigenicity in mice (Budhu et al. 
2013).

Despite of the promising data demonstrated by this 
study, some limitations should be mentioned. First, the 
size of the sample collective of the study is limited. This is 
attributed to the fact that in this study frozen tissue samples 
predefined for HCC were used to avoid potential artifacts 
caused by sample modification by some kind of fixation. 
Clearly, before considering the use of a Raman imaging 
algorithm for molecular classification of HCC patients 
suited for confirmation of diagnosis or risk stratification, 
future large-scale studies will be required to confirm our 
findings and to correlate the results of the spectral data with 
testing results of approved methods. Second, Raman meas-
urements were taken from ex vivo tissue.

Conclusion

In summary, we have demonstrated that the use of Raman 
imaging can provide a classification and prediction model 
for HCC in cirrhotic liver tissue. Furthermore, the most 
discriminating bands detected in HCC tissue were identi-
fied as palmitic acid. Increased levels of saturated palmitic 
acid, as well as its activating enzyme (SCD), were associ-
ated with aggressive HCC, characterized by survival times, 
tumor recurrence and outcomes of patients with early-stage 
HCC plus increased migration and invasion of cultured 
HCC cells (Budhu et al. 2013). Due to the fact that aber-
rant lipid biosynthesis, upregulation of relevant lipogenic 
enzymes and activation of lipogenic pathways with a result-
ing imbalance of lipogenic components are important fac-
tors in pathogenesis and aggressiveness of HCC, effective 
diagnostic methods, including Raman spectroscopy, could 
be helpful to identify these lipid biomarkers. Even a future 
use of Raman spectroscopy for intraoperative risk stratifi-
cation would be conceivable that may cause a change in the 
surgical procedure. Although subject to validation of our 
findings in larger HCC cohorts, the demonstrated results 
affirm that a classifier based on Raman imaging data could 
provide additional molecular information for diagnostics 
and risk stratification in HCC.
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