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Abstract
Purpose We aimed to assess expression of ten iron-regu-
latory genes in hepatocellular carcinoma (HCC) and its
clinical implications.
Methods We used real-time polymerase chain reaction to
measure ten iron-regulatory genes’ mRNA and Perls’ stain
to assess iron stores in 50 HCCs and adjacent nontumor
specimens. We compared the diVerences of gene expres-
sion and iron stores between tumor and nontumor speci-
mens, and analyzed the relationships of gene expression
with hepatic iron stores, patients’ hemoglobin levels and
clinicopathologic parameters.

Results Hepcidin, ceruloplasmin, transferrin, and
transferrin receptor 2 were downregulated, while trans-
ferrin receptor 1 was upregulated in HCC. Hepcidin was
markedly decreased in HCC but still correlated with
hepatic iron stores. Iron-regulatory genes varied in their
relationships of expression with clinicopathologic
parameters.
Conclusions Altered expression of iron-regulatory genes
in HCC may disturb patient’s iron balance. Hepcidin may
play a role in defending the body against HCC.

Keywords Iron · Hepcidin · Hepatocellular carcinoma · 
Anemia · Liver

Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon malignancies in the world. Patient prognosis is gener-
ally dismal, and nutritional problems commonly worsen the
outcome. Most concerns about malnutrition in HCC
patients focus on protein-calories deWciency, but little is
known about the disturbance of iron metabolism.

Liver is the principal organ of iron metabolism. It serves
for iron storage, and secretes transferrin (TF) to deliver iron
in the blood. Recently, the importance of liver ascends by
the discovery of iron hormone it secrets—hepcidin. Hepcidin
binds the iron exporter ferroportin (FPN1) to block iron
release from duodenocytes, macrophages, and hepatocytes,
thus it is able to control serum iron levels (Nemeth et al.
2004). It rises with iron overload (Pigeon et al. 2001),
inXammation and infection, and decreases with hypoxia
and anemia (Nicolas et al. 2002). DeWciency of hepcidin
leads to hemochromatosis (Nicolas et al. 2001; Roetto et al.
2003); overexpression of hepcidin results in severe iron
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refractory anemia, and is implicated in anemia of inXamma-
tion (Roy et al. 2007; Weinstein et al. 2002).

Liver also expresses many other important iron-regula-
tory genes (Anderson and Frazer 2005). High-aYnity trans-
ferrin receptor (TFR1) and low-aYnity transferrin receptor
(TFR2) take up iron-transferrin via endocytosis. Divalent
metal transporter 1 (DMT1) escorts iron from endosome to
cytoplasm. Ferritin locks iron and stores it. When iron is
exported by FPN1, ceruloplasmin (CP), a liver-derived
plasma protein, assists iron to be loaded onto TF. Hemo-
chromatosis (HFE1), hemojuvelin (HFE2), and TFR2, all
lying upstream of hepcidin expression, indirectly control
systemic iron balance.

Studies on expression of iron-regulatory genes in liver
diseases excluding hemochromatosis are limited. It has
been reported that hepcidin mRNA is downregulated in
alcoholic liver injury (Bridle et al. 2006; Ohtake et al.
2007) but not signiWcantly aVected by the presence of hepa-
titis B virus (HBV) or hepatitis C virus (HCV) infection
(Aoki et al. 2005; Fujita et al. 2007) and cirrhosis (Berg-
mann et al. 2008). Hepcidin expression has been found
reduced in rat model HCC (Holmstrom et al. 2006);
recently its reduction in human HCC has also been reported
(Kijima et al. 2008).

Our study aimed to examine the expression of hepcidin
in human HCC, juxtaposing that of the other nine men-
tioned genes, and to assess its clinical signiWcance.

Patients and methods

Patients and tissue specimens

Fifty HCC patients, who received operation at the Depart-
ment of Surgery, Changhua Christian Hospital between
November 2000 and March 2003, were included in this ret-
rospective study (Tseng et al. 2009). The patients were 39
men and 11 women; their mean age was 54.5 years (SD
14.9 years, range 10–75 years). The mean presurgical hemo-
globin level was 12.8 (SD 2.1 g/dl, range 9.1–18.8 g/dl).
Twenty-nine (58%) patients were anemic. HCC specimens
and adjacent nontumor tissue specimens were collected dur-
ing hepatic resection, and were either freshly stored in liquid
nitrogen or formalin-Wxed and paraYn-embedded before
use. Based on the WHO grading system (Hirohashi et al.
2000), the numbers of patients with well, moderately, and
poorly diVerentiated HCC were 6, 29, and 15, respectively.
According to pTNM staging system of the American Joint
Committee on Cancer (American Joint Committee on
Cancer 1997), the numbers of patients in stage I, II, IIIA,
IIIB, and IV were 14, 17, 6, 3, and 10, respectively. Tumor
size was deWned as the greatest diameter of each tumor
(mean § SD 5.4 § 3.3 cm, range 1.6–15.5 cm). This study

was approved by the Institutional Review Board of Changhua
Christian Hospital.

Real-time polymerase chain reaction (PCR)

Total RNA was isolated from specimens by Trizol (Invitro-
gen). Five micrograms of the extracted RNA was reversely
transcribed into cDNA in a Wnal volume of 100 �l. Random
primers, oligo dT, and MMLV-RT (Promega) were used
according to the manufacture’s protocol. Real-time PCR
was performed on a LightCycler (Roche) and LightCycler-
FastStart DNA Master SYBR Green kit (Roche) was used.
The primer sequences of target genes and the reference
gene hypoxanthine phosphoribosyltransferase 1 (HPRT)
are given in Table 1. For ferritin, primers were designed to
its subunit ferritin heavy polypeptide 1 (FTH1). The PCR
cycling proWle was one cycle of 95°C for 10 min, followed
by 45 cycles of 95°C for 5 s, 60°C for 5 s, and 72°C for 9 s.
Relative quantiWcation of mRNA was determined by com-
parative Ct method (Schmittgen and Livak 2008). The
mRNA level of tested gene was expressed as the amount
relative to that of HPRT, and was calculated as 2¡�Ct, while
the tumor/nontumor mRNA ratio was calculated as 2¡��Ct.
We Wrst measured the mRNA levels of each gene in 30 of
the 50 tumor–nontumor pairs. For the genes showing a sta-
tistically signiWcant diVerence between tumor and nontu-
mor specimens, we further examined the remaining 20
pairs.

Perls’ Prussian blue staining

Formalin-Wxed, paraYn-embedded tissue sections (4 �m
thick) were deparaYnized and immersed in hydrochloric
acid and potassium ferrocyanide solution. The presence of
ferric iron was detected by its combination with ferrocya-
nide to form Prussian blue. Nuclear fast red was used as
counterstain. Iron deposits were scored as 0 (absent at
400£ magniWcation), 1 (visible at 400£ magniWcation), 2
(visible at 100£ magniWcation), 3 (visible at 25£ magniW-
cation), or 4 (visible at 10£ magniWcation) (Searle et al.
2002).

Statistical analysis

Paired Student t test was used to compare mRNA levels
between tumor and nontumor specimens, while between
unpaired groups, two-sample t test or ANOVA was used as
appropriate. To do these, values were log-transformed to
base 2 to obtain a normal distribution. Wilcoxon signed
rank test was used to compare iron scores between tumor
and nontumor specimens. Spearman rank correlation test
was used for correlation analysis between variables. All
statistical analyses were performed with SPSS 13.0 for
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Windows and P < 0.05 (two-sided) was considered statisti-
cally signiWcant.

Results

Comparison of expression of ten iron-regulatory genes 
between tumor and nontumor specimens

Hepcidin, CP, TF, and TFR2 were downregulated, while
TFR1 was upregulated in HCC, as compared with those in
nontumor specimens. There was no statistically signiWcant
diVerence in the expression of DMT1, FPN1, FTH1, HFE1,
and HFE2 between tumor and nontumor specimens
(Table 2). Notably, hepcidin expression in HCC was
reduced to 3% of that in nontumor specimens; the magni-
tude of expression change far exceeded that of the other
studied genes. Overall, the numbers of HCCs which had
reduced expression of hepcidin, CP, TF, and TFR2 were 43
(86%), 36 (72%), 36 (72%), and 31(62%), respectively. On
the other hand, 32 (64%) HCCs had an increase of TFR1
expression.

Expression of hepcidin, CP, TF, TFR1, and TFR2 
in nontumor specimens

By analyzing gene expression in nontumor specimens, we
found hepcidin and TFR2 had a higher expression in men
than in women (Table 3). Age, smoking, alcohol drinking,
chronic viral hepatitis, and cirrhosis did not aVect the
expression of hepcidin, CP, TF, TFR1, and TFR2. There
was also no signiWcant diVerence in these genes’ expression
between HBV and HCV infection. Thus, the expression of
these iron-regulatory genes was not aVected by risk factors
for HCC, but hepcidin and TFR2 expression was inXuenced
by gender factor.

Expression of hepcidin, CP, TF, TFR1, and TFR2 in tumor 
specimens

By analyzing gene expression in tumor specimens, we
found CP and TF were less expressed in larger tumor
(¸5 cm); CP was expressed higher in the presence of HCV
infection and cirrhosis (Table 4). However, expression of
hepcidin, TFR1, and TFR2 was not aVected by any of the
parameters including age, gender, chronic hepatitis, cirrho-
sis, tumor size, histologic grade, and tumor stage.

Comparison of iron stores between tumor and nontumor 
specimens

Tumor and nontumor specimens diVered in iron-staining
intensity (Fig. 1a). Most of the nontumor specimens had a
score of 2, whereas most of the tumor specimens had a
score of 0 (Fig. 1b). In total, iron stores were decreased in

Table 1 Primer sequences of ten iron-regulatory genes

HPRT  reference gene

Gene Forward 5� ! 3� Reverse 5� ! 3� Product size (bp)

CP ATGGATGCTCAGCTGTCAGA TAACATGCTTCCCACGGATA 116

DMT1 TCCACCATGACAGGAACCTA GATGGCAATAGAGCGAGTCA 105

FPN1 ACAGCAGTCTACGGGCTGGT CTGTACCACCAGCGAGGTCT 117

FTH1 GGAGAGGGAACATGCTGAGA GCACACTCCATTGCATTCAG 126

Hepcidin GACCAGTGGCTCTGTTTTCC CTCCTTCGCCTCTGGAACAT 111

HFE1 GATCATGAGAGTCGCCGTGT ATGTGATCCCACCCTTTCAG 107

HFE2 CTGCCTACATTGGCACAACT CCTTGATGGAGAAGGAGAGC 66

TF AGCAGAGACCACCGAAGACT AGACAAACCCTCCATCCAAG 80

TFR1 GGTTGCAAATGCTGAAAGC AAGGAAGGGAATCCAGGTGT 147

TFR2 GTGGACCGACACGCACTAC TAGACGTCAGGGTCCTCCAG 123

HPRT GACCAGTCAACAGGGGACAT CCTGACCAAGGAAAGCAAAG 132

Table 2 Tumor/nontumor mRNA ratios of ten iron-regulatory genes

Mean and 95% CI were calculated with log-transformed data and pre-
sented in antilog form as ratio scales

Gene Mean 95% CI P value

Hepcidin 0.03 0.01–0.08 <0.001

CP 0.25 0.10–0.51 <0.001

TF 0.36 0.21–0.62 <0.001

TFR2 0.35 0.19–0.67 0.002

TFR1 2.33 1.38–3.95 0.002

DMT1 1.62 0.50–5.29 0.942

FPN1 0.75 0.44–1.26 0.268

FTH1 0.96 0.41–2.27 0.935

HFE1 0.69 0.52–1.52 0.712

HFE2 1.17 0.52–2.63 0.689
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78% (39 of 50) of HCCs. Wilcoxon signed rank test further
conWrmed a highly signiWcant diVerence in iron stores
between HCC and nontumor specimens (P < 0.001).

Correlation of hepcidin, CP, TF, TFR1, and TFR2 
expression with hepatic iron stores and patients’ 
hemoglobin levels

Hepcidin mRNA levels in both tumor and nontumor speci-
mens correlated with hepatic iron stores (Fig. 2a, b) but not
with hemoglobin levels (Fig. 2c, d), whereas CP, TF,
TFR1, and TFR2 expression in both tumor and nontumor
specimens did not correlate with either hepatic iron stores
or hemoglobin levels.

Discussion

Our study shows that hepcidin, CP, TF, and TFR2 were
downregulated, while TFR1 was upregulated in human
HCC. Reduction of hepcidin expression has been seen in
studies of rat model (Holmstrom et al. 2006) and human
(Kijima et al. 2008) HCC. Both studies did not include CP
and TF, but found TFR2 expression not signiWcantly

altered. The rat model HCC also had an increased expres-
sion of TFR1 (Holmstrom et al. 2006).

TFR1 is ubiquitously expressed in all cell types. It has
been constantly found to be increased in cancer cells, a phe-
nomenon attributed to an increased iron demand by prolif-
erating cancer cells (Kwok and Richardson 2002). It forms
complex with HFE1, but the complex does not appear to
have a direct iron-regulatory activity (Andrews and
Schmidt 2007). On the other hand, TFR2 is expressed spe-
ciWcally in liver; its function might be more important to
mediate hepcidin expression than to take up iron (Anderson
and Frazer 2005). DeWciency of TFR2 as well as deWcien-
cies of hepcidin, CP, and TF, which are liver-derived
plasma proteins, leads to hemochromatosis (Pietrangelo
2006). In addition, patients with aceruloplasminemia usu-
ally present with microcytic anemia (Harris et al. 1995;
Loreal et al. 2002), and patients with atransferrinemia com-
monly suVer from severe anemia (Beutler et al. 2000;
Hayashi et al. 1993). Taken together, the upregulation of
TFR1 may not have systemic impacts, but the downregulation
of hepcidin, CP, TF, and TFR2 may disturb systemic iron
balance and contribute to anemia in HCC patients.

These genes’ expression was not aVected by risk factors
for HCC, as we observed in nontumor specimens. Although

Table 3 Distribution of gene expression in nontumor specimens by demographic variables and risk factors for HCC

Cases with missing data were not included in analysis. Values are relative (to HRPT) mRNA levels log-transformed to base 2 and presented as
mean § standard error
a P < 0.05

n Hepcidin CP TF TFR2 TFR1

Age

<60 25 5.15 § 0.70 6.79 § 0.35 8.36 § 0.35 4.14 § 0.38 –2.78 § 0.41

¸60 25 6.79 § 0.63 6.45 § 0.53 8.09 § 0.47 4.92 § 0.54 –3.17 § 0.81

Gender

Men 39 6.62 § 0.51a 6.64 § 0.36 8.40 § 0.28 4.88 § 0.38a –3.21 § 0.55

Women 11 3.66 § 0.96 6.52 § 0.69 7.61 § 0.87 3.28 § 0.56 –2.15 § 0.94

Smoking

+ 10 5.28 § 0.72 6.35 § 0.39 7.93 § 0.51 4.02 § 0.92 –3.21 § 0.74

– 36 5.63 § 0.53 6.69 § 0.38 8.42 § 0.35 4.51 § 0.33 –3.07 § 0.63

Alcohol

+ 13 6.26 § 0.84 6.30 § 0.38 8.30 § 0.45 5.13 § 0.88 –3.27 § 0.79

– 36 5.90 § 0.60 6.66 § 0.41 8.17 § 0.37 4.35 § 0.33 –2.90 § 0.61

Viral infection

HBV+, HCV+ 3 6.93 § 2.06 7.44 § 0.80 8.54 § 1.17 3.82 § 2.09 –1.47 § 1.81

HBV+, HCV– 24 5.80 § 0.70 6.80 § 0.42 7.80 § 0.43 4.68 § 0.53 –2.44 § 0.64

HBV–, HCV+ 7 3.61 § 1.43 6.08 § 0.86 7.86 § 1.01 3.68 § 1.05 –4.74 § 1.53

HBV–, HCV– 4 6.06 § 1.01 7.61 § 0.66 8.30 § 0.42 4.84 § 0.47 –0.73 § 0.98

Cirrhosis

+ 26 5.92 § 0.65 6.54 § 0.48 8.42 § 0.41 4.26 § 0.36 –3.42 § 0.75

– 19 5.42 § 0.84 6.56 § 0.51 7.87 § 0.49 5.25 § 0.57 –1.97 § 0.62
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hepcidin mRNA was found downregulated upon alcohol
exposure in animal models (Bridle et al. 2006; Ohtake et al.
2007), we did not Wnd it associated with chronic alcohol
consumption. Our Wndings agree with those from studies of
human chronic liver diseases, that hepcidin mRNA was not
altered in chronic hepatitis B and C (Fujita et al. 2007) or
aVected by HCV load (Aoki et al. 2005), and expression of
hepcidin, TF, TFR1, and TFR2 was not altered in liver cir-
rhosis (Bergmann et al. 2008). These results suggest that
the expression of iron-regulatory genes is not altered until
carcinogenesis.

Under normal conditions, hepcidin is regulated by iron
stores (Pigeon et al. 2001). Studies have shown that hepatic
hepcidin mRNA correlated with hepatic iron stores in
hemochromatosis (Bridle et al. 2003), chronic hepatitis C
(Aoki et al. 2005; Fujita et al. 2007), cirrhotic livers
(Bergmann et al. 2008), and nontumor part of the liver with
primary or secondary carcinoma or cirrhosis (Detivaud
et al. 2005), suggesting hepcidin expression is regulated by

iron stores even in the face of chronic injuries (Bridle et al.
2003). Similarly, we and Holmstrom et al. found hepcidin
correlated with iron stores in HCC as well as in nontumor
tissues (Holmstrom et al. 2006), despite that iron was
depleted in HCC, a phenomenon reXecting active prolifera-
tion of neoplastic cells (Deugnier et al. 1993). The results
further show that hepcidin remains to be regulated by iron
stores even in hepatoma cells.

Under normal conditions, hepcidin is also regulated by
anemia (Nicolas et al. 2002). However, the correlation of
liver hepcidin with hemoglobin levels in patients with
chronic hepatitis C is controversial (Aoki et al. 2005; Fujita
et al. 2007). Although a positive correlation was noted
between patients’ hemoglobin levels and hepcidin expres-
sion in nontumor part of livers with cancers or cirrhosis
(Detivaud et al. 2005), we found hepcidin expression in
both tumor and nontumor tissues not correlated with hemo-
globin levels. Considering that the tumor/nontumor mRNA
ratio of hepcidin was far lower than those of the other

Table 4 Distribution of gene expression in HCC specimens by demographic and clinicopathologic variables

Values are relative (to HPRT) mRNA levels log-transformed to base 2 and presented as mean § standard error

WD well diVerentiated, MD moderately diVerentiated, PD poorly diVerentiated
a P < 0.05

n Hepcidin CP TF TRF2 TFR1

Age

<60 25 0.59 § 0.98 4.84 § 0.56 6.88 § 0.41 2.91 § 0.43 –1.39 § 0.46

¸60 25 1.23 § 0.75 4.45 § 0.63 6.66 § 0.49 3.16 § 0.61 –2.12 § 0.48

Gender

Men 39 1.26 § 0.74 4.79 § 0.44 6.80 § 0.34 3.19 § 0.43 –1.84 § 0.38

Women 11 –0.33 § 0.93 4.11 § 1.11 6.66 § 0.81 2.48 § 0.72 –1.46 § 0.67

HBV

+ 32 1.26 § 0.82 4.70 § 0.46 6.86 § 0.41 3.06 § 0.44 –1.48 § 0.40

– 11 0.29 § 1.15 5.84 § 0.68 7.37 § 0.43 3.85 § 0.60 –1.57 § 0.70

HCV

+ 13 1.44 § 1.03 6.32 § 0.43a 7.24 § 0.44 4.13 § 0.44 –2.37 § 0.54

– 28 0.74 § 0.74 4.51 § 0.51 7.06 § 0.42 3.26 § 0.49 –1.25 § 0.45

Cirrhosis

+ 26 1.20 § 0.87 5.62 § 0.32a 7.41 § 0.36 3.62 § 0.43 –1.92 § 0.46

– 19 0.80 § 0.96 4.09 § 0.73 6.30 § 0.53 3.09 § 0.58 –1.34 § 0.49

Tumor size

<5 cm 26 0.29 § 3.95 5.59 § 2.03a 7.40 § 1.59a 3.36 § 2.14 –1.75 § 2.04

¸5 cm 24 1.57 § 4.76 3.61 § 3.49 6.07 § 2.68 2.68 § 3.06 –1.76 § 2.71

Grade

WD 6 2.26 § 1.72 6.98 § 0.53 7.46 § 0.51 5.06 § 0.34 –1.53 § 1.06

MD 29 0.01 § 0.77 4.65 § 0.59 7.02 § 0.39 2.95 § 0.47 –1.89 § 0.45

PD 15 2.10 § 1.19 3.69 § 0.66 5.99 § 0.69 2.40 § 0.74 –1.57 § 0.59

Stage

I, II 31 0.40 § 0.72 4.94 § 0.52 6.80 § 0.40 3.58 § 0.46 –2.07 § 0.45

III, IV 19 1.73 § 1.11 4.16 § 0.70 6.71 § 0.54 2.13 § 0.56 –1.23 § 0.47
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genes, or that of hepcidin in the rat HCC model, which used
livers of rats without cancer as control (Holmstrom et al.
2006), we suspect that hepcidin might be increased in non-
tumor tissues we studied. Increase of hepcidin may result
from an immune response to withhold iron against patho-
gens or cancer cells; in the extreme it may lead to anemia of
inXammation (Andrews 2004; Roy et al. 2007). If so, both
reduced expression of CP and TF in HCC, and increased
expression of hepcidin in nontumor tissues, may contribute
to anemia in HCC patients.

Anemia in HCC patients is commonly confounded by
anemia resulting from chronic liver diseases. Fifty-eight
percent of our patients were anemic. To what extent the
anemia can be attributed to altered expression of iron-regu-
latory genes in HCC is unclear.

Some Wndings were unexpected, such as gender diVer-
ences in hepcidin and TFR2 expression. Higher hepcidin
expression in men than in women was noted in one (Fujita
et al. 2007) but not other (Aoki et al. 2005; Detivaud et al.
2005) studies; however, higher hepcidin expression in

female than in male mice was also reported (Courselaud
et al. 2004). Whether hepcidin and TFR2, a mediator of
hepcidin expression, are regulated by species-related gen-
der-linked factors or the gender diVerences in their expres-
sion were found by chance needs more validations.

Our results show expression of the Wve dysregulated
genes in HCC was not correlated with histologic grade,
agreeing with previous reports that hepcidin expression was
not associated with tumor diVerentiation (Holmstrom et al.
2006; Kijima et al. 2008). The results suggest that morpho-
logic grading may not be sensible enough to reXect expres-
sion patterns of some liver-speciWc genes; therefore,
hepcidin, CP, TF, and TFR2 cannot be used as markers for
HCC diVerentiation. The reason why expression of only CP
and TF was negatively associated with tumor size needs
further exploration.

There are limitations of our study. First, gene expression
was not assessed at the protein level, because we did not
have reliable antibody against hepcidin. Second, 90% of the
tumor specimens had an iron score of zero; lack of variability

Fig. 1 Iron staining in HCCs 
and adjacent nontumor speci-
mens. a A representative case 
showing iron abundant in nontu-
mor (left) but scarce in matched 
tumor specimen (right) (£400). 
b Frequency distribution of iron 
scores in tumor and nontumor 
specimens
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in score ranking might decrease the power of correlation
analysis. Third, the retrospective study design prevented us
from assessing parameters such as serum iron indices or
hepcidin levels to better understand patient clinical status
regarding iron metabolism.

In conclusion, we have shown that the expression of
iron-regulatory genes is not altered by chronic liver injuries
until hepatocarcinogenesis, and the altered expression of
iron-regulatory genes in HCC may disturb patient’s iron
balance. Our study provides insight into patient’s iron dis-
turbance at the basic level, and raises speculations on the
possibility that hepcidin plays a role in defending the body
against HCC.
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