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Abstract
Giardia duodenalis, Cryptosporidium spp., and Blastocystis sp. are common intestinal eukaryotic parasites affecting children in 
developed and resource-limited countries. Lack of information on the epidemiology and long-term stability in asymptomatic children 
complicates interpretation of transmission and pathogenesis. To assess the occurrence, genetic diversity, and temporal dynamics of 
intestinal eukaryotic parasites in young children, 679 stool samples from 125 toddlers attending six public day-care centres in Central 
Spain were collected bimonthly within a 1-year period. Detection and identification of species/genotypes were based on PCR and 
Sanger sequencing methods. Four eukaryotic species were identified: G. duodenalis (2.5‒31.6%), Cryptosporidium spp. (0.0‒2.4%), 
Blastocystis sp. (2.5‒6.4%), and Entamoeba dispar (0.0‒0.9%). Entamoeba histolytica and Enterocytozoon bieneusi were undetected. 
Sequence analyses identified assemblage A (63.6%) and B (36.4%) within G. duodenalis (n = 11), C. hominis (40%), C. parvum 
(40%), and C. wrairi (20%) within Cryptosporidium spp. (n = 5), and ST1 (3.8%), ST2 (46.2%), ST3 (15.4%), and ST4 (34.6%) 
within Blastocystis sp. (n = 26). Giardia duodenalis sub-assemblage AII/AIII was detected in a toddler for 10 consecutive months. 
Stable carriage of Blastocystis ST2 allele 9, ST3 allele 34, and ST4 allele 42 was demonstrated in five toddlers for up to 1 year.
   Conclusions: Giardia duodenalis and Blastocystis sp. were common in toddlers attending day-care centres in Central Spain. 
Long-term infection/colonization periods by the same genetic variant were observed for G. duodenalis (up to 10 months) and Blas- 
tocystis sp. (up to 12 months).

What is Known:
• Asymptomatic carriage of G. duodenalis and Blastocystis sp. is frequent in toddlers.
• The epidemiology and long-term stability of these eukaryotes in asymptomatic young children is poorly understood.
What is New:
• Long-term colonization/infection periods by the same genetic variant were described for Blastocystis sp. (up to 12 months) and G. duodenalis 

(up to 10 months).

Keywords Cryptosporidium · Giardia · Blastocystis · Toddlers · Chronicity · Genetic diversity · Genotyping

Abbreviations
bg  β-Giardin
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SD  Standard deviation
SNP  Single nucleotide polymorphism
ssu rRNA  Small subunit ribosomal RNA

Introduction

The intestinal eukaryotic parasites Blastocystis sp., Giardia 
duodenalis, and Cryptosporidium spp. are consistently 
detected (typical range: 1–18%) in paediatric patients [1–4]. 
In this context, infections with G. duodenalis and Crypto-
sporidium spp. in children are usually associated with 
acute self-limiting diarrhoea or chronic diarrhoea with or 
without malabsorption syndrome. Other common clinical 
manifestations are nausea, vomiting, abdominal pain, flatu-
lence, and failure to gain weight [5, 6]. Long-term sequelae 
(particularly associated to Giardia infections) may include 
blood loss, anaemia, stunting, or impaired neurocognitive 
development [7–9]. Of note, subclinical infections by Blas-
tocystis sp., G. duodenalis, and Cryptosporidium spp. are 
also common during childhood [10]. Sporadic outbreaks 
of giardiosis/cryptosporidiosis have been reported among 
children attending day-care centres [1, 11], after ingestion 
of contaminated water or food [12], in close contact with 
infected animals [13, 14], or using recreational waters [15, 
16]. Although the pathogenic significance of Blastocystis 
sp. is still controversial, it has been primarily linked with 
chronic abdominal pain in children and teenagers [17]. Two 
outbreaks of gastrointestinal illness associated to Blastocys-
tis infection have been reported to date [18, 19].

Progression from infection to disease is a multifactorial  
process involving variables associated to the pathogen (species/ 
genotype, virulence, burden), the host (age, immune and 
nutritional status) and the interface between them (microbiota  
composition). Microeukaryotic enteroparasites may influence  
microbiota homeostasis and overall health. Whereas Blastocystis 
sp. has been primarily identified as a common component of the 
healthy gut microbiome [20], disrupted microbiota (disruption of 
the microbial biofilm structure, altered virulence in commensal 
species, altered species abundance/diversity) by G. duodenalis 
infection plays a role in Giardia pathogenesis [21]. In this context,  
depletion of the intestinal microbiota by antibiotic treatment may 
led to a consequent impact on the Giardia infection dynamics, 
e.g. by lowering intestinal motility and decreasing clearance  
of the parasite from the intestinal tract [22]. Cryptosporidium 
infections have also been linked with remodelling of the gut 
microbiota in murine and non-human primate hosts [23, 24].

Chronic infections by Blastocystis sp., G. duodenalis, 
and Cryptosporidium spp. are well documented in children 
and adult patients [25–27]. Molecular variability has been 
identified as a factor potentially involved in the establish-
ment of chronic Giardia and Blastocystis infections [28, 

29], whereas differentiation between long-term infection 
and re-infection is important for tailored treatment and 
management of patients infected with intestinal eukaryotic 
parasites [30].

There is little information on the genetic diversity and 
temporal dynamics of intestinal eukaryotic species in asymp-
tomatic young children. Available prospective longitudinal 
studies assessing stability and acquisition/loss rates have only 
been conducted for Blastocystis sp. in healthy adults from Ire-
land [31] and healthy Dutch returning travellers [32], for G. 
duodenalis in infants and toddlers from Bangladesh [33] and 
Malawi [9], and for Cryptosporidium spp. in Malawian chil-
dren hospitalized with diarrhoea [34]. To contribute bridging 
this gap of knowledge, this study aimed to investigate the 
genetic diversity, long-term presence, and stability of poten-
tial diarrhoea-causing intestinal protist eukaryotic parasites 
in toddlers attending day-care centres in Central Spain.

Materials and methods

Design

This is a prospective longitudinal, molecular-based study. A 
total of 125 toddlers (4‒42 months of age; male/female ratio: 
0.87) attending six public day-care centres in Majadahonda 
and Las Rozas (Central Spain) were investigated through a 
12-month period (September 2020 to August 2021). Sam-
pling was conducted sequentially every 2 months. All tod-
dlers attending the surveyed day-care centres were invited 
to participate without any exclusion criteria. The median 
participation rate was 17.9% (range: 8.1–40.3%) of toddlers.

Sampling

Informative meetings were held for interested families, which 
were provided with sampling kits (sterile polystyrene plastic  
flask with spatula and a unique identification number) to  
obtain individual stool samples. Signed informed consents  
were obtained from parents/legal guardians, who assisted  
in collecting the stool samples from toddlers and brought  
them to day-care centres. Samples were transported to the 
Spanish National Centre for Microbiology by members of 
the research team at scheduled times (usually 2–3 days after 
kits were provided) and stored at 4 °C (1–5 days) or −20 °C 
(> 5 days) without preservatives until further diagnostic and 
molecular analyses. A total of 124 individual stool samples 
were collected in the first sampling period, 121 in the second, 
112 in the third, 112 in the fourth, 110 in the fifth, and 98  
in the sixth.
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Questionnaire survey

A standardized questionnaire (Online Resource Table 1) was 
provided as part of the sampling kit to be completed by the 
toddler’s parents/legal guardians. Questions included demo-
graphic characteristics (age, sex, country of birth, number of 
siblings), behavioural habits such as hand and fruit/vegetable 
washing, and occurrence of diarrhoea episodes and other 
clinical manifestations (abdominal pain, vomiting, nausea, 
reduced appetite) in the participant, family members, school 
mates, and/or pets. Additional questions addressed potential 
risk factors such as types of drinking water, swimming in 
pools or natural waters, contact with pets, and recent travel 
abroad. Completed questionnaires and signed informed 
consents were returned together with the stool samples as 
explained above.

DNA extraction

Genomic DNA was extracted from 200 mg of faecal material 
using the QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, 
Germany) according to the manufacturer’s instructions. 
Extracted and purified DNA samples in molecular grade 
water (200 µL) were kept at ‒20 °C until further analysis.

Molecular detection and characterization of Giardia 
duodenalis

Detection of G. duodenalis DNA was achieved using a qPCR 
method targeting a 62-bp fragment of the ssu rRNA gene [35]. 
Amplification reactions (25 μL) consisted of 3 μL of template 
DNA, 0.5 μM of the primer set Gd-80F/Gd-127R, 10 pmol 
of probe, and 1X  TaqMan® Gene Expression Master Mix 
(Applied Biosystems, CA, USA).

A multilocus sequence typing scheme based on the ampli-
fication of partial sequences of the gdh, bg, and tpi genes of 
G. duodenalis was used for genotyping purposes. A semi-
nested PCR targeting a 432-bp fragment of the gdh gene was 
performed in 25 μL reaction mixtures including 5 μL of tem-
plate DNA and outer (GDHeF/GDHiR) and inner (GDHiF/
GDHiR) primer sets [36]. A nested PCR was used to amplify 
a 511-bp fragment of the bg gene in 25 μL reaction mixtures 
including 3 μL of template DNA and outer (G7/G759) and 
inner (G99/G609) primer pairs [37]. A nested PCR was also 
used to amplify a 530-bp fragment of the tpi gene. Reac-
tion mixtures (50 μL) included 2‒2.5 μL of template DNA 
and outer (AL3543/AL3546) and inner (AL3544/AL3545) 
primer pairs [38].

Molecular detection and characterization 
of Cryptosporidium species

Cryptosporidium spp. was detected using a nested PCR 
amplifying a 587-bp fragment of the ssu rRNA gene [39]. 
Reaction mixtures (50 μL) for both reactions included 3 μL of 
template DNA and outer (CR-P1/CR-P2) and inner (CR-P3/
CPB-DIAGR) primer sets. Sub-typing of the isolates identi-
fied as C. hominis/C. parvum was attempted at the gp60 gene 
using the AL-3531/AL-3535 and AL-3532/AL-3534 primer 
pairs [40].

Molecular detection of Blastocystis species

Detection of Blastocystis sp. was accomplished by a direct 
PCR targeting a 600-bp fragment of the ssu rRNA gene [41]. 
Reaction mixtures (25 μL) included 5 μL of template DNA 
and the pan-Blastocystis, barcode primers RD5 and BhRDr.

Molecular detection of Enterocytozoon bieneusi

Enterocytozoon bieneusi was detected using a nested PCR 
amplifying a 390-bp fragment including the entire ITS and 
portions of the flanking large and small subunit of the rRNA 
gene [42]. Reaction mixtures (50 μL) included 1 μL of tem-
plate DNA and outer (EBITS3/EBITS4) and inner (EBITS1/
EBITS2.4) primer sets.

Molecular detection of Entamoeba histolytica 
and Entamoeba dispar

Differential diagnosis between pathogenic E. histolytica and 
non-pathogenic E. dispar was achieved by qPCR targeting 
a 172-bp fragment of the ssu rRNA gene [43, 44]. Reac-
tion mixtures (25 μL) included 3 μL of template DNA and 
the E. histolytica/E. dispar-specific primers Ehd-239F and 
Ehd-88R.

General procedures for the molecular detection 
and sequencing of enteric protist parasites

All the direct, semi-nested, and nested PCR protocols described 
above were conducted on a 2720 Thermal Cycler (Applied Bio-
systems). qPCR protocols were performed on a Corbett Rotor 
Gene™ 6000 real-time PCR system (QIAGEN, Hilden, Ger-
many). Reaction mixes always included 2.5 units of MyTAQ™ 
DNA polymerase (Bioline GmbH, Luckenwalde, Germany) 
and 5–10 µL MyTAQ™ Reaction Buffer containing 5 mM 
dNTPs and 15 mM  MgCl2. Laboratory-confirmed positive 
and negative DNA samples of human and animal origin for 
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each parasitic species investigated were routinely used as con-
trols and included in each round of PCR. PCR amplicons were 
visualized on 1.5% D5 agarose gels (Conda, Madrid, Spain) 
stained with Pronasafe (Conda) nucleic acid staining solutions. 
A 100 bp DNA ladder (Boehringer Mannheim GmbH, Baden-
Wurttemberg, Germany) was used for the sizing of obtained 
amplicons. Primer and probe sequences used in the qPCR and 
conventional PCR protocols described above are shown in 
Online Resource Table 2. Positive-PCR products were directly 
sequenced in both directions using internal primer sets by cap-
illary electrophoresis using the BigDye Terminator chemistry 
(Applied Biosystems) on an on ABI 3730xl automated DNA 
sequencer.

Molecular detection of other enteric bacterial 
and viral pathogens

The presence of enteric bacterial (enteroaggregative Escher-
ichia coli, verocytoxigenic E. coli, enteropathogenic E. coli, 
enterotoxigenic E. coli, enteroinvasive E. coli/Shigella, 
Aeromonas, Campylobacter, Clostridioides difficile, Sal-
monella, Vibrio, Yersinia) and viral (astrovirus, norovirus, 
rotavirus) pathogens was also investigated by PCR methods. 
Detailed information on these agents will be provided in an 
independent study.

Sequence analyses

Raw sequencing data were viewed using the Chromas Lite ver-
sion 2.1 sequence analysis program (Technelysium Pty Ltd., 
South Brisbane, Australia). Generated DNA consensus sequences 
were aligned to appropriate reference sequences retrieved from 
the NCBI GenBank database using the MEGA version 6 soft-
ware [45]. Blastocystis sequences were submitted at the Blasto-
cystis 18S database (http:// pubml st. org/ blast ocyst is/) for sub-type 
confirmation and allele identification. Sequences generated in the 
present study have been deposited in GenBank under accession 
numbers OL632299–OL632301 and OL632303–OL632311 (G. 
duodenalis), OL638491–OL638494 (Cryptosporidium spp.), and 
OL623670–OL623673 (Blastocystis sp.).

Statistical analyses

Factors associated with a positive G. duodenalis result were 
examined using two models. For the fixed effects model, a 
main dataset was constructed with data from one of the six 
sampling periods—if the observation ever tested positive 
for G. duodenalis, we used data from the sampling point 
of the first positive G. duodenalis result; otherwise, we 
used data from the first sampling point in order. Potential 
risk associations with P values less than 0.05 from the uni-
variable analysis were selected in the multivariable logistic 
regression model, using Akaike’s information criterion and 

likelihood ratio tests to determine selection and evaluate 
the final model. Additionally, to account for periods where 
individuals were exposed to other Giardia-positive indi-
viduals in their day-care centre (i.e. high-risk periods), we 
conducted a random effects model by using a sample level 
dataset, excluding individuals with more than one Giardia-
positive result during the study period. Analyses were per-
formed using Stata version 17 (STATA Corp., College Sta-
tion, TX, USA).

Results

A total of 677 stool samples from 125 toddlers were col-
lected at bimonthly intervals within a 1-year period and sub-
sequently analysed for the presence and molecular diversity 
of intestinal eukaryotic species. The full dataset showing 
the molecular (PCR and sequencing) data generated in the 
present study by individual toddler, participating day-care 
centre, and sampling period can be found in Online Resource 
Table 3. Overall participating rates decreased steadily along 
the course of the study from 96.8% in sampling period 2 to 
78.4% in sampling period 6.

Overall, 52.0% (65/125) of toddlers were infected by G. 
duodenalis in at least one sample period, followed by Blasto-
cystis sp. (5.6%, 7/125), Cryptosporidium spp. (4.0%, 5/125), 
and E. dispar (0.8%, 1/125). According to sampling period, 
frequencies of detection varied from 2.5‒31.6% (MED: 
14.0%; SD: 9.0%) for G. duodenalis, 0.0‒2.4% (MED: 0.4%; 
SD: 0.9%) for Cryptosporidium spp., 2.5‒6.4% (MED: 3.6%; 
SD: 1.2%) for Blastocystis sp., and 0.0‒0.9% (MED: 0.4%; 
SD: 0.4%) for E. dispar. Entamoeba histolytica and E. bieneusi 
were undetected. Both G. duodenalis and Blastocystis sp. were 
identified in all six sampling periods, whereas Cryptosporid-
ium spp. and E. dispar were detected only in three of the six 
sampling periods (Table 1).

Giardia duodenalis was identified in 65 toddlers. Most of 
them (66.2%, 43/65) were detected at single sampling peri-
ods; two toddlers (3.1%, 2/65) remained infected in five of 
the six sampling periods (Table 2). The parasite was reported 
in all six participating day-care centres at three or more sam-
pling periods. Frequencies of detection varied greatly (range: 
0.0‒50.0%) both at the participating institution and sam-
pling period levels (Fig. 1, panel a). Five toddlers (one girl, 
four boys) ≤ 2 years old were sporadically infected (≤ 1%) 
by Cryptosporidium spp. at single sampling periods. None 
of them presented with diarrhoea. The parasite was iden-
tified in four day-care centres during sampling periods 1, 
2, and 4. Entamoeba dispar was detected in a single tod-
dler during the first 6 months of study (sampling periods 1, 
2, and 3). Blastocystis sp. was observed in seven toddlers 
(three girls, four boys) of all ages attending four day-care 
centres in at least five of the six sampling periods. Three 

http://pubmlst.org/blastocystis/
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toddlers (42.9%, 3/7) carried Blastocystis during the whole 
study period. Frequencies of detection (range: 0.0‒25.0%) 
remained relatively stable through the sequential sampling 
in the four institutions where Blastocystis was circulating 
(Fig. 1, panel b). Most (92.6%, 25/26) of the stool samples 
with a Blastocystis-positive result were non-diarrhoeal.

Successful genotyping of G. duodenalis isolates was 
achieved in 12.4% (12/97) of samples with a positive result 
by qPCR. Most (82%, 9/11) of the isolates genotyped had 
qPCR Ct values ≤ 30. Molecular analyses revealed the pres-
ence of sub-assemblage AII (45.4%, 5/11), ambiguous AII/
AIII sequences (18.2%, 2/11), sub-assemblage BIV (27.3%, 
3/11), and an additional assemblage B sequence (9.1%, 1/11) 
of unknown sub-assemblage (Table 3). Three Cryptosporid-
ium species were identified, namely C. hominis (40%, 2/5), 
C. parvum (40%, 2/5), and C. wrairi (20%, 1/5) (Table 3). 
All five Cryptosporidium spp. isolates failed to be amplified 
at the gp60 loci, so their genotype family remains unknown. 
A thorough description of the C. wrairi case has been pub-
lished elsewhere [46]. The Blastocystis subtypes identified 
were assigned to ST1 (3.8%, 1/26), ST2 (46.2%, 12/26), ST3 
(15.4%, 4/26), and ST4 (34.6%, 9/26) (Table 3). The detailed 
molecular features (subtyping data, reference sequences, SNPs, 

GenBank accession numbers) of the representative G. duo-
denalis, Cryptosporidium spp., and Blastocystis sp. isolates 
characterised here are provided in Online Resource Table 4.

Based on the molecular data described above, the tem-
poral stability of G. duodenalis and Blastocystis sp. in our 
paediatric cohort was further investigated (Fig. 2). Giardia 
duodenalis sub-assemblage AII/AIII was detected in a tod-
dler attending day-care centre 2 for 10 consecutive months. 
The infection was lost or misdiagnosed at sampling period 
6. Blastocystis ST2 allele 9 was identified in two toddlers 
attending day-care centres 2 and 4, respectively, along the 
whole study period. Similarly, Blastocystis ST4 allele 42 
carriage was a stable feature in a toddler attending day- 
care centre 6. This very same genetic variant was acquired 
by another toddler of the same institution at sampling 
period 5 and maintained at sampling period 6. Blastocystis  
ST3 allele 34 was identified in a toddler attending day-
care centre 3 for 10 consecutive months, being undetected 
at sampling periods 2 and 6, when infection was lost or 
misdiagnosed. Finally, all three E. dispar-positive samples 
corresponded to a toddler attending day-care centre 3 that 
carried the protozoan for six consecutive months and lost 
the infection at sampling period 4.

Table 1  Frequency of detection of intestinal eukaryotic species according to sampling period in toddlers attending day-care centres, Majada-
honda (Spain)

Sampling period

1
(n = 124)

2
(n = 121)

3
(n = 112)

4
(n = 112)

5
(n = 110)

6
(n = 98)

Species Pos % Pos % Pos % Pos % Pos % Pos %
G. duodenalis 11 8.9 3 2.5 20 17.9 16 14.3 15 13.6 31 31.6
Cryptosporidium spp. 3 2.4 1 0.8 0 0.0 1 0.9 0 0.0 0 0.0
Blastocystis sp. 4 3.2 3 2.5 4 3.6 4 3.6 7 6.4 4 4.1
E. bieneusi 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
E. histolytica 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
E. dispar 1 0.8 1 0.8 1 0.9 0 0.0 0 0.0 0 0.0

Table 2  Toddlers testing 
positive for G. duodenalis, 
Cryptosporidium spp., and 
Blastocystis sp. in one or more 
sampling period, Majadahonda 
(Spain)

Giardia duodenalis Cryptosporidium spp. Blastocystis sp.

Positive toddlers in one or more 
sampling periods

n % n % n %

1 sampling period 43 66.2 5 100 2 28.6
2 sampling periods 17 26.2 0 0.0 1 14.3
3 sampling periods 3 4.6 0 0.0 0 0.0
4 sampling periods 0 0.0 0 0.0 1 14.3
5 sampling periods 2 3.1 0 0.0 0 0.0
6 sampling periods 0 0.0 0 0.0 3 42.9
Total toddlers 65 100 5 100 7 100
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Risk association analysis

The full dataset used for risk association analyses can be 
found in Online Resource Table 5. Out of the four micro-
eukaryote species identified in the paediatric population 
under investigation, we identified variables associated with 
an increased risk of infection only for G. duodenalis.

Comparing G. duodenalis negative/ever positive

Overall, 53.8% of individuals who tested positive for G. 
duodenalis were male, majority were 2 years old, with none 
less than 1 year old (Online Resource Table 6). The most fre-
quent symptom reported was diarrhoea (19.0%). For individ-
uals positive for G. duodenalis, 3.1% were co-infected with 
enteropathogenic E. coli (EPEC) and Clostridium difficile, 

10.8% EPEC only, 14.2% C. difficile only, and 4.6% with 
Blastocystis sp. at their first positive. One individual had 
recurrent enterotoxigenic E. coli (ETEC) and G. duodenalis 
(at 2 sampling periods).

In univariable analysis, older age, swimming, and num-
ber of samples were positively associated with G. duode-
nalis (Online Resource Table 6). The multivariable model 
retained age and swimming and showed that swimming 
was positively associated with higher odds of a G. duode-
nalis positive result [adjusted odds ratio (aOR) 5.67, 95% 
confidence interval (95% CI) 1.18–27.27]. However, in a 
random effects model, having another toddler with G. duo-
denalis in the day-care centre gave an aOR of 16.53 (95% CI 
7.61–35.90). Swimming and age was no longer statistically 
significant, and there were no other infections associated 
with a Giardia-positive result (Online Resource Table 7).

Table 3  Genetic diversity 
of Giardia duodenalis, 
Cryptosporidium spp., and 
Blastocystis sp. identified 
in children attending public 
day-care centres, Majadahonda 
(Spain)

a Please see reference [46]

Species Species/genotype Sub-genotype No. isolates Relative frequency (%)

Giardia duodenalis A AII 5 45.4
AII/AIII 2 18.2

B BIV 3 27.3
Unknown 1 9.1

Cryptosporidium C. hominis Unknown 2 40
C. parvum Unknown 2 40
C. wrairia Unknown 1 20

Blastocystis sp. ST1 Allele 4 1 3.8
ST2 Allele 9 12 46.2
ST3 Allele 34 4 15.4
ST4 Allele 42 9 34.6

Fig. 1  Frequency of detection of intestinal eukaryotic species in children by day-care centre and sampling period, Majadahonda and Las Rozas 
(Spain). a Giardia duodenalis; b Blastocystis sp
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Individuals with serial results

When considering individuals with repeated samples (123 
individuals had more than one sample), 47.2% (58/123) indi-
viduals were always negative, 35.0% (43/123) once Giardia 
positive, 0.8% (1/123) Giardia positive at all sampling peri-
ods they were tested, and 13.0% (16/123) discontinuously 
positive. 4.9% (6/123) remained positive after first positive. 
As such, among observations ever positive for G. duode-
nalis, 9.2% (6/65) remained positive after first positive. 
Of those continuously positive (n = 6), five did not swim, 
only four reported drinking tap water and two also had 
EPEC. Three individuals who had more than one positive 
reported diarrhoea at first positive. One individual went on 
to report diarrhoea, abdominal pain, nausea, and vomiting 
and reduced appetite on subsequent positive, which was the 
next sampling period, which may be explained by their co-
infection with norovirus.

Discussion

Microbial eukaryotes are common inhabitants of the human 
gut and include parasitic (pathogenic), not harmful (com-
mensal), or beneficial (mutualist) taxa [47]. However, this 
distinction is not categorical. For instance, Cryptosporidium 
spp., G. duodenalis, and Blastocystis sp. can cause a wide 
range of clinical manifestations ranging from asymptomatic 
to chronic diarrhoea in school-age children in industrialized 
settings [48, 49]. Current evidence suggests that the outcome 
of infections by these microorganisms is the consequence 
of complex interactions between them, the gut bacterial and 

archaeal microbiota and the host immunity [50]. Indeed, 
some authors have suggested that Blastocystis sp. and G. 
duodenalis should be better regarded as commensals [51–53] 
or even pathobionts (this is, microorganisms that can cause 
or promote disease when specific genetic or environmental 
conditions are altered in the host) [54].

Molecular tools can assist on the differentiation between 
long-term infection (by the same strain) and re-infection (by 
a different strain) events. Few surveys (most of them were 
based on microscopy examination or enzyme immunoas-
says) have attempted to investigate this issue by analysing 
longitudinal data [55, 56]. Long-term temporal stability has 
been particularly studied for Blastocystis sp. For instance, 
four healthy adults from Ireland were consistently positive 
for the same Blastocystis subtype (determined at allele level) 
from 6 to 10 years [31]. In contrast, Blastocystis carriage has 
been deemed relatively short-lived in Dutch returning travel-
lers [32] and treated children presenting with gastrointestinal 
manifestations in Turkey [55] and Switzerland [56]. In the 
present survey, Blastocystis carriage in toddlers (≤ 3 years) 
was consistently detected at low (2.5‒6.4%) rates through 
the whole study period. These figures are considerably lower 
than those (10‒13%) reported previously in older asympto-
matic schoolchildren (4‒14 years) from the same geographic 
area [49, 57]. This finding supports the hypothesis that the 
presence of Blastocystis is positively associated with age, 
with colonization being more common in older children and 
adults [57, 58]. Remarkably, three toddlers carried the same 
Blastocystis STs and allelic variants for a span of at least 
12 months, whereas acquisition or loss of the protist was 
detected in two additional toddlers. Taken together, these 
data indicate that long-term host colonization is a stable 

Fig. 2  Temporal stability of Giardia duodenalis (light green figures) and Blastocystis sp. (light blue figures) according to sampling period in 
children attending day-care centres, Majadahonda and Las Rozas (Spain)
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Blastocystis trait, also explaining the age-associated distri-
bution of the protist mentioned above.

Available information on the natural history of G. duo-
denalis and Cryptosporidium spp. infections comes pri-
marily from longitudinal birth cohort studies conducted 
in low-income settings. Hence, 55% of urban Bangladeshi 
infants had at least three Giardia-positive stools over the  
first 2 years of age [33]. Rates up to 77% have been reported 
for Cryptosporidium infections in slum-dwelling Bangla-
deshi [59] and Indian [60] children. A Giardia infection rate 
of 33%, rarely associated with illness, has been reported in 
toddlers attending a day-care centre in the USA [61]. In the 
present study, Giardia duodenalis was the most common 
enteric eukaryote identified (0‒7%), whereas Cryptosporid-
ium infections were only sporadically found (≤ 1%). These 
data agree with those (Giardia: 14‒18%; Cryptosporidium: 
1‒4%) previously reported in pre- and schoolchildren from 
the same province [49, 57, 62]. Regarding temporal stability, 
most (67%) Giardia and all Cryptosporidium infections were 
identified at single sampling periods only, strongly suggest-
ing that asymptomatic infections by these pathogens were 
resolved in relatively short periods. Despite this clear trend, 
it should be highlighted that two toddlers harboured sub-
clinical G. duodenalis infections by up to 10 months. One of 
them harboured the same genetic variant during that period, 
indicating a probable long-term carriage and not re-infec-
tion. We have also shown in this study that G. duodenalis 
infection was related to swimming and age, but having other 
Giardia infected toddlers within a day-care centre was the 
main driver in increasing the risk of G. duodenalis infection.

Entamoeba histolytica and E. bieneusi were undetected in 
the surveyed toddler population. This is the first molecular-
based study investigating the presence of E. histolytica in 
Spanish young children, whereas the absence of E. bieneusi 
confirms the results obtained in previous surveys targeting 
paediatric populations in the Madrid area [49, 57].

Genotyping analysis revealed the predominance of assem-
blage A (58%) over assemblage B (42%) in G. duodenalis 
isolates. This is in contrast with previous molecular data in 
asymptomatic children from the same area, where assem-
blage B (83‒100%) was more prevalent than assemblage A 
(0‒17%) [54, 57, 62]. Interestingly, three Cryptosporidium 
species (C. hominis, C. parvum, and C. wrairi) were found in 
the surveyed toddler cohort. This agrees with previous results 
in healthy children of paediatric age in the Madrid area, 
where C. hominis (71‒100%) was more prevalent than C. 
parvum (0‒21%) [54, 57]. The full account of the C. wrairi 
infection case has been provided elsewhere [46]. Results on 
the molecular diversity and frequency of Blastocystis sub-
types were also expected, with ST2 (46%) being the most 
prevalent subtype identified, followed by ST4 (35%), ST3 
(15%), and ST1 (4%). Very similar results were documented 

in other pre- and schoolchildren’s populations in this very 
same geographical area [54, 57].

The results obtained in this longitudinal study may have 
been potentially biased by some methodological issues. Rel-
atively low numbers of day-care centres investigated and 
toddlers recruited might not be representative of the whole 
sampling area. Because the study was based on voluntary 
participation, it is possible that families feeling at higher risk 
of infection were more prone to participate, distorting the 
final results. Another potential confounder could be report-
ing bias by parents during questionnaire completion. Finally, 
low amplification success rates of Giardia-positive samples 
in genotyping PCR assays and absence of data linking the 
presence of this parasite with the nutritional status of the 
toddlers investigated may have compromised the accuracy 
of some of our results.

In conclusion, we provided here longitudinal, molecular-
based data indicating that (mostly asymptomatic) infections 
by G. duodenalis and Blastocystis sp., but not Cryptosporid-
ium spp., are relatively common among toddlers attending 
day-care centres in central Spain. Blastocystis primarily pre-
sented as long-term colonization by the same genetic variant 
of the protist, supporting its commensal nature. In contrast, 
G. duodenalis and Cryptosporidium spp. tended to present 
as short-lived, self-limiting infections without the need of 
specific management, although subclinical G. duodenalis 
carriage can persist up to 10 months. Diagnosis of these 
microeukaryotic enteroparasites should be considered in 
cases with prolonged diarrhoea, although studies in appar-
ently healthy paediatric populations might be useful to deter-
mine asymptomatic carriage rates and prevent infections to 
individuals at risk including immunocompromised patients 
and the elderly.
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