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Abstract
Upon cytomegalovirus (CMV) infection, large T-cell responses are elicited that remain high or even increase over time, a 
phenomenon named memory T-cell inflation. Besides, the maintained robust T-cell response, CMV-specific T cells seem 
to have a distinctive phenotype, characterized by an advanced differentiation state. Here, we will review this “special” dif-
ferentiation status by discussing the cellular phenotype based on the expression of CD45 isoforms, costimulatory, inhibitory 
and natural killer receptors, adhesion and lymphocyte homing molecules, transcription factors, cytokines and cytotoxic 
molecules. In addition, we focus on whether the differentiation state of CMV-specific CD8 T cells is unique in comparison 
with other chronic viruses and we will discuss the possible impact of factors such as antigen exposure and aging on the 
advanced differentiation status of CMV-specific CD8 T cells.
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Introduction

Human cytomegalovirus (HCMV), a beta-herpesvirus fam-
ily member, infects around 60% of the worldwide population 
[1]. In healthy individuals, HCMV establishes a persistent 
latent infection with episodes of reactivation. Although 
HCMV infection is usually asymptomatic, in immunocom-
promised (e.g., HCMV-seronegative recipients receiving 
organs of HCMV-positive donors) and immune immature 
individuals (neonates), HCMV can cause serious disease [2].

A remarkable feature of HCMV infection is the capacity 
to elicit large T-cell responses that do not follow the typi-
cal contraction pattern after primary infection. Instead, the 
percentages of CMV-specific T cells remain high or even 
increase over time [3], a phenomenon named memory T-cell 
inflation [4, 5]. In the Western world, frequencies around 
10% of HCMV-specific T cells of the total memory T-cell 
pool are commonly observed (with outliers > 50%), and this 
is found in both healthy and immunocompromised individu-
als [6, 7]. In elderly, the frequency of circulating HCMV-
specific T cells is higher than in younger adults, and the 
reactivity of these cells can be restricted to a limited number 
of epitopes [8–11]. The increase in frequency of HCMV-
specific CD8 T cells with age is also observed in studies 
with immunocompromised individuals and is similar to fre-
quencies found in healthy donors [12].
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Besides the sustained large T-cell response, the pheno-
type of CMV-specific T cells seems to be characteristic as 
well, typified by an advanced differentiation state. Here, we 
discuss the particulars of this “special” differentiation phe-
notype and asked the question whether the differentiation 
state of CMV-specific CD8 T cells is unique. In addition, we 
discuss the potential impact of antigen exposure and aging 
on the differentiation status of CMV-specific CD8 T cells.

The differentiation phenotype 
of CMV‑specific CD8 T cells

CD45 isoforms

Isoforms of the protein tyrosine phosphatase CD45 are 
expressed at various levels on hematopoietic cell lineages. 
The high-molecular-weight isoform CD45RA is expressed 
by naïve T cells, while the low molecular weight isoform 
CD45RO is expressed on activated and memory T cells and 
is implicated in increasing the sensitivity of TCR signal-
ling [13]. Advanced differentiation of T cells is, however, 
characterized by a lack of CD45RO while CD45RA is re-
expressed. A large proportion of the HCMV-specific T cells 
have the latter phenotype (in combination with downregu-
lation of costimulatory molecules, this phenotype is also 
called TEMRA), and this seems quite unique for HCMV 
[14]. For example, Epstein–Barr virus (EBV)-specific CD8 
T cells are predominantly CD45RO positive [15] and human 
immunodeficiency virus (HIV)-specific T cells express 
lower levels of CD45RA [16].

Costimulatory and inhibitory receptors

The advanced differentiation state of CMV-specific T cells 
is also marked by the lack of expression of the costimulatory 
receptors CD27 and CD28, which are otherwise constitu-
tively expressed on naïve T cells [17]. This is in contrast 
to other virus-specific CD8 T cells. For example, EBV and 
hepatitis C virus (HCV)-specific T cells more often display 
expression of CD27 and CD28, and HIV-specific CD8 T 
cells, despite advanced loss of CD28, still express CD27 
[17], although this may also depend on the disease state [18].

Acute HCMV infections frequently occur in CMV-neg-
ative transplant recipients receiving a CMV-positive organ. 
In these individuals, the CMV-specific T-cell response con-
sists of mainly CD27+CD28−CD45RA−CD45RO+ memory 
T cells shortly after the peak of CMV infection [19]. In time, 
expression of CD27 is lost and CD45RA is re-expressed on 
the majority of the cells [20, 21]. The gradual loss of CD27 
is also observed in mouse models, and is likely caused by 
chronic antigenic triggering [22].

In mouse models, the functional role of CD27 and CD28 
has been studied in CMV infection and indicated that CD28 
costimulation is especially important during primary infec-
tion to enhance CMV-specific T-cell expansion while CD27 
and its ligand CD70 seem to play an activating role during 
both the primary and latent phase of infection [22–26]. The 
costimulatory receptor OX40 is transiently upregulated upon 
activation, and is important during the latent phase [27].

Programmed cell death 1 (PD-1), cytotoxic T-lymphocyte 
antigen 4 (CTLA-4), T-cell immunoglobulin domain and 
mucin domain protein 3 (TIM-3), lymphocyte activation 
gene 3 (LAG-3) and CD160 are inhibitory receptors associ-
ated with the exhaustion phenotype of T cells [28]. PD-1 
was identified to be abundant on chronic lymphocytic cho-
riomeningitis virus (LCMV)-specific T cells in mice models 
[29] and was next shown to be upregulated on T cells in a 
number of chronic viral infections including HIV [30, 31], 
hepatitis B virus (HBV) [32] or HCV [33]. In addition, PD-1 
and other inhibitory molecules are abundantly found on T 
cells in the tumor microenvironment and this aspect forms 
the basis for reinforcing exhausted T cells by blocking these 
inhibitory molecules [34]. Indeed, as demonstrated by vari-
ants of LCMV eliciting either acute or chronic infection, the 
induction of the exhausted phenotype is caused by strong 
chronic antigenic triggering [35], and is elevated by the lack 
of CD4 T-cell help [29, 36].

Interestingly, during the latent phase, circulating CMV-
specific T cells express relatively low levels of inhibitory 
receptors [37, 38]. PD-1 expression on CMV-specific T cells 
is lower compared to chronic virus-specific T cells against 
HBV [32], HIV [30, 38–40] and EBV-specific T cells [37, 
38]. Likewise, also TIM-3, CD160 and 2B4 are expressed 
at lower levels in CMV-specific T cells compared to HIV-
specific T cells [40]. Nonetheless, the inter-individual varia-
tion of PD-1 and 2B4 expression observed for CMV-specific 
T cells can be substantial [33, 40]. This heterogeneity of 
PD-1 expression could reflect different differentiation phe-
notypes of virus-specific memory T cells [38], and this may 
be independent of their capacity to control viruses. Indeed, 
PD-1 expression is not associated with functional capacity 
(e.g., secretion of cytokines and degranulation). In addition, 
data showed that CD8 T cells can further up-regulate PD-1 
when they are activated [38]. Altogether this suggests that 
PD-1, expressed on CMV-specific T cells, is independent of 
T-cell exhaustion.

Natural killer receptors

Although originally reported as natural killer cell receptors 
(NKRs), a number of these receptors such as immunoglob-
ulin-like receptors (KIRs, LIRs such as CD85j) and lectin-
like receptors (CD94/NKG2, KLRG1) are also expressed on 
CD8 T cells [41]. These molecules are likely implicated in 
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the fine-tuning of the anti-viral response. Indeed, primary 
CMV infection induces an increased expression of both 
inhibitory and activating NKRs, which remains high during 
the latent infection phase, while viral load is undetectable 
[42]. Yet, the precise role of different NKRs remains to be 
determined.

Similarity between CMV-specific T cells and other 
chronic viruses is found in the expression patterns for several 
inhibiting NKRs. CMV-specific T cells, just like EBV and 
HIV-specific T cells, show substantial expression of CD85j 
(ILT2/LIR-1) compared to the overall T-cell pool [43–45]. 
This CD85j expression is most abundant in TEMRAs and 
CD28− CD8 T cells [44], suggesting an advanced differen-
tiation phenotype. In addition, the overwhelming majority of 
CMV, EBV and HIV-specific T cells express KLRG1, often 
together with loss of expression of CD28 and CCR7, indicat-
ing that these cells have undergone multiple cell divisions 
but are still active in cytokine production [46, 47]. Also, 
expression of NKG2A is increased on CMV-specific CD8 
T cells [42, 48]. However, KIRs do not seem upregulated on 
CMV-specific T cells and/or HIV-specific T cells: only small 
fractions express CD158 variants or NKB-1 (KIR3DL1) [43, 
49]. Although increased expression of NKG2C on CD8 T 
cells is associated with CMV-seropositivity [42] and CMV-
reactive T cells upon restimulation show NKG2C expression 
[44], CMV-specific T cells stained with MHC class I tetram-
ers do not seem to express NKG2C [42, 50]. Overall, CD8 
T cells specific for CMV show low expression of KIRs and 
NKG2C and increased expression of CD85j, NKG2A and 
KLRG1 during the latent phase of the infection.

CMV-specific CD8 T cells also express the NKRs CD56 
and CD57. CD56+ CD8 T cells are known for their natural 
killer-like cytotoxicity [51], and CD56 is shown on CMV-
specific T cells in renal transplant patients [52] and healthy 
individuals (unpublished observations, S. van den Berg and 
D. van Baarle). CD57 expression represents a cellular phe-
notype associated with poor proliferative capacity but high 
cytotoxic potential [53]. On CMV-specific T cells, CD57 
expression, often co-expressed with CD85j, increases with 
age, but a large variation in expression exists [44, 54]. CD57 
expression on CMV, EBV, and HIV-specific CD8 T cells was 
low to moderate in adults [32, 46], whereas others reported 
overall a high expression on these virus-specific T cells of 
CD57 in older subjects [55]. In the latter, CMV-specific T 
cells seem to express CD57 at higher levels than EBV and 
HIV-specific T cells, albeit not substantially.

Adhesion molecules and lymphocyte homing

CMV-specific CD8 T cells are largely negative for CCR7 
and CD62L [16, 17, 49], which are homing receptors for 
lymphoid organs. This property, which is shared with T cells 
specific for other chronic viruses, allows the cells to circulate 

throughout the body, and reside in peripheral tissue, spleen 
and blood.

CX3CR1, which recognizes fractalkine expressed by 
endothelial cells, is abundantly expressed by CMV-spe-
cific cells [10, 56] during the primary and latent infec-
tion, whereas CCR1 and CXCR6 are only present during 
the acute phase [37]. High and intermediate expression 
of CX3CR1 seems to be unique for CMV-specific CD8 T 
cells in both human and mice [37, 56], as the frequency 
of this chemokine receptor on EBV [57], HBV and HCV-
specific T cells is much lower [58]. CMV-specific CD8 T 
cells with intermediate expression of CX3CR1 associate 
with self-renewal potential, but the role of CX3CR1 seems 
to be redundant, since memory T-cell inflation is unaltered 
in case of CX3CR1 deficiency [56]. In addition, CXCR3 is 
commonly expressed on CMV-specific T cells as well as 
EBV-specific T cells [57]. The homing cell adhesion mol-
ecule CD44 is uniformly high expressed on all CMV-specific 
T cells [48, 59].

Transcription factors, cytokines and cytotoxic 
molecules

Transcription factors (TFs) are crucial regulators of cellular 
differentiation and function including the cytotoxic potential 
and cytokine secretion. For CD8 T cells, the TFs Eomes 
and T-bet are particularly useful to determine the functional 
profile. For example, T-betdim and Eomeshigh expression pro-
files are associated with expression of exhaustion markers 
as observed in HIV-specific T cells, whereas many CMV 
and EBV-specific T cells exhibit intermediate levels of 
Eomes and high levels of T-bet [37, 40, 60]. Blimp-1 and 
the Homolog of Blimp-1 in T cells (Hobit) are also clearly 
expressed by CMV-specific CD8 T cells [61, 62].

Related to the above-described TF profile is the high 
granzyme B and perforin expression in CMV-specific CD8 
T cells [39, 40, 49, 63]. These cells also abundantly produce 
IFN-γ and TNF after re-stimulation, while IL-2 is produced 
by only a subset of the inflationary CMV-specific CD8 T 
cells [63]. The expression of the above-described effector 
molecules is consistent with the functional non-exhaustion 
phenotype of CMV-specific T cells, and underlines their 
functional status and requirement for lifelong protection 
against viral dissemination [64]. Analysis of transcriptional 
networks in inflating cells reveals a module of genes strongly 
driven by T-bet, not seen in T-cell exhaustion [65].

The low IL-2 production may coincide with the reduced 
expression of IL-2Rβ (CD122/IL-15Rβ) on CMV-specific 
CD8 T cells [37, 48, 63, 66]. In addition, virus-specific 
effector CD8 T cells activated in vivo during primary EBV 
or CMV infection down-regulate IL-7Rα (CD127) and 
IL-15Rα (CD215) expression [67]. With time, CMV-specific 
CD8 T cells maintain high levels of IL-15Rα. This contrasts 
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with the lower expression of IL7Rα on CMV-specific CD8 
T cells compared to EBV-specific CD8 T cells [32, 68–70]. 
Interestingly, IL-7Rα expression was tightly associated with 
population size in blood [70]. However, this correlation was 
not sustained in tonsillar lymphoid tissue where CMV-spe-
cific T cells were less abundant than EBV-specific T cells, 
despite higher IL-7Rα expression [70].

Is the advanced differentiated T‑cell 
phenotype unique?

The above-described advanced differentiated CD8 T-cell 
phenotype is clearly observed for CMV-specific T cells, and 
could be considered as a distinct type of effector-memory 
(EM) T cells. The phenotype involves expression of inhibi-
tory molecules such as KLRG1, CD57 and CD56, yet the 
cells are nevertheless functional with respect to cytokine 
production and cytotoxicity (Fig. 1). However, the advanced 

Fig. 1   The advanced differentiation phenotype of CMV-specific 
CD8 T cells. The advanced differentiated CMV-specific CD8 T 
cells are typified by either expression or down-modulation of differ-
ent surface receptors, cytokines and transcription factors. Surface 
receptors that are expressed are depicted in blue on the left side of 
the cell, whereas down-modulated or non-expressed surface receptors 
are depicted in gray on the right side of the cell. CMV-specific CD8 
T cells express the CD45 isoform CD45RA, different natural killer 
receptors (CD85j, CD56, CD57, NKG2A and KLRG1), IL-15Rα 
and the homing receptors CX3CR1 and CD44. These cells do not 

express or lowly express CD45RO, costimulatory receptors CD27 and 
CD28, natural killer receptors (KIRs and NKG2C), inhibitory recep-
tors (PD-1, TIM-3, CD160 and 2B4), homing receptors (CXCR6, 
CCR1, CD62L and CCR7) and cytokine receptors IL-2Rβ (CD122) 
and IL-7Rα (CD127). CMV-specific CD8 T cells have intermediate 
expression of the transcription factor Eomes and strong expression of 
transcription factors Hobit, Blimp-1 and T-bet. Related to this tran-
scription profile is the high expression of cytokines IFN-γ and TNF-γ 
and the cytotoxic molecules granzyme B (GrB) and perforin. In gen-
eral, IL-2 production by CMV-specific CD8 T cells is low
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differentiated phenotype is not entirely exclusive as also 
other viruses can elicit CD8 T cells with a similar differ-
entiation status. Less attention is given to this since either 
only a small subset among the total memory pool has this 
phenotype (e.g., upon infection with EBV or HIV) or the 
frequencies of the late-stage differentiated CD8 T cells are 
generally lower compared to those in CMV infection (e.g., 
infection with herpes simplex virus-1 (HSV-1) [71] and par-
voviruses B19 and PARV4 [72]. One clear feature is that 
high doses of adenovirus-based vaccine vectors can actually 
induce a comparable phenotype (and transcriptome) to CMV 
[56], which is also accompanied with a high frequency of 
the cells, which makes this a vaccine platform with great 
potential. As variation exists in the differentiation state of 
CMV-specific T cells between individuals, we will next dis-
cuss factors that influence the T-cell differentiation.

Establishment of the advanced 
differentiation phenotype

The phenotype of the CMV-specific CD8 T cells is strongly 
connected with the magnitude of the CMV-specific T-cell 
response. Cross-sectional human studies show that in both 
healthy and immunosuppressed individuals, a high HCMV-
specific T-cell response is associated with a high percentage 
of advanced differentiated T cells within the total specific 
T-cell population [44, 73–75]. Nevertheless, the association 
between the differentiation state and level of CMV-specific 
T cells is shown in experimental mouse models [74, 76]. 
Low-dose inoculums elicit fewer circulating CMV-specific 
CD8 T cells, and these cells have a less advanced differen-
tiation phenotype. Accordingly, interference with an estab-
lished mouse CMV infection by antiviral treatment reduces 
the frequency of the CMV-specific CD8 T-cell response, 
and also in this setting, the CD8 T cells acquired a lesser 
differentiated phenotype compared to CMV-infected mice 
that are untreated [77].

Differences in the infectious dose of primary CMV infec-
tion may be instrumental in causing the large variation of 
the advanced-stage differentiation status of CMV-specific 
T cells that exists between individuals. CMV-specific CD8 
T cells may reach an advanced differentiation phenotype 
already early after infection, and then maintain this status 
stably over time. In young individuals and even in children, 
advanced differentiated CMV-specific T cells can appear 
[78–80]. Thus, the (primary) infectious dose might deter-
mine the viral setpoint (the initial balance between virus and 
host after primary infection) [81] and thereby subsequently 
influence the level and amount of viral reactivation episodes 
and consequent antigen triggering of CMV-specific T cells.

Notably, within the inflationary epitope-specific memory 
T-cell population, not all CMV-specific T cells acquire the 
late-stage differentiation phenotype. Depending on the viral 
dose, a significant portion can attain a central-memory (CM) 
phenotype [76]. These CM-like CD8 T cells produce more 
IL-2 and are probably dominantly contributing to T-cell 
expansion upon re-challenge [82]. Also, within the total 
pool of CMV-specific T cells non-inflationary T cells exist 
directed against a distinct subset of epitopes, which never 
acquire the EM-like differentiation during the latent phase 
of infection [63]. In line with this are the observations that 
the enhanced differentiation state of the HCMV-specific T 
cell is observed for different epitopes [32]. A critical aspect 
for virus-specific T cells undergoing memory inflation or 
not, does not depend on the intrinsic property of the pep-
tide epitope but on the context of viral gene expression. 
CMV epitopes that normally induce non-inflationary CD8 
T-cell responses from its native site can induce an inflation-
ary response due to C-terminal localization allowing better 
peptide processing, also leading to a more advanced differ-
entiated phenotype [83, 84].

Besides the infectious dose, aging also impacts the dif-
ferentiation status of the CMV-reactive T cells. In cross-
sectional studies, it was observed that the number of HCMV-
specific T cells increases over time [6, 47]. And this is 
accompanied by an increase of HCMV-specific cells that 
re-express CD45RA [11] and express KLRG1 [47]. Moreo-
ver, using new computational tools, it was recently shown 
that inflationary MCMV-specific T cells are progressively 
differentiating in time (based on the markers KLRG1, CD44, 
CD27 and CD62L), long after the initial infection [74, 85]. 
In line with these studies is the observation that telomeres of 
HCMV-specific CD8 T cells are significantly shorter com-
pared to the corresponding phenotypic subsets of the total 
CD8 T-cell pool [86]. The shortest telomere lengths were 
found in old individuals compared to young individuals in 
all different memory subsets (based on CD27 and CD45RA 
distinction). Overall, this indicates that with aging CMV-
specific cells undergo more proliferation and enhanced 
differentiation.

Important for the enhanced differentiation after CMV 
infection is the capacity of CMV to become latent. Essen-
tially, latent genomes can sporadically desilence at certain 
genetic loci, which lead to gene expression of antigenic pep-
tide-encoding genes without entering the productive cycle 
[87, 88]. This allows intermittent re-exposure of antigen to 
the virus-specific T cells, which keeps these cells “tickled” 
during a lifetime, but avoids continuous strong antigenic 
stimulation leading eventually to exhaustion as is the case 
for chronic infections with HIV or certain LCMV strains 
[89]. The large and gradual expansion of CMV-specific CD8 
T cells with an enhanced differentiation phenotype could be 
interpreted as a lack of complete control of the virus. The 
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T cells that show enhanced differentiation, thus, attempt to 
retain control over full reactivation of the virus. Accordingly, 
interference with an established MCMV infection by anti-
viral treatment reduces the frequency of the CMV-specific 
CD8 T-cell response, and also in this setting, the CD8 T 
cells reverted to a lesser differentiated phenotype compared 
to CMV-infected mice that were untreated [77]. It is gener-
ally assumed that the immune evasion strategies of CMV 
targeting the innate and adaptive immunity are critical for 
the long-term persistence of the virus [90, 91], but whether 
some of these strategies are capable of specifically modu-
lating particular phenotypic characteristics of the CMV-
specific T cell is unknown. The need and purpose of the 
maintenance of high-frequency CMV-specific CD8 T cells 
that progressively differentiate are, thus, unclear and may 
be driven by an ongoing shift in the virus–host equilibrium.

Another important aspect might be the broad tropism of 
CMV and its systemic spread as localized CMV infection 
results in less inflation and less advanced differentiation [92, 
93]. The distinctive tropism of CMV, including the wide 
variety of target cells, innate immune cells such as myeloid 
cells as CMV vehicles, and the infrequent expression of 
immediate early genes leading to abortive reactivation, may 
thus, co-determine the fate of the T-cell response, and such 
characteristics may be the key differences compared to other 
chronic viruses that frequently reactivate, like EBV. Finally, 
the size of the genome of CMV is relatively large (compared 
to most other viruses), which may contribute to elicit larger 
T-cell responses and to the likelihood to encompass epitopes 
inducing inflationary T-cell responses.

Concluding remarks

The characteristics of CMV-specific T cells, i.e., mainte-
nance of high numbers and the late-differentiated EM-like 
phenotype, have been a subject of interest. Although the 
CMV-specific memory T-cell populations are diverse (in 
magnitude and phenotype) between individuals, it is evi-
dent that a large proportion of these cells are advanced dif-
ferentiated. This particular phenotype seems to be related 
to the nature of CMV infection because it is more abun-
dantly found upon CMV infection compared to other chronic 
viruses. The CMV-specific T cells are often late-stage differ-
entiated T cells, have shorter telomeres and express inhibi-
tory molecules such as KLRG1, CD57 and CD85j, yet the 
cells are nevertheless functional with respect to cytokine 
production and cytotoxicity [94]. Further studies are needed 
to unravel this seemingly conflicting feature of CMV-spe-
cific T cells. Large prospective studies in humans could pro-
vide further insight, but such studies may still be compli-
cated given the possible impact of MHC heterogeneity in the 
human population compared to inbred mice [95]. Notably, 

the data discussed here reflect mainly the differentiation of 
the circulating CMV-specific T cells, which represents a 
subgroup of the total CD8 T-cell pool in the body. Whether 
a late-differentiated phenotype “uniquely” related to CMV 
infection is also present in the tissue-resident memory T-cell 
population remains to be elucidated. Several papers reveal a 
dual impact of CMV infection and aging on immune subsets 
[96–100]. Prevalence of CMV infection increases with age 
[101, 102], suggesting that CMV may take advantage over a 
senescent immune system. How long-term infection of CMV 
is able to change the virus–host balance leading to gradual 
higher levels of advanced differentiated T cells is unknown. 
Due to aging, immune control may gradually wane leading 
to more frequent reactivation.
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