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Abstract
Cytomegalovirus (CMV) infection induces powerful and sustained T-cell responses against a few selected immunodominant 
antigenic epitopes. This immune response was named memory inflation, because it does not contract in the long term, and 
may even expand over months and years of virus latency. It is by now understood that memory inflation does not occur at the 
expense of the naïve T-cell pool, but rather as a competitive selection process within the effector pool, where viral antigens 
with higher avidity of TCR binding and with earlier expression patterns outcompete those that are expressed later and bind 
TCRs less efficiently. It is also understood that inflationary epitopes require processing by the constitutive proteasome in 
non-hematopoietic cells, and this likely implies that memory inflation is fuelled by direct low-level antigenic expression in 
latently infected cells. This review proposes that these conditions make inflationary epitopes the optimal candidates for adop-
tive immunotherapy of CMV disease in the immunocompromised host. At present, functional target CMV epitopes have been 
defined only for the most common HLA haplotypes. Mapping the uncharacterized inflationary epitopes in less frequent HLAs 
may, thus, be a strategy for the identification of optimal immunotherapeutic targets in patients with uncommon haplotypes.
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Introduction

Memory inflation (MI) is among the most distinctive fea-
tures of cytomegalovirus (CMV) infection. While the term 
is not formally defined, it is best described as the long-term 
maintenance or slight increase in the number of antigen-
specific CD8 T cells exhibiting an effector, but not exhausted 

phenotype [1–3]. Inflationary cells were first described upon 
experimental mouse cytomegalovirus (MCMV) infection in 
the pulmonary infiltrates of latently infected mice [4], but 
dynamic monitoring of blood cells showed that tetramer-spe-
cific cells also accumulate over time in the circulating CD8 
T-cell pool [5]. This phenomenon is not restricted to experi-
mental mouse infection. Large virus-specific responses were 
also observed in human CMV (HCMV) seropositive people 
[6, 7], and HCMV responses against defined epitopes were 
shown to strengthen with advancing age in some [8, 9], 
although not in all studies [10, 11]. Similarly, robust CMV-
specific T-cell responses were described in adult and aged 
rhesus monkeys [12]. Therefore, the persistence of large 
CMV-specific T-cell populations is a conserved phenom-
enon in numerous species that coevolved with this virus and, 
thus, a clinically relevant phenomenon that can be well rep-
resented in animal models.

Only some MCMV epitopes show inflationary traits [4, 
13, 14]. Other ones, dominating the immune response at 
early times post-infection, contract over time, akin to the 
conventional immune response kinetics upon infection 
with non-persistent pathogens [2, 14]. This dichotomy of 
immune responses to the same pathogen, and occasionally 
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to antigenic epitopes within the same viral gene [13], 
remain a subject of intense scientific interest. This review 
will focus on describing the specific properties of infla-
tionary cells, the likely molecular mechanisms underlying 
this phenomenon, as well as the relevance of inflationary 
antigens as targets for antiviral immunotherapy.

Phenotype and functionality of T‑cell 
subsets

Upon priming, CD8 T cells typically respond by vigor-
ous antigen-driven proliferation of effector cells [15, 16], 
which gives rise over time to the two main subsets of 
primed cells, the effector or effector-memory (EM) and 
the central memory (CM) cells [16, 17]. CM cells are 
characterized by the expression of surface markers facili-
tating their homing to secondary lymphatic organs, such 
as CD62L or the chemokine receptor CCR7 [17], by the 
expression of costimulating receptors, such as CD27 or 
CD28 [18], but also by their ability to expand indefinitely 
in adoptive transfer settings [19] and mature into effector 
cells upon restimulation [17]. Effector cells, on the other 
hand, are less frequent in secondary lymphatic organs [20] 
and lose CD27, CD28, CCR7, and CD62L from their sur-
face [17, 18], but respond more promptly to antigenic res-
timulation by secreting interferon gamma (IFNγ) [17] and 
have stronger cytolytic activity [21]. It was subsequently 
discovered that the CD62L− effector cells can be further 
subdivided into short-lived effector cells (SLEC) or the 
longer lived EM cells, based on their expression of the 
IL7 receptor beta chain (CD127) or the inhibitory receptor 
KLRG1. CD127 is lost and KLRG1 is expressed on the 
SLEC, whereas EM cells have the opposing phenotype 
[22]. It has been proposed that the KLRG1-CD127+ EM 
cells may act as memory precursor effector cells (MPEC) 
[22], although competing evidence has argued that CM 
cannot differentiate from effector cells, but rather that CM 
precede EM and SLECs during T-cell differentiation [23]. 
It remains unclear if one of these competing models is 
more accurate, or if they both reflect events that naturally 
occur in different T-cell priming conditions. In particu-
lar, it remains unclear whether KLRG1−CD127+ EM may 
convert to CM cells in conditions of intermittent exposure 
to antigen during virus latency, and no data are currently 
available to define this question. Therefore, this review 
will avoid the term MPECs, and refer to them as EM cell. 
Nevertheless, the consensus of the scientific community 
is that SLEC cells are the most differentiated subsets of T 
cells in both humans and mice, and that they have robust 
effector function but a restricted proliferative potential.

Phenotype and functionality of inflationary 
T cells

The vast majority of inflationary CMV specific CD8 T 
cells are not only CD62L deficient [4], but also exhibit a 
bona fide SLEC phenotype [2, 14, 24, 25]. The expansion 
of inflationary cells depends on the inoculum dose [26] 
and on the route of infection [27], and stronger responses 
tend to have a higher proportion of cells with SLEC phe-
notypes [26]. MI maintenance requires continuous pro-
duction of SLECs in virus presence [24] and this cell pro-
liferation is antigen-dependent [24], yet the inflationary 
cells require interleukin 15 (IL-15) for survival [28]. The 
cycling of inflationary cells involves and ongoing recruit-
ment of naïve and CM [24], but also of EM cells [28, 29]. 
The cycling inflationary cells are predominantly Bcl-2 low 
[14, 30], additionally arguing for antigen-dependent T-cell 
proliferation maintaining the MI pool. While the cellular 
site of ongoing antigen production remains unknown in 
the human host, in murine experimental models, it was 
shown that these cells are in contact with the bloodstream 
[29], but that they are not of hematopoietic origin [30, 
31]. It is presumed that endothelial cells (EC) may pre-
sent a reservoir of viral antigen during latency [32], since 
latent virus could be demonstrated in microvasculature 
endothelial cells in the liver [33], but it remains unclear 
if EC are a relevant site of latent antigen expression, and 
if multiple cellular subsets are involved. While inflation-
ary cells show obvious signs of in vivo proliferation in 
their native environment [14], they proliferate poorly upon 
in vitro antigenic restimulation [34, 35] or upon in vivo 
adoptive transfer [24], which has prompted speculations 
that they might be dysfunctional and senescent cells [36]. 
However, inflationary cells remain functional for life in 
terms of cytokine and granzyme responses [4, 14, 24, 37], 
even in demonstrably immunosenescent hosts [12]. Fur-
thermore, introduction of heterologous antigenic epitopes 
into recombinant MCMV vectors has demonstrated that 
inflationary CD8 responses provide a highly efficient con-
trol of virus infections [38–41], but also of tumors [42, 43] 
in challenge settings. Thus, it is currently recognized that 
inflationary cells are highly functional [44, 45], sparking 
a wide interest in CMV-based vaccine vectors [46–48].

Antigen availability and memory inflation

It is generally assumed that MI is fuelled by CMV anti-
gens that are intermittently expressed at low levels dur-
ing virus latency [1, 32], although the evidence is largely 
circumstantial and a smoking gun proof remains elusive. 



341Medical Microbiology and Immunology (2019) 208:339–347	

1 3

Low-level MCMV transcription of immediate early (IE) 
genes persists in the lungs of latently infected mice [49, 
50] and several natural inflationary epitopes are derived 
from IE genes [4, 13]. Furthermore, the insertion of exog-
enous epitopes into MCMV vectors induces stronger 
inflationary responses when the epitope is expressed from 
an IE gene [39, 40]. In BALB/c mice, IE1 encodes the 
immunodominant inflationary epitope YPHFMPTNL [4] 
and latent transcription is restricted to IE1 and IE2 genes 
[50], which are independently expressed during latency 
[51]. Genes expressed later in the virus cycle, such as 
the early gene M55 or the IE3 gene, a product of alterna-
tive splicing with the IE1 gene, are not detectable during 
latency [49, 52]. However, latent IE3 transcription occurs 
upon targeted mutagenesis of a single amino acid anchor-
ing the YPHFMPTNL to the MHC-I molecule and loss 
of IE1-specific inflationary CD8 T-cell responses [53]. 
Similarly, in C57BL/6 mice, which do not express natural 
IE1- or IE2-derived epitopes, IE3 encodes an immuno-
dominant inflationary epitope [13], which argues for its 
transcriptional activity in this mouse strain. Notably, viral 
IE transcription can be reversibly silenced by interferons 
[54, 55], including IFNγ [56], which is also the cytokine 
that is most abundantly secreted upon peptide restimula-
tion of inflationary CD8 T cells [12, 45]. Therefore, it 
was proposed that inflationary CD8 T-cell and latent CMV 
transcription maintain a state of dynamic balance between 
the virus and the host [3, 32]. This balance assumes that 
the stochastic transcription of viral antigens in latency 
induces T-cell responses that represses further viral tran-
scription and keeps a lid on virus reactivation from latency 
[32], thus providing a respite to T cells, which prevents 
their exhaustion and allows long-term virus control [3].

The full latent transcriptome of MCMV remains 
unknown, but two recent studies on HCMV transcriptome 
have provided insights into the program of latent HCMV 
gene expression [57, 58]. These results were somewhat dis-
cordant, probably due to differences in tissues being exam-
ined and methods applied. On one hand, the transcriptome 
of bulk CD34+ populations of naturally or experimentally 
infected latent cells indicated a focused latent transcrip-
tional program that is distinguishable from lytic viral gene 
expression [58]. On the other, single-cell transcriptome of 
cells obtained from a variety of tissues argued that, in cells 
expressing viral genes, the transcriptome resembles either 
the late stage of the virus cycle in some cells or the imme-
diate early one in other ones [57]. It is notable that CD8 
epitopes to the human CMV may be encoded by numerous 
viral genes [6], but these do not correspond to the focused 
latent transcriptome in bulk CD34+ cells. Thus, the afore-
mentioned restriction of inflationary antigen expression 
to non-hematopoietic cells in the MCMV system [30, 31] 
is consistent with the observations in HCMV latency and 

immune responses, where the recognized antigens seem not 
to be derived from the viral genes expressed in hematopoi-
etic cells. The discrepancy between the prevalent HCMV 
epitopes and the latent transcriptome in hematopoietic cells 
may point either to additional sites of HCMV latency in non-
hematopoietic cells, or to a model where inflationary cells 
are induced only when the virus moves out of latency with 
a regulated gene-expression program and initiates a bon-
afide lytic cycle. Very little evidence is available on HCMV 
latency outside of the hematopoietic system [57, 59], likely 
due to ethical and practical difficulties in the isolation of 
viable cells from solid human organs. Therefore, the current 
evidence on HCMV latency may have been slanted towards 
cells that are easily available during routine diagnostic pro-
cedures, such as blood cells. More studies are required to 
define if additional sites of latency play a role in HCMV 
maintenance and memory inflation.

The conditions of primary infection determine the size 
of the latent MCMV reservoir and its ability to reactivate 
from latency [60]. Conditions that result in a more vigor-
ous primary virus replication in an organ will establish a 
larger latent reservoir in the same organ [61, 62]. There-
fore, a larger dose of MCMV results in more latent genomes 
[26]. Similarly, the inoculum size defines the size and the 
phenotype of the responding inflationary cells [26], where 
an increase in latent genomes translates into more memory 
inflation and a phenotype that is slanted toward terminal 
T-cell differentiation [26]. While this evidence is in its 
essence a correlative one, the simplest explanation for these 
correlations is that the larger number of viral genomes in 
latency yields an increase in latent transcripts and thus in 
more antigen expression and stronger CD8 activation.

MHC-restricted antigenic epitopes do not only need to be 
expressed, but also processed and presented on the cell sur-
face. While CMVs are notorious for their ability to interfere 
with antigenic presentation [63, 64], the viral repressors of 
antigenic presentation (VRAP) are early genes which are 
expressed during primary lytic infection, but not during 
latency. Hence, their expression enhances the primary virus 
growth and spread and thus, paradoxically, increases the 
overall latent reservoir [61] and thus decreases the overall 
inflationary response [65]. However, in line with the idea 
that memory inflation depends on antigen expression dur-
ing latency, the hierarchy of responding genes in memory 
inflation appeared not to be significantly affected by VRAP 
presence or absence [66]. A much more striking inflationary 
phenotype was observed in mice lacking the LMP7 subunit 
of the immunoproteasome. While the CD8 responses to non-
inflationary epitopes expressed within MCMV genes M45 
and M57 were severely impaired in LMP7-deficient mice, 
inflationary responses were essentially maintained [67]. 
Shifting the non-inflationary epitope HGIRNASFI from its 
native position in the M45 gene to the C-terminus of the 
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same gene rendered it accessible to the constitutive protea-
some for processing and resulted in inflationary responses 
[43]. Therefore, inflationary responses do not only depend 
on peptide expression patterns, but also on their accessibility 
to the constitutive proteasome, which improved the efficacy 
of antigen processing. This observation may have implica-
tions for the ability of T cells to recognize the virus-infected 
cells, which will be explored in more detail in the chapter on 
immune protection.

Memory inflation as competitive selection 
process

It is intriguing that memory inflation, a widely accepted 
and intuitive shorthand to describe the persistent expansion 
of CMV cells, is strictly speaking a misnomer. The cells 
involved in memory inflation, are not memory cells, but 
rather, the short-lived effectors. Furthermore, even the SLEC 
compartment does not progressively inflate in latent MCMV 
infection. Rather, lifelong monitoring of infected mice has 
shown that the effector and EM pool expand rapidly upon 
infection and remain high for life [68]. Inflationary cells, 
predominantly SLECs and EMs, continued to accumulate 
slowly in the same mice over long periods, although the pool 
remained flat (Fig. 1, adapted from [68]).

Consequently, we proposed that memory inflation is 
not an accumulation of CMV-specific cells, but rather the 
process of focusing towards the epitopes that are most effi-
cient at stimulating CD8 T cells and that outcompete the 
less-efficient antigenic targets [68]. This competition was 
empirically demonstrated by introducing additional epitopes 

to CMV antigens into IE genes and measuring responses 
to endogenous epitopes [39, 69]. Responses to the IE3 
epitope, or other immunodominant inflationary epitopes 
in C57BL/6 mice, are robustly reduced if epitopes SIIN-
FEKL or SIEEFARL, known to induce high-avidity T-cell 
responses, are introduced into the ie2 gene sequence of 
recombinant viruses [39, 69], but not when the low-avidity 
KCSRNRQYL peptide is inserted at the same site [40]. 
Notably, this reduction in inflationary responses to endog-
enous epitopes does not occur if wild-type MCMV is co-
inoculated with the recombinant virus [69], which fits a 
model where the responses to the immunodominant epitope 
may only restrict the transcription of subdominant ones if 
the dominant epitope precedes the expression of the sub-
dominant ones within the same latent cell. Accordingly, the 
additional immunodominant epitope did not affect the infla-
tionary responses to the endogenous epitopes when intro-
duced into an early viral gene [39]. Furthermore, peptide 
competition affects exclusively the EM, but not the CM sub-
set of antigen-specific inflationary cells [40]. This implied 
that the homeostatic proliferation of CM cells is unaffected 
by competition, providing additional evidence that competi-
tive expansions of peptide-specific CD8 populations depend 
on antigen-driven proliferation and, Thus, on antigen expres-
sion during latency. The ideal epitope that outcompetes other 
ones is defined both by the avidity of binding of the respond-
ing TCRs to the peptide MHC complex and by the context of 
its gene expression, where earlier expression of high avidity 
epitopes outcompetes the responses to epitopes expressed 
later in the virus cycle [40]. In conclusion, inflationary 
responses are limited by CD8 competition for inflationary 
epitopes. As long as the inoculum size remains constant, the 
expression of additional epitopes will not alter the overall 
inflationary response to MCMV.

Memory inflation as immune protection 
principle

CD8 T cells recognizing CMV epitopes are increasingly 
used in immunotherapeutic settings of HCMV disease in 
the immunocompromised host [70–72], in line with early 
experiments in the mouse model [73]. Since CD8 popula-
tions have to be harvested from individuals that are matched 
on major HLA haplotypes, but minor histocompatibility dif-
ferences cannot be excluded (except in rare cases of donors 
who are identical twins), adoptive T-cell transfers of poly-
clonal populations may result in graft versus host disease 
and are, thus, avoided. Transfers of populations of T cells 
recognizing defined CMV antigens have been pursued with 
variable doses of success [71], but the choice of optimal 
antigenic targets has remained unclear. Some evidence sug-
gested that natural CD8 responses to IE-derived epitopes 
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Fig. 1   Memory inflation is not an inflation of the effector-memory 
compartment. DBA/2 mice were infected with MCMV and blood 
CD8 T cells were analysed by flow cytometry at indicated time 
points. EM are defined as CD11a+ CD62L−; IE1+ cells were defined 
by Tetramer staining ( adapted from Cicin-Sain et  al. PLOS Patho-
gens 2012)
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may provide better immune control of HCMV replication 
and disease in kidney transplant settings than responses to 
the HLA-A02 restricted, pp65-derived epitope [74]. Other 
studies showed robust immune control of HCMV infection 
in stem cell recipients by adoptive transfer of CD8 T cells 
recognizing the same pp65-derived epitope [72]. Therefore, 
immune protection may depend on the viral epitope, but also 
on the overall context of disease, immunosuppressive regi-
men, or site of virus replication. Nevertheless, it remained 
unclear which epitopes might be ideal targets for adoptive 
immunotherapy in less common and hitherto uncharacter-
ized HLA haplotypes. Therefore, identifying patterns that 
predict the protective potential of newly discovered epitopes 
would fill an important clinical need.

I propose here that inflationary epitopes are likely to offer 
ideal targets for immune control of CMV infections. This 
idea is based on several lines of experimental evidence and 
logical deductions. In the mouse model, adoptive transfer 
of CD8 T cells recognizing the inflationary IE1 derived 
epitope were protective [75], but CD8 cells against the 
non-inflationary Db restricted M45 epitope were not [76]. 
This correlative evidence was explained by the fact that the 
M45-derived epitope is poorly recognized by CD8 T cells 
on the surface of virus-infected cells [77], yet this may be 
improved by IFN pretreatment [78], or in the absence of 
VRAP expression [76]. The transfer of this M45 epitope 
from its natural location to the C-terminus of the M45 gene 
resulted in a strong increase in peptide presentation on MHC 
molecules and CD8 T-cell recognition [43]. The process-
ing of the peptide on the M45 C-terminus was proteasome-
dependent, but resulted in an immunoproteasome-independ-
ent memory inflation [43]. Conversely, in vivo response to 
the same peptide encoded at its native site in the M45 gene 
is immunoproteasome-dependent [43, 67]. IFN pretreatment, 
which is known to activate the immunoproteasome expres-
sion, allowed the presentation of the native M45 peptide 
on cell surface and direct recognition of infected cells by 
cocultured CD8 T cells [78]. Most importantly, co-culture 
of virus infected endothelial cells with a CTL line recogniz-
ing the M45-derived epitope resulted in efficient control of 
MCMV replication only in the case of the recombinant virus 
expressing the epitope independently of the immunoprotea-
some (Fig. 2). Therefore, the availability of a peptide to the 
constitutive proteasome processing enables its presentation 
on the surface of infected cells, recognition by peptide-spe-
cific CD8 T cells, CD8-mediated virus control in vitro, and 
inflationary memory responses in vivo. While it was shown 
that CD8 T cells recognizing subdominant epitopes are also 
sufficient for immune protection against MCMV [79], the 
present model predicts that these will be necessarily epitopes 
with inflationary potential and processed by the constitutive 
proteasome, but outcompeted by the dominant inflationary 
epitopes.

At this point, one should remember that inflationary 
responses depend on antigen presentation on non-hemat-
opoietic cells [30, 31]. Like all cells, they express the 
constitutive proteasome, and in the absence of inflamma-
tory stimuli, they will not express the immunoproteasome 
components.

From these considerations, emerges a model (Fig. 3), 
where latent CMV in non-hematopoietic cells occasionally 
expresses IE genes during latency. The epitopes that are 
the first to be expressed and that possess intrinsic proper-
ties that foster CD8 T-cell recognition (i.e., higher avid-
ity of binding to the TCR) may outcompete subdominant 
ones and induce inflationary responses, but only if they are 
available to the constitutive proteasome for processing. In 
that case, the direct presentation of antigens that drives 
memory inflation will also select for higher avidity T-cell 
responses to control the virus replication cycle as early as 
possible, prior to the expression of VRAPs. This allows 
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for a détente between the virus and the host that would 
induce minimal inflammatory damage, since epitopes can 
be recognized in the absence of IFN mediated upregula-
tion of the immunoproteasome. If the immunoproteasome 
had to be upregulated to present the epitopes to CD8 T 
cells, then a round of IFN response would have to precede 
the CD8 T-cell-mediated recognition of infected cells, and 
this initial response would necessarily be non-specific and, 
thus, affecting a lot of uninfected bystander tissue. Direct 
presentation of epitopes on latent cells, in the absence of 
a boost by the innate immune system, may also explain 
why CMV accurately senses deficiencies of the adaptive 
immune system. In that case, the absence of inflationary 
cells would prompt CMV to reactivate from latency, which 
is consistent with clinical and experimental observations, 
where T-cell loss results in CMV reactivation [80]. Finally, 
this scenario would predict that inflated HCMV epitopes 
would also be immunoproteasome-independent and, thus, 
better targets for protection in immunotherapeutic settings.

In conclusion, if inflationary CD8 T cells are, indeed, 
sustained by ongoing direct presentation of viral epitopes 
by the constitutive proteasome, inflationary epitopes, 
rather than the conventional or subdominant ones may also 
be the logical optimal target for immunotherapeutic strate-
gies. This idea should be addressed in future experimental 
models and clinical studies.
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