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Abstract
Cytomegaloviruses (CMVs) have developed multiple diverse strategies to ensure their replicative success and to evade 
immune recognition. Given the fact that G protein-coupled receptors (GPCRs) are key regulators of numerous cellular 
processes and modify a variety of signaling pathways, it is not surprising that CMVs and other herpesviruses have hijacked 
mammalian GPCRs during their coevolution. Human cytomegalovirus (HCMV) encodes for four viral GPCR homologues 
(vGPCRs), termed US27, US28, UL33, and UL78. Although HCMV-encoded GPCRs were first described in 1990, the 
pivotal functions of these viral receptor proteins were detected only recently. Here, we summarize seminal knowledge on 
the functions of herpesviral vGPCRs with a focus on novel roles of cytomegalovirus-encoded vGPCRs for viral spread and 
the regulation of latency.
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Introduction

G protein-coupled receptors (GPCRs), also termed seven-
transmembrane receptors, constitute the largest and most 
diverse family of eukaryotic membrane receptors involved 
in signal transduction. Noteworthy, a tremendous diversity 
of physiological processes is substantially regulated by 
GPCRs, such as neuro-transmission, angiogenesis, cell pro-
liferation, and death, as well as activation and suppression 
of the immune system [1–5]. Hence, it is not surprising that 
GPCRs have emerged as crucial players in viral entry and 
spread, modulation of the host immune system, and assur-
ance of cell survival after infection. Moreover, various her-
pes- and poxviruses encode homologous versions of cellular 

GPCRs (vGPCRs), which contribute to the dysregulation of 
cellular signaling processes [6–11]. Whereas most of these 
viruses express one or two vGPCRs, human cytomegalovi-
rus (HCMV) encodes four vGPCRs, termed US27, US28, 
UL33, and UL78 [7, 12]. Although vGPCRs are phylogenet-
ically related to human seven-transmembrane receptors, they 
exhibit considerable differences in characteristics including 
their sorting and signaling capacities. Since vGPCRs emerge 
as important determinants of viral pathogenicity, there is 
growing interest to utilize the pharmacologic targeting of 
vGPCRs as a novel antiviral principle.

Structure and function of cellular G 
protein‑coupled receptors

With more than 800 members, G protein-coupled receptors 
(GPCRs) constitute the largest and most diverse family of 
membrane receptors [13]. Due to their role as key regula-
tors of numerous cellular processes, GPCRs exhibit central 
relevance to the current clinical practice of medicine. As 
highly valued drug targets, 50–60% of all currently avail-
able pharmaceuticals modulate GPCR functions, directly 
or indirectly. The wide range of therapeutic effects thereby 
counteracts various symptoms including pain, allergic rhi-
nitis, schizophrenia, or hypertension [14–16].
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GPCRs are located at the cytoplasmic membrane where 
they mediate cellular responses to a multitude of sig-
nals, such as neurotransmitters, hormones, calcium ions, 
chemokines, sensory stimuli, or nucleotides [17, 18]. Inter-
estingly, for some GPCRs, the so-called orphan receptors, 
no ligands have been identified so far, however, they often 
modulate activities of other receptors through the formation 
of heteromers [19, 20]. Although it was long believed that 
GPCRs function as monomers, recent reports have high-
lighted that GPCR activation is not restricted to ligands, but 
can also occur via interaction with another receptor [21]. 
The activation of a GPCR by extracellular stimuli or multi-
merization induces a conformational change of the receptor, 
which in turn activates an intracellular signaling cascade 
[22]. Even though GPCRs regulate an enormous diversity 
of cellular mechanisms, they share a common structure, 
which is highly conserved in many eukaryotes. GPCRs, 
also termed seven-transmembrane-spanning receptors, con-
sist of seven-transmembrane-spanning α-helical segments, 
which are connected via three intracellular loops (i1, i2, 
i3) and three extracellular loops (e1, e2, e3) [23]. Disulfide 
bonds between conserved cysteine residues in the extra-
cellular loops e1 and e2 stabilize the structure of a GPCR 
[24]. Whereas the C-terminal domain is localized intracel-
lularly to interact with effector molecules, the N-terminal 
tail, which is usually glycosylated, faces the extracellular 
environment and possesses an important function in ligand 
binding [24]. Due to the presence of conserved amino acid 
residues, the superfamily of GPCRs is subdivided into five 
main families, named glutamate, rhodopsin, adhesion, friz-
zled/taste2, and secretin GPCRs [1].

Heterotrimeric G proteins are the common factor to trans-
mit signals of GPCRs across the plasma membrane to acti-
vate intracellular signaling pathways [18, 25]. A highly con-
served Asp-Arg-Tyr (DRY) motif in the C-terminal region 
of the third transmembrane domain of GPCRs is thought 
to be the crucial site of G protein binding [26]. G proteins 
consist of three subunits termed Gα, Gβ, and Gγ. The Gα 
subunit binds either guanosine diphosphate (GDP) in its 
resting state or guanosine triphosphate (GTP) when acti-
vated. Upon agonist binding, a conformational change of 
the 7TM occurs, which is followed by an exchange of GDP 
to GTP and the dissociation of the Gα-subunit from the Gβ 
and Gγ subunits, which are closely bound to one another, 
referred to as Gβγ [27]. The Gβγ and Gα subunits of the G 
protein stimulate a vast number of effector molecules, whose 
nature highly depends on the Gα subunit specificity of the 
respective GPCR [28]. Gα proteins are classified into four 
subfamilies, termed Gαs, Gαi, Gαq, and Gα12. Stimulation 
of Gαs is known to activate the adenylyl cyclase (AC) and to 
increase levels of cyclic adenosine monophosphate (cAMP). 
In contrast, activated Gαi proteins inhibit the induction of 
AC. Moreover, Gα12 leads to an activation of the Rho family 

of GTPases and through Gαq coupling, GPCRs induce phos-
pholipase C (PLC) activity and, consequently, cleavage of 
phosphatidylinositol biphosphate (PIP2) into diacylglycerol 
(DAC) and inositol triphosphate (IP3) as well as the NF-κB 
pathway [29–31]. Notably, although the exact mechanism of 
NF-κB activation by GPCRs remains largely elusive, recent 
reports have shown that the signaling cascade involves the 
scaffold protein CARMA3 together with the BCL10/MALT1 
complex [32, 33]. Besides, signaling can result from acti-
vated Gβγ, which induces the activity of phospholipases, 
ion channels, or lipid kinases [27]. Interestingly, in addition 
to this “classical” transduction pathway, GPCRs have been 
demonstrated to activate G protein-independent signals via 
further scaffold proteins including arrestins [34].

Herpesviral vGPCRs

The appearance of viral G protein-coupled receptors (vGP-
CRs) in genomes of herpesviruses is probably a result of 
viral hijacking during coevolution with the respective hosts. 
While α-herpesviruses do not encode GPCR homologues, 
the β-herpesviral genomes contain several vGPCRs and the 
γ-herpesviral genomes contain at least one vGPCR (Fig. 1). 
The respective proteins resemble human chemokine recep-
tors in structure and function and are highly suspected and 
reported to promote immune evasion and viral dissemina-
tion [35]. Chemokine receptors are classified according to 
the specific subclass of chemokines that they respond to 
in CXC receptors (CXCR1-6), CC receptors (CCR1-10) 
as well as the CX3CR1 and XCR1 receptors. Chemokines 
are chemotactic cytokines and comprise the largest family 
of cytokines, consisting of 43 so far identified endogenous 
chemokine ligands in humans. They are divided into four 
families: C, CC, CXC and CX3C chemokines, which is 
based on the number and arrangement of conserved cysteine 
residues in the N-terminus of chemokines that form disulfide 
bonds for stabilization of the biologically important tertiary 
structure. The γ-herpesvirus Kaposi’s sarcoma-associated 
herpesvirus (KSHV) infects mainly endothelial cells but 
also B cells, monocytes, macrophages and DCs [36, 37]. 
Latent infection is mainly asymptomatic, but may manifest 
as Kaposi’s sarcoma (KS) lesions, which are highly vascu-
larized neoplasms often visible as red patches on the skin. 
KSHV encodes a single vGPCR, named ORF74, which 
shows highest sequence homology to human CXCR2. Inter-
estingly, ORF74 binds a broad range of human chemokines 
including CXCL1-8, CXCL10, CXCL12, CCL1 and CCL5 
[9] (Fig. 1). ORF74 is expressed in KS lesions and was 
identified as an important factor for the initiation and devel-
opment of KS as suggested by experiments in transgenic 
mice [38]. Also, the genome of Epstein–Barr virus (EBV) 
encodes for one GPCR homologue, referred to as BILF1, 
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which is transcribed as an early gene. EBV infects mainly 
B cells and epithelial cells and was one of the first discov-
ered human tumor viruses. BILF1 shares highest sequence 
homology with CXCR4 and constitutively couples to Gαi/o 
proteins but no ligands have been identified to target BILF1 
hitherto (Fig. 1). Several reports suggest that BILF1 was 
evolved by EBV as versatile immunomodulatory protein to 
promote viral persistence. BILF1 reduces the levels of MHC 
class I at the cell surface to inhibit CD8(+) T-cell recogni-
tion of infected cells [39]. Furthermore, BILF1 inhibits the 
phosphorylation of RNA-dependent protein kinase R (PKR), 
thus antagonizing this important innate defense mechanism 
[40]. The roseoloviruses HHV-6A, HHV-6B and HHV-7 
also encode vGPCRs: the early gene products U12 and U51, 
which are expressed late during infection [41, 42]. HHV-
6A/B-encoded U12 shares highest homology with CCR10, 
while HHV-7-encoded U12 is most similar to CX3CR1. U51 
of HHV-6 shares the highest homology with CCR7, while 
U51 from HHV-7 is closest to CCR2 (Fig. 1). However, 
their functions during lytic infection or latency are largely 
unknown [35].

Functions of cytomegalovirus‑encoded 
GPCRs

HCMV encodes four GPCR homologues, termed US27, 
US28, UL33, and UL78 [7, 12, 43] (Fig. 1). While UL33 
and UL78 exhibit a high conservation among all cytomeg-
aloviruses, US27 and US28 are restricted to primate CMVs. 

Many reports have demonstrated that expression of these 
vGPCRs is not essential for viral replication in vitro [44, 45]. 
Furthermore, due to the strict specificity of CMVs for their 
respective hosts, the in vivo characterization of the role of 
HCMV-encoded vGPCRs is hampered. Thus, initial studies 
concentrated on the definition of ligand binding and sign-
aling activities of the HCMV vGPCRs using cell culture 
models.

US28 is the most intensely studied HCMV-encoded 
vGPCR and seems to be a versatile viral tool (recently 
reviewed in [46]). US28 is the only HCMV-encoded 
vGPCR that responds to different human chemokines like 
CCL2 (MCP1; monocyte chemoattractant protein 1), CCL3 
(MIP-1α; macrophage inflammatory protein 1-alpha), CCL4 
(MIP-1β; macrophage inflammatory protein 1-beta), CCL5 
(RANTES; regulated on activation, normal T cell expressed 
and secreted) or CX3CL1 (fractalkine) and induces various 
signaling pathways in response to promiscuous G protein-
dependent signaling (Figs. 1, 2) [47–50]. Responses to its 
chemokine ligands include induction of a calcium flux due 
to PLCβ or ERK2 activation and induction of SMC migra-
tion via SCR- or RhoA-dependent signaling [48, 51–53]. 
However, US28 was also described to signal constitutively 
in a ligand-independent manner which activates PLCβ and 
NF-κB, STAT3, NFAT and CREB via interaction with Gαq 
or Gαi as well as Gβ/Gγ subunits [54–57]. Parts of these 
signaling events seem to promote proliferative signals dur-
ing lytic HCMV infection thereby associating US28 with 
vascular diseases and potential oncomodulatory effects [8, 
51, 52]. US28 undergoes fast and constant endocytosis and 

Fig. 1   Viral GPCRs encoded by human herpesviruses. While herpes-
viruses of the β- and γ-subfamilies encode at least one viral GPCR 
(vGPCR), the genomes of α-herpesviruses do not contain genes with 
homology to cellular GPCRs. The vGPRS show a variable degree of 
sequence identity to cellular chemokine receptors (CKR). The CKR 

homolog with closest sequence identity is indicated (percentage 
amino acid identity is given in brackets, data taken from [35]). The 
most important ligands of the respective vGPCRs are also listed. Fur-
thermore, the scheme summarizes whether a vGPCR signals in a con-
stitutive and/or a ligand-induced manner
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recycling and is therefore mostly found in intracellular vesi-
cles in vitro [58, 59]. In this context, US28 was also identi-
fied to act as a chemokine sink by binding and internalizing 
chemokines thereby withdrawing them from the environ-
ment of infected cells [45, 53, 60, 61]. Meanwhile, structural 
details for chemokine recognition are available, since the 
crystal structure of US28 in complex with the chemokine 
domain of human CX3CL1 could recently be solved [62]. 
This is an important step forward since it allows for the 
structure-based discovery of US28 small molecule ligands 
that could be used for pharmacological modulation of this 
vGPCR [63].

So far, no ligands for the vGPCRs US27, UL78, and 
UL33 could be identified. Thus, these proteins are still 
orphan receptors (Figs. 1, 2). UL33 and its homologues in 
mouse (M33) and rat CMV (R33) are able to activate sev-
eral signaling pathways in a constitutive manner [67–70]. 
For the rodent homologues M33 and R33, a critical role 
for infection of the host could be demonstrated [71–73]. 
Gene-knockout viruses were used to show that deletion of 
M33 or R33 resulted in less virulent CMV variants which no 
longer replicated in salivary glands. Intriguingly, the in vivo 
replication defect of an M33-deficient virus was partially 
complemented by UL33 and US28. This strongly suggests 
that the respective vGPCRs share biological functions [74].

In contrast to US28 and UL33, the signaling activities of 
US27 and UL78 are not well characterized. US27 and US28 
lie directly adjacent to each other in the viral genome and 
share 31% sequence identity. The results of a recent phylo-
genetic analysis indicate that the human chemokine receptor 
CX3CR1 served as the common ancestor and subsequent 
gene duplication gave rise to two vGPCRs which evolved 
distinct functions during virus infection [75]. Since US27 is 
heavily glycosylated and possesses two conserved cysteine 
residues in the second and third extracellular loop, a poten-
tial involvement of US27 in chemokine binding appears 

possible, however, no ligands could be identified so far [76]. 
Expression of US27 in multiple cell types is described to 
result in two remarkable phenotypes. First, US27 expres-
sion enhances cell proliferation and survival, which was 
linked to suppression of negative growth regulators [77]. 
Second, in contrast to UL33 and UL78 that are described to 
reduce CXCR4 receptor functions, US27 increases CXCR4 
expression levels and CXCL12-promoted signaling of 
CXCR4 [78, 79]. Alterations of CXCR4 internalization 
dynamics in the presence of US27 resulting in prolonged 
intracellularly located CXCR4 with delayed recycling kinet-
ics were suggested as the mechanism for this observation 
[80]. Regarding its subcellular localization, US27 is mainly 
associated with the endosomal machinery and undergoes 
constitutive endocytosis in transient and stable transfec-
tion systems [81]. Interestingly, the C-terminal domain of 
US27 was suggested to confer the primarily intracellular 
localization of US27 [82]. However, the function of US27 
during infection is poorly understood. The US27 gene is 
highly conserved among HCMV strains including clinical 
isolates and laboratory strains indicating an important role 
during infection [75, 83]. Viral mutants lacking the US27 
gene are replication competent but are limited to spreading 
from cell-to-cell rather than by the extracellular route [84]. 
The localization of US27 in the viral envelope is consistent 
with this finding and suggests a role during entry or egress 
[81]. Upon de novo synthesis, US27 is expressed with late 
expression kinetics. Starting at 48 hpi, US27 is mainly found 
in the perinuclear structures associated with the cVAC [81, 
85]. A recent approach to identify novel signaling capabili-
ties of the HCMV-encoded vGPCRs with special interest in 
the poorly characterized US27 and UL78, revealed a strong 
and so far undescribed NF-κB activation by US27 which is 
assumed to be relevant for viral dissemination [86].

Knowledge about the role of UL78 during viral infec-
tion is limited. Studies using UL78-deficient viral strains 

Fig. 2   Schematic representation 
of the ligand-dependent and 
ligand-independent signaling 
activities of US28 as well as the 
ligand-independent signaling 
activities of UL33. Stimulatory 
effects are indicated by arrows, 
green for ligand-dependent 
signaling of US28, gray for the 
ligand-independent signaling of 
US28, and black for ligand-
independent signaling of UL33. 
Gray/black arrows display 
similar activities of US28 and 
UL33. Blue color displays 
unknown signaling capacities 
of US27 and UL78. Modified 
according to [64–66]
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indicated a role of this vGPCR for viral entry and efficient 
replication in epithelial cells but not in fibroblasts [87]. Fur-
thermore, the rodent homologues M78, encoded by murine 
CMV and R78, encoded by rat CMV, were utilized to inves-
tigate the relevance of this vGPCR for viral pathogenesis 
in vivo [88–90]. Deletion of R78 from rat cytomegalovirus 
(RCMV) strains resulted in considerably higher survival 
compared to wild-type (wt)-infected animals [88]. In addi-
tion, studies using the murine cytomegalovirus (MCMV) 
homologue M78 revealed that UL78 might be involved in 
tissue tropism, since deletion of M78 did not affect dissemi-
nation in general but attenuated the replication of MCMV 
in the salivary glands of infected mice [89]. Similar to the 
three other vGPCRs of HCMV, UL78 undergoes constitutive 
internalization [91]. Wagner et al. reported that UL78 can 
be detected at the plasma membrane but it mainly localizes 
to the endoplasmic reticulum. Furthermore, using several 
in vitro assays, they were able to demonstrate that UL78 
forms heteromers with US28. This appears to be important 
for a silencing of US28-mediated activation of NF-κB-
dependent gene expression by UL78 [92]. Besides, UL78, 
together with UL33, has been shown to disturb the cell sur-
face expression, ligand-induced internalization, and signal 
transduction of the cellular chemokine receptors CCR5 
and CXCR4, which was caused by receptor heteromeriza-
tions [79]. Consequently, UL78, similar to US27, seems to 
be more than just an orphan receptor and requires further 
investigation to unravel its main purpose for efficient HCMV 
replication.

Role of CMV‑encoded vGPCRs for viral 
spread via the regulation of DC migration

One recently emerging role of vGPCRs with high impor-
tance for pathogenesis pertains to the regulation of dendritic 
cell migration during viral dissemination [93]. Already in 
2008, it was detected that mutations of the murine CMV 
vGPCR M33 which abrogate constitutive signaling result 
in significantly diminished MCMV infection of the salivary 
glands [73]. UL33 of HCMV was shown to be able to func-
tionally substitute for M33 in vivo suggesting conserved 
biological roles of these vGPCRs. A further characteriza-
tion of the phenotype of M33 knockout viruses revealed an 
additional attenuation for infection of the spleen and pan-
creas as well as a severe defect in reactivation from latency 
indicating tissue-specific functions of M33 during infection 
[71]. Although infection experiments conducted in immu-
nocompromised mice suggested that M33 only plays a role 
for viral amplification once the virus reaches the salivary 
gland, recent studies indicate a more profound role of M33 
dictating efficient viral dissemination [94, 95]. Farrell and 
colleagues reported that following intranasal infection, 

MCMV migrates via lung CD11c+ dendritic cells (DC) to 
lymph nodes (LN), blood and then salivary glands. This 
route requires that infected dendritic cells do not only enter 
LNs but they also need to recirculate into blood to mediate 
dissemination. However, although traffic to draining LNs 
is well recognized, DCs usually do not leave LNs but are 
thought to die locally following arrival in LNs [96]. This 
suggested that MCMV has evolved specific mechanisms to 
stimulate the exit of infected DCs from LNs thus fostering 
viral dissemination. It could be shown that MCMV-infected 
DCs exited LNs not via efferent lymph but via specialized 
vessels, the so-called high endothelial venules (HEV) which 
represent major sites of extravasation of lymphocytes from 
the blood into the LN via a multistep adhesion process 
(Fig. 2) [97]. As cell migration is controlled by chemokines, 
viral chemokine receptor homologues were suspected to 
potentially mediate the LN traverse of infected DCs. Indeed, 
infection experiments with MCMV harboring a knockout of 
the chemokine receptor M33 resulted in an accumulation of 
infected DCs in LNs.

Consequently, viral spread was greatly reduced [97]. 
Since an M33 point mutant lacking Gq signaling exhibited 
an identical phenotype, the constitutive signaling activity of 
M33 appears to be required to promote the exit of infected 
DCs from LNs via HEVs (Fig. 3). Furthermore, US28 could 
substitute for M33 in promoting DC recircularization while 
signaling-deficient US28 was inactive [97]. This suggests 
that a similar mechanism of vGPCR-driven viral dissemina-
tion via DC recircularization which may function through 
the downregulation of DC retention signals could also be 
true for HCMV infection. In summary, these experiments 
indicate a key role for cytomegalovirus vGPCRs in systemic 
viral spread.

Regulation of HCMV latency by the vGPCR 
US28

Several studies reported that the HCMV-encoded vGPCR 
US28 is expressed during lytic infection and latency [98, 
99]. However, its function during latency has remained 
undefined for a long time and is only recently beginning 
to be elucidated. Humby and O’Connor were the first to 
demonstrate that US28 was required during latency either in 
an in vitro latency model or using primary ex vivo-cultured 
CD34(+) hematopoietic progenitor cells (HPCs) [100]. They 
observed that infection of CD34(+) HPCs with viruses lack-
ing the US28 gene resulted in transcription from the major 
immediate early promoter and the production of infectious 
virus. Mechanistically, it is suggested that US28 attenuates 
mitogen-activated protein kinase (MAPK) and NF-κB sign-
aling as well as c-fos expression in latently infected cells, 
which is required for suppression of the HCMV major 
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immediate early promoter (MIEP) to prevent lytic infec-
tion [101, 102]. This is unexpected since previous studies 
reported that a similar set of signal transduction pathways 
is utilized by US28 to activate the MIEP upon infection of 
permissive cell types [103]. This strongly stresses the cell-
context dependency of vGPCR signaling. An alternative 
mechanism was proposed by Zhu et al.: they described a 
requirement for US28 to activate the STAT3-iNOS-NO axis 
which reprograms HPCs into a unique monocyte subset to 
achieve latency [104]. Thus, although different studies con-
cordantly demonstrate a requirement for US28 signaling to 
maintain HCMV latency in CD34(+) progenitor cells and 
CD14(+) monocytes, the exact way how US28 generates 
a host environment conducive to latency requires further 
investigation.

Importantly, however, those studies strongly support 
the notion that US28 might serve as an appealing drug 
target during latency. On the one hand, inverse ago-
nists may be used to interfere with US28 signaling. This 
induces viral reactivation in latently infected cells [101]. 
Consequently, cytotoxic T-cell killing of these normally 
immunologically undetectable cells may help to purge 

the latent viral reservoir [105]. Although the potency of 
the presently available inverse agonists of US28 (e.g. 
VUF2274) is limited, there is an ongoing intense search 
for optimized drugs for pharmacological modulation of 
this vGPCR [106]. An alternative strategy makes use of 
the fact that US28 is a membrane protein exhibiting a 
high rate of constitutive internalization thus efficiently 
sequestering chemokines from the environment [45]. This 
inspired the concept of using chemokine-based immu-
notoxins to target cytomegalovirus-infected cells. Spiess 
et al. designed a synthetic CX3CL1 variant with increased 
affinity and specificity for US28 that was fused with the 
cytotoxic domain of Pseudomonas Exotoxin A [107]. This 
immunotoxin not only caused a direct killing of lytically 
infected cells but the specific targeting of latently infected 
cells could also robustly reduce virus reactivation [107, 
108]. Although concerns regarding potential side effects 
of such an immunotoxin-based antiviral approach may 
delay its use in vivo, the ex vivo depletion of latently 
infected HPCs before stem cell transplantation may con-
stitute an alternative feasible approach to decrease the 
burden of latent HCMV.

Fig. 3   Model summarizing a 
novel role of vGPCRs for viral 
spread via DC recircularization. 
CMV-infected DCs migrate to 
draining lymph nodes. In the 
absence of vGPCR signaling, 
DCs are retained in lymph 
nodes. In the presence of 
vGPCR signaling, infected DCs 
can enter high endothelial ven-
ules (HEV) to reach the blood 
and to mediate viral spread to 
other tissues. Modified accord-
ing to [95]
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Concluding remarks

Although cytomegalovirus-encoded vGPCRs have first 
been detected approximately 30 years ago, only recently 
novel functions of these signal transduction molecules with 
utmost importance for viral pathogenesis could be unrave-
led. On the one hand, there is accumulating evidence that 
vGPCR signaling is required for systemic viral spread via 
DC recircularization. On the other hand, interference with 
vGPCR signaling interrupts latency fostering viral reactiva-
tion. Thus, cytomegalovirus-encoded vGPCRs emerge as an 
Achilles heel of cytomegaloviruses, since pharmacological 
modulation of these receptors in combination with conven-
tional drugs like ganciclovir may not only arrest active infec-
tion but could also help to reduce the latent viral reservoir.
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