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the overexpression of RAD51 which has been induced in 
HTLV-1 infected cells as a consequence of virus replica-
tion is not able to overcome the DNA damage toward cell 
transformation.
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Abbreviations
ACs	� Asymptomatic carriers
AKT	� Protein kinase B
ATLL	� Adult T-cell leukemia/lymphoma
β2m	� β2 microglobulin
cDNA	� Complementary DNA
CML	� Chronic myeloid leukemia
CREB	� c-AMP response element binding protein
HAM/TSP	� HTLV-1-associated myelopathy/tropical 

spastic paraparesis
HBZ	� HTLV-1 basic zipper factor of oncogenesis
HR	� Homologous recombination
HTLV-1	� Human T-cell leukemia virus type 1
LAT	� Linker for activation of T cells
LDH	� Lactate dehydrogenase
MUMS	� Mashhad University of Medical Sciences
PBMCs	� Peripheral blood mononuclear cells
PVL	� Proviral load
ROS	� Reactive oxygen species
TCD4+ cells	� CD4 T-lymphocytes
TCR	� T-cell receptor

Introduction

Human T-cell leukemia virus type 1 (HTLV-1) is a mem-
ber of Retroviridea, Delta genera that has been extensively 

Abstract  Adult T cell leukemia/lymphoma (ATLL) is a 
life-threatening malignancy of HTLV-1 infected Th lym-
phocytes. In the present study host–virus interactions 
were investigated by assessment of HTLV-1 proviral load 
(PVL) and host gene expression. A cross-sectional study 
was carried out on 18 ATLL, 10 HAM/TSP patients and 18 
HTLV-1 asymptomatic carriers (ACs). DNA and mRNA of 
the peripheral blood mononuclear cells were extracted for 
PVL and LAT, BIM, c-FOS and RAD51 gene expression 
measurement using qRT-PCR. The mean PVL in ATLL 
patients was 11,430 ± 3770 copies/104 which was statisti-
cally higher than ACs, 530 ± 119 copies/104, (p < 0.001). 
The expression of BIM, and c-FOS in ATLL patients were 
higher than HTLV-1 ACs; however, there were no statisti-
cally significant differences. The expression of RAD51 
as an essential player on DNA repair showed around 160 
times increase in ATLL group (166 ± 95) compared to ACs 
(1.04 ± 0.34) which is statistically significant (p < 0.001). 
Interestingly, there was a positive correlation between 
RAD51 expression and HTLV-PVL. The expression of 
LAT as a central adaptor in TCR signaling interestingly was 
around 36 times higher in ATLL group than ACs (ATLL; 
41.33 ± 19.91 vs. ACs; 1.15 ± 0.22, p < 0.001). This find-
ing showed that TCR signaling pathway mainly provides 
the growth factors for transformed cells. Furthermore, 
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studied for more than 30  years [1]. Approximately 
10–20 million people are infected with HTLV-1 worldwide 
[2]. However, only 2–5% of infected people develop adult 
T-cell leukemia/lymphoma (ATLL) or HTLV-1-associated 
myelopathy/tropical spastic paraparesis (HAM/TSP) [3, 4]. 
The virus may also be a risk factor for infective dermatitis, 
uveitis, and even cardiovascular diseases [4, 5].

Endemic areas include South America, Southwestern 
Japan, Central Africa, the Melanesian Islands, the Carib-
bean basin, and the Middle East [6, 7]. In Iran, HTLV-1 
is endemic at least in two provinces, including Razavi 
Khorasan (5,994,402 population) and Northern Khorasan 
(811,572 population) [8]. Mashhad, the center of Razavi 
Khorasan province  is a pilgrimage city, and Nishabur, are 
the most infected areas with a HTLV-1 prevalence of 2.1 
and 7%, respectively [6, 9]. However, HTLV-1-associated 
disorders have been reported from other provinces such as 
Golestan, Alborz, and East Azarbayejan [6, 10–12].

Adult T-cell leukemia/lymphoma is an aggressive prolif-
eration of mature activated CD4+ T cells associated with 
the human T-cell lymphotropic virus type 1 (HTLV-1) [5]. 
Leukemia develops after a very long latency period and 
is preceded by clonal expansion of HTLV-1-infected acti-
vated T cells [13]. ATLL was classified into four clinical 
subtypes by Shimoyama, According to the lymphocyte 
count, serum calcium concentration, lactatedehydrogenase 
(LDH) level, solid organ involvement, and the severity of 
systemic symptoms include smoldering, acute, chronic and 
lymphomatose forms [46]. Flower-like lymphocytes are 
representative of aneuploidy or abnormal chromosomal 
content which develops due to aberrant mitotic divisions 
[14]. The viral proteins, particularly Tax, play a central role 
for increasing the number of HTLV-1-infected cells by pro-
moting oligoclonal proliferation and suppressing apoptosis 
[15]. Therefore, Tax expression fortifies the proviral load 
(PVL) and frequency of infected cells that might be indi-
cating the progress to associated diseases [2]. A prospective 
study from carrier to ATLL revealed that such clonal prolif-
eration is directly associated with the onset of ATLL; there-
fore, these studies illustrated that HTLV-1-infected clones 
can transform to malignancy during the carrier state [16].

Furthermore, many studies have demonstrated that 
HTLV-1 Tax and HBZ proteins can induce various cellular 
abnormalities, genetic and epigenetic alterations and induce 
inappropriate host immune responses involved in the leu-
kemogenesis in ATLL [17]. The PX region of HTLV-1 
genome, encoded Tax protein, is essential for the oncogenic 
transformation, transactivation, dysregulation of apoptosis 
pathway, DNA repair distraction, and cell cycle disrup-
tion within HTLV-1-infected cells [18, 19]. However, there 
are no clear determinants to differentiate the subjects who 
develop ATLL from those who remain asymptomatic. Find-
ings of many studies supported that interaction between 

host biological responses and HTLV-1 main virulence ele-
ments such as PVL, Tax, and HBZ might be implicated in 
development and progression of ATLL [7, 10]. Therefore, 
alterations and errors during proliferation are accumulated 
progressively by several viral proteins in the host genome 
during the latent period and finally lead to the onset of 
ATLL [19].

The host immune responses are able to eliminate the 
virus infected or malignant cells, mainly with programmed 
cell death, induced by NK cells and CTLs. Therefore, to 
disseminate, HTLV-1 needs escaping from these host 
immune responses. HTLV-1 Tax has developed numerous 
mechanisms to subvert this control and induce cell cycle 
promotion in the absence of physiological signals [12]. In 
addition, host cell factors, particularly the ones which are 
involved in cell cycle progression, are implicated in ATLL 
development. For example, abnormal expression of c-FOS 
as a component of the inducible AP-1 transcriptional com-
plex is crucial in T cell cycle promotion and in pathological 
conditions contributes to the cell transformation. The induc-
ible transcriptional AP-1, composed of c-Fos and c-Jun pro-
teins, is a regulator of major physiological processes such 
as cell proliferation, differentiation, and response to stress. 
It is also a necessary factor in a wide range of pathological 
situations, mainly tumorigenesis depending on the cell con-
text [20]. Thus, Tax may affect c-FOS upstream signaling 
pathways and regulate expression of this gene to leukemo-
genesis of infected T cells. However, the direct effects of 
HTLV-1 infection on programmed cell death is less clear, 
Tax has been shown to affect cell immortalization by acti-
vating PI3K pathway and repressing Bax gene-expression 
[46]. Since Bax promotes apoptosis by inhibiting Bcl-2, 
this may imply a molecular mechanism for the resistance of 
HTLV-1-infected T cell lines to apoptosis inducing stimuli 
[21]. However, several reports have shown that HTLV-1-in-
fected T cells can be induced to undergo apoptosis [20, 22]. 
Three groups of proto-oncogenic proteins (c-Myc/Max, 
c-FOS/c-Jun, and Bcl2/Bax) are known to exert a synergis-
tic effect to enhance their roles in the pro- or anti-apoptotic 
action [23].

BIM (BCL-2-interacting mediator of cell death) induces 
apoptosis and is antagonized by anti-apoptotic BCL-2 fam-
ily members. BIM plays a critical role in tumor cell biol-
ogy, including the regulation of tumorigenesis through 
activities as a tumor suppressor, tumor metastasis, and 
tumor cell survival. Consequently, BIM has become the 
focus of intense interest as a potential target for cancer 
chemotherapy [24].

An additional disruptive effect of Tax emanates from its 
impact on the ability of the cell-cycle machinery to regu-
late DNA replication and cell division [12]. Furthermore, 
another possible pathway for cell cycle disruption is dis-
traction of DNA repair. As results of the aneuploidy and 
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polyploidy variation in infected T cell nuclear genome by 
HTLV-1, Tax could induce this kind of DNA variation by 
interrupting DNA repair mechanisms. RAD51 (repair pro-
tein of ds DNA breaks) is one of the main factors during 
the DNA double-strand break repair which play a renovat-
ing role in homologous recombination of DNA [25]. This 
molecule is responsible for monitoring strand pairing and 
homology stages of homologous recombination which 
cooperates with the other ssDNA-binding proteins similar 
to RAD52, PALB2, BRCA2, and RPA [26, 27].

Linker for activation of T cells (LAT) is an integral mem-
brane protein that plays an important role in T cell activa-
tion [28]. Tyrosine phosphorylation of LAT induces the 
recruitment of signaling proteins that activate major signal-
ing pathways for activating of the T cell functions [29].

Therefore, in this study HTLV-1 PVL and LAT, c-FOS, 
BIM and RAD51 gene expression was evaluated in ATLL 
patients and carrier subjects to determine interaction and 
correlations between host cell signaling, apoptosis, and 
DNA repair elements with virulence properties of HTLV-1 
throughout these populations.

Materials and methods

Study design

Patients were admitted to the Department of hematology 
and oncology of Emam reza and Ghaem hospitals, Mash-
had University of Medical Sciences (MUMS), Mashhad, 
Iran, between January 2012 and December 2014. The 
inclusion criteria for studied subjects were newly diagnosed 
ATLL according to the World Health Organization criteria, 
no history of medications, autoimmunity or present infec-
tious diseases. The study was approved by the Biomedical 
Ethics Committee of Mashhad University of Medical Sci-
ences, Mashhad, Iran (No: 911304).

RNA extraction and cDNA synthesis

Whole-blood samples were obtained from 19 ATLL 
patients and 18 HTLV-1 asymptomatic carriers (ACs); then 
peripheral blood mononuclear cells (PBMCs) were isolated 
from EDTA-treated blood samples by Ficoll density gradi-
ent (Cederline corporation, Canada).

Total RNA extraction from PBMCs was conducted using 
the Trizol reagents (Tripure Roche-Germany) to purify total 
RNA according to the manufacturer’s guidelines. All puri-
fied RNAs from all samples were treated with DNase before 
constructing complementary DNA (cDNA) to remove 
genomic DNA contamination. Then, cDNA was generated 
using random primers and reverse transcriptase according to 
the manufacturer’s instructions (Bioneer, South Korea).

For any probable infection, a sample was sent to the 
microbiology lab (Ghaem Hospital) for direct examination 
and culture.

Oligonucleotide designing and real‑time PCR

Real-time PCR assay (TaqMan method) was carried out to 
measure host BIM, RAD51, c-FOS, and LAT expression 
and PVL of HTLV-1 in PBMCs using specific primers and 
a fluorogenic probe by Real-Time PCR in a Q 6000 Rotor 
gene machine (Qiagene, Germany) using the AccuPower® 
Plus DualStar™Master Mix (South Korea). Table 1 shows 
the nucleotide sequence of primers and probes. All samples 
were performed and related to the expression of an appro-
priate reference gene, β2-microglobulin (β2m) expression. 
The gene expression of BIM, RAD51, c-FOS, LAT, and 

Table 1   The nucleotide sequences of the specific primers and probes 
for BIM, RAD51, c-FOS, LAT. and β2-microglobulin

BIM BCL-2-interacting mediator of cell death, RAD51 repair protein 
of ds DNA breaks, c-FOS FBJ murine osteosarcoma viral oncogene 
homologue, LAT linker for activation of T cells, β2m β2 microglobu-
lin

Targeted gene Sequence (5′ → 3′) Purpose

BIM Forward CACTACCACCACTT-
GATTCTTGC

Reverse AACGCAGCGAAC-
CGAATACC

Probe CCCTGCGAACCCTGC-
CACACTGC

RAD51 Forward GGGTGGAGGTGAA-
GGAAAGG

Reverse CACTGCCAGAGAGAC-
CATACC

Probe CGAGCATATGCTACAT-
TATCCAGGAC

c-FOS Forward CTGTCTCCGCTTGGAGT-
GTA

Reverse GGGCAAGGTGGAACAGT-
TAT

Probe TCAGCTCCCTCCTCCG-
GTTGCG

LAT Forward GACTCAGACTCGCACA-
CAGG

Reverse GACGCAGCCTGAGAAT-
GACC

Probe CCAGCAGTGCCAGCC-
CAGGTCAGA

β2m Forward TTGTCTTTCAGCAA-
GGACTGG

Reverse CCACTTAAC-
TATCTTGGGCTGTG

Probe TCACATGGTTCACACG-
GCAGGCAT
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β2m was relatively calculated from two 6-point standard 
curves. The normalized value of the expression for each 
gene was calculated as the ratio of relative copies number 
of the mRNA of interest/relative mRNA copies number of 
reference gene, indicated as the expression index.

Proviral load measurement

To assess the HTLV-1 PVL, PBMCs were isolated from 
EDTA-treated blood samples and cellular DNA was 
extracted for proviral load quantification, as explained ear-
lier. Real-time PCR was performed using a commercial 
absolute quantification kit (Novin Gene, Iran) to measure 
the PVL of HTLV-1 using specific primers and a fluoro-
genic probe by a Rotorgen Q 6000 machine (Qiagen, 
Germany). The HTLV-1 copies number was reported as 
an actual amount of cellular DNA by means of quantifica-
tion of the albumin gene as the reference gene (Albumin). 
HTLV-1 and albumin DNA concentrations were calculated 
from two 5-point standard curves. The normalized value 
of the HTLV-1 PVL was calculated as the ratio of HTLV-1 
DNA copies number/albumin DNA copies number/2 × 104 
and expressed as the number of HTLV-1 proviruses per 104 
PBMCs [30].

Statistical analysis

The experimental results are statistically presented as the 
mean ± SEM. Data analysis was performed by SPSS soft-
ware ver.13.0 (SPSS, Chicago, IL, USA). As Kolmogorow–
Smirnow normality test showed none of the variables were 
admitted the normal distributions; therefore, nonparametric 
statistical tests including Man–Whitney and spearman cor-
relation with Tukey post-test were used to compare the data 
between the groups and the correlation of the parameters, 
respectively. p values <0.05 were considered as a statisti-
cally significant.

Results

Descriptive analysis of patients

The study investigated host–microbe interactions by assess-
ment of alteration in gene expression of the proteins in 
19 patients (13 females and 6 males) with ATLL and 18 
ACs (11 females and 7 males, Table 2). The mean age in 
ATLL group was 53 ± 8 and in ACs was 39 ± 9 years old 
(Table 2). There were not any significant differences in age 
and gender between groups.

As shown in Fig.  1, patients were classified based on 
birth place in this endemic area, Razavi Khorasan province, 
although most of the patients were Mashhad residents. 

There were not any differences in the frequency of the 
ATLL among these cities adjusted based on the population.

Out of 19 ATLLs, 17 patients had lymphomatosis, 5 
patients had skin lesion, and 6 patients had opportunistic 
infections, mainly candidiasis. Moreover, in these immune-
compromised subjects, two patients had aspergillosis, one 
patient Pneumocystis jiroveci, and two patients had P. aer-
uginosa in their skin lesions. Moreover, two patients had 
lymphadenopathy and skin lesion and one patient had immu-
nodeficiency and skin lesion, simultaneously. None of the 
patients showed three clinical symptoms together (Fig. 2).

Gene expression

The mRNA expression level of BIM, a cell pro-apoptotic 
factor in ATLL patients (3.86 ±  1.11), was around three 
times higher than in HTLV-1 ACs (1.36 ± 0.39); however, 
there was no statistically significant difference between the 
two groups (Fig. 3a).

The expression of RAD51 as an essential player on 
DNA repair showed around 160 times increase in ATLL 
group (166 ± 95) compared to ACs (1.04 ± 0.34) which is 
statistically significant (p < 0.001; CI 95%; Fig. 3b).

Although c-FOS expression in the ATLL group was 
>tenfold higher than in the carrier group (35  ±  20 vs. 

Table 2   Age and gender of ATLL and ACs groups

ATLL ACs

Female 13 11

Male 6 7

Age (mean) 53 39

Fig. 1   Patients classified based on birth place, in Razavi Khorasan 
province
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1.08 ± 0.46, respectively), there was no significant differ-
ence (Fig. 3c).

The mRNA expression of LAT as a central adaptor in 
TCR signaling was interestingly increased around 36 times 
in ATLL group compared to carrier group (p  <  0.001, 
ATLL; 41.33  ±  19.91 vs. ACs; 1.15  ±  0.22; CI 95%; 
Fig. 3d).

Proviral load

The mean PVL of HTLV-1  in ATLL patients was 
11,430 ±  3770  copies/104 which was statistically differ-
ent from HTLV-1 PVL in healthy carriers, 530 ± 119 cop-
ies/104, (p < 0.001; CI 95%; Fig. 4).

Discussion

Although most of ACs remain infected lifetime without 
developing any major clinical symptoms, a small part of 
infected individuals develop an aggressive lymphoprolif-
erative disorder called adult T cell leukemia/lymphoma. 
Given the fact that only 2–5% of infected individuals 
develop ATLL, it seems that HTLV-1 infection alone is 

not sufficient for the transformation of infected cells. 
However, over 30  years after the discovery of HTLV-1, 
it is still not fully understood how HTLV-1 transforms 
mature TCD4+ cells. Therefore, viral–host interactions 
are assumed the main players of disease’s development 
and progression; thus host genetic, epigenetic abnormali-
ties and host immunological status should be considered 
in attempting to understand mechanism of the oncogen-
esis of ATLL.

Like other studies, in the present study the ATLL 
patients showed a variety of clinical manifestations due to 
involvement of many organs by malignant cells, includ-
ing lymphadenopathy, hypercalcemia, skin lesionsin and/
or opportunistic infections which often contribute to the 
extremely high mortality of the disease [31]. In the present 
study lymphadenopathy had a strong negative correlation 
with presence of skin lesions in ATLL patients. These find-
ings show coincidence probability of cutaneous manifesta-
tion and lymphomatosis. Moreover, around 21% of ATLL 
patients had opportunistic infection manifestations like 
pneumonia, vaginitis or thrush. High incidence of respira-
tory infectious episodes with C. albicans, Aspergillus, and 
Pneumocystis jiroveci in these patients might be due to 
immunosuppressive activity of the virus and malignancy 
condition [31, 32]. However, in contrast with superinfec-
tions in other endemic areas strongyloidiasis, tuberculosis 
or HIV infection was not detected. Therefore, in HTLV-1 
endemic areas pulmonary complications should be con-
sidered during pregnancy. According to accumulated data, 
escaping from immune responses, increased HTLV-1 PVL, 
and clonal expansion of HTLV-1 infected cells are the main 
players of leukemogenesis in HTLV-1 carriers [16].

However, Cook et  al. demonstrated that the PVL cor-
relates with the total number of infected clones, not with 
the degree of oligoclonal proliferation. ATLL is frequently 
accompanied by a population of unusually abundant HTLV-
1-infected T-cell clones [33]. The present study showed 
significant differences in HTLV-1 PVL between ATLL 
patients and ACs. In the same study group Akbarin et  al. 
[30] demonstrated that HTLV-1 PVL was higher in ATLL 
patients in comparison with HAM/TSP and ACs and sug-
gested that HTLV-1 PVL is a prognostic factor for devel-
opment of HTLV-1 associated diseases and can be used as 
a monitoring marker for the efficiency of the therapeutic 
regime [30].

There are scant data on the mechanisms of pathogen-
esis of ATLL. Boxus M et  al. showed that HTLV-1 has 
developed advanced mechanisms to guarantee persis-
tence. HTLV-1 regulatory elements such as Tax and HBZ 
permit favored proliferation of the infected cells. HBZ, 
p12, and p30 either decrease viral expression or constrain 
immune recognition. Enduring Tax-induced proliferation 
and abnormal expansion of infected cells produce DNA 

Fig. 2   The clinical symptoms in ATLL subjects. None of the 
patients showed three clinical symptoms together. In immunodefi-
cient patients, all of the six subjects had candidiasis, two patients had 
aspergillosis, and one patient had Pneumocystis jiroveci. Moreover, 
two patients had P. aeruginosa in their skin lesions. There was not 
any strongyloidiasis, tuberculosis or HIV infection
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lesions characteristic of ATLL. Advanced stabilization of 
these abnormalities provides an increased proliferative 
ability of the infected cells and finally leads to ATLL [34].

Furthermore, the HTLV-1-Tax protein is another cru-
cial element for viral replication and for initiating malig-
nant transformation leading to the progression of ATLL. 

Fig. 3   a The BIM expression 
in ATLL and healthy carriers. 
There was no statistically sig-
nificant difference between two 
groups. b RAD51 expression 
in ATLL and healthy carri-
ers. Significant difference was 
observed between two groups 
(p < 0.001). c The c-FOS 
expression in ATLL and healthy 
carriers. Despite the increased 
relative expression of c-FOS 
and BIM (a) in ATLL patients 
compared to ACs, there were no 
significant differences between 
ATLLs and ACs. d LAT expres-
sion in ATLL and healthy car-
riers; significant difference was 
observed between two groups 
(p < 0.001)

Fig. 4   HTLV-1 PVL in ATLL 
and healthy carriers. Signifi-
cant difference was observed 
between two groups (p < 0.001)



333Med Microbiol Immunol (2017) 206:327–335	

1 3

Marriott et al. demonstrated that HTLV1- Tax protein, is 
necessary and sufficient for cell proliferation and con-
sequently cell transformation, thus it can be considered 
as a viral oncoprotein. Tax interacts with numerous cel-
lular proteins to reprogram cellular processes including, 
but not limited to, transcription, cell cycle regulation, 
DNA repair, and apoptosis [35]. Thus, in this study some 
intended processes were investigated (signaling, apopto-
sis pathways, and DNA repair).

Despite the increased relative expression of c-FOS and 
BIM in ATLL patients compared to ACs, there were not any 
significant differences between ATLLs and ACs. It has been 
shown that c-FOS as an important transcription factor in 
MAPK signaling pathway and BIM as an element of intrin-
sic apoptosis pathway are not major players in ATLL cell 
transformation. Nagata et  al. suggested that cellular genes 
such as c-FOS, which regulate normal T-cell growth, are also 
activated directly or indirectly by p40tax and p40tax-induced 
modulation of gene expression plays a crucial role in T-cell 
transformation by HTLV-1 [36]. However, there was no asso-
ciation found between c-FOS expression and ATLL onset in 
the study; consequently other signaling pathway molecules 
such as pI3K/AKT and NF-kB pathways were investigated 
deeper. Jeong et al. suggested that AKT plays a role in the 
activation of pro-survival pathways in HTLV-1-transformed 
cells, possibly through NF-kB activation and inhibition of 
p53 transcription activity [37]. Saggioro et  al. emphasized 
the importance of NF-κB pathways and CREB as a survival 
factor in various cell systems to HTLV-1 infection and pro-
gression of ATLL [38]. Moreover, Piazza et al. believed that 
BIM is epigenetically silenced in cell lines and anaplastic 
large cell lymphoma cells and should be involved in apop-
tosis and cancer development [39]. In the present study, 
BIM did not show any association with ATLL; this finding 
revealed that another apoptosis pathways and molecules may 
be involved. Soderquist et al. found Gossypol increased Noxa 
(mitochondrial apoptosis pathway molecule) and decreased 
Bcl2 and Bclxl expression in CLL patients; on the other hand, 
Miller et  al. suggested that paclitaxel-induced apoptosis is 
BAK-dependent, but BAX-independent in human breast can-
cer cells [40, 41]. There are no reliable studies to investigate 
these apoptotic molecules in ATLL individuals. In another 
study we are trying to evaluate the role of these molecules in 
ATLL development (unpublished data).

LAT expression, a central adaptor in TCR signaling, 
was significantly increased in ATLL subjects compared to 
HTLV-1 ACs. Therefore, it seems that LAT acts as activa-
tor of growth and transformation element in ATLL cell 
progression toward the cancer. Januchowski et  al. dem-
onstrated that trichostatin A (TSA) resulted in ZAP-70, 
LAT, and SLP-76 transcript and protein down-regula-
tion in Jurkat leukemia T cells and may be considered 
as an immunosuppressive effector [42]. Another study 

indicated that reactive oxygen species (ROS) induced 
T-cell receptor-induced lipid raft formation and T cell 
activation toward proliferation.  Oxygen radicals activate 
LAT, phospho-LAT, and PLC-γ in T-cell hybridomas, T 
leukemia cells, and normal T cells.   In other words, oxi-
dative stress via LAT activation is a very important mech-
anism in activation, proliferation, and clonal expansion of 
T cells [43]. Therefore, preventing LAT-mediated T cell 
activation, by cell stress such as ROS, viruses and onco-
genes, should be an important implication of therapeutic 
strategy, particularly a combined therapy regime with 
ROS scavengers for T cell malignancies [43].

DNA damage has been reported as a main cause of 
transformation in many studies; however, a preventive 
transformation strategy to overcome the DNA damage 
and consequently inducing cell cycle called RAD51 pro-
tects the cells from DNA damage. Klein et  al. showed 
that there is a propensity for RAD51 to be overexpressed 
in tumor cells that results in increased resistance to DNA 
injury and medicines used in chemotherapies. This event 
leads to increased genomic instability and may contribute 
to carcinogenesis [44].

Regarding QueryRAD51, although in the present 
study its expression was strongly increased in ATLL 
patients compared to HTLV-1 ACs, it could not constrain 
DNA damage because of elevated activity of HTLV-1 in 
infected cells. It seems that ATLL cells attempt to over-
express RAD51 to overcome the DNA damage in trans-
formed cell but fails. Thus, RAD51 overexpression in 
ATLL cells could serve as an effective biomarker for 
diagnosis and a possible target for the treatment.

Zhu et  al. demonstrated that abnormally elevated 
RAD51 function and hyperactive homologous recombi-
nation (HR) rates have been found in a panel of cancers, 
including breast cancer and chronic myeloid leukemia 
(CML). They believed that directly targeting RAD51 and 
attenuating the deregulated RAD51 activity has, there-
fore, been proposed as an alternative and supplementary 
strategy for cancer treatment [45].

However, there are limitations for such studies. 
Although the present study was conducted on primary 
cells of ATLL patients, (1) the actual expression of pro-
teins was not investigated. (2) The roles of other modula-
tory signals associated with RAD51, LAT or TCR sign-
aling pathways together with HTLV-1 factor expression 
using next-generation sequencing based on mRNA and 
microRNA analysis must be validated. (3) The actual 
mechanisms in which these proteins contribute to cell 
transformation in ATLL are largely not understood [46].

Interestingly, there was a positive correlation between 
RAD51 expression and HTLV-1 PVL in our study group. 
This finding showed that overexpression of RAD51 has 
been induced in HTLV-1 infected cells as a consequence 
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of virus replication activities; however, RAD51 over-
expression is not able to overcome the DNA damages 
toward cell transformation. Furthermore, according to our 
results, it can be suggested that TCR signaling pathway 
mainly provides the growth factors for transformed cells.

Conclusions

TCR signaling pathway mainly provides the growth 
factors for transformed cells. Furthermore, the overex-
pression of RAD51 which has been induced in HTLV-1 
infected cells as a consequence of virus replication 
is not able to overcome the DNA damage toward cell 
transformation.
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