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well as the role of their SNPs associated with disease sus-
ceptibility and outcome in different human populations.
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Introduction

Tuberculosis (TB), a communicable infectious disease, 
remains the second leading cause of deaths from an infec-
tious disease worldwide. In 2014, TB claimed about 
1.5 million deaths, according to the Global Tuberculo-
sis Report 2015 [1]. The majority of infected individu-
als develop asymptomatic latent TB, while ∼5–10 % of 
latently infected individuals will progress to active TB, 
resulting in about 9 million new TB cases and 1.4 million 
deaths per year [2].

Mtb is transmitted via inhalation of tiny droplets/aero-
sols containing the bacteria. Once Mtb enters the lung, it is 
recognized by alveolar macrophages (AMs) and phagocy-
tosed, whereupon it proliferates until either the cell dies or 
is instructed by an antigen-specific T cell to kill or at least 
limit the growth of the bacterium [3]. However, Mtb has 
also correspondingly coevolved and developed mechanisms 
to survive inside the macrophages, mainly by inhibiting the 
phagosome–lysosome fusion, macrophage activation, and 
utilizing host molecules for its own intracellular growth [4, 
5]. AMs are thought to be the primary target of the bacte-
rium, and progress of the infection depends on the interac-
tion between these two. If the infection is established, the 
migratory cells take the bacteria to a nearby lymph node, 
where the T cells get activated by antigen-presenting den-
dritic cells (DCs). The role of antigen-specific T cells and 
that of activated macrophages, whose activation in turn 
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agent of tuberculosis (TB), is recognized by a number of 
pathogen recognition receptors (PRRs), either soluble or 
predominantly expressed on the surface of various cells 
of innate and adaptive immunity. C-type lectin receptors 
(CTLRs) are a class of PRRs which can recognize a vari-
ety of endogenous and exogenous ligands, thereby playing 
a crucial role in immunity, as well as in maintaining home-
ostasis. Mtb surface ligands, including mannose-capped 
lipoarabinomannan and cord factor, are important immune 
modulators which recently have been found to be directly 
recognized by several CTLRs. Receptor ligation is fol-
lowed by cellular activation, mainly via nuclear factor κB 
mediated by a series of adaptors with subsequent expres-
sion of pro-inflammatory cytokines. Mtb recognition by 
CTLRs and their cross talk with other PRRs on immune 
cells is of key importance for the better understanding of 
the Mtb-induced complexity of the host immune responses. 
Epidemiological studies have shown that single nucleo-
tide polymorphisms (SNPs) in several PRRs, as well as the 
adaptors in their signaling cascades, are directly involved 
in the susceptibility for developing disease and the disease 
outcome. In addition, an increasing number of CTLRs have 
been studied for their functional effects in the pathogenesis 
of TB. This review summarizes current knowledge regard-
ing the various roles played by different CTLRs in TB, as 
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depends on the antigen-specific T cells and secretion of 
activating cytokines from the cells at the site of infection, 
have been shown to be most important in clearing or stop-
ping early infection. In addition to these, the invariant natu-
ral killer T cells (iNKT), which produce the macrophage-
activating, granulocyte macrophage colony-stimulating 
factor (GM-CSF), and γδT cells, which respond rapidly to 
the mycobacterial antigens, are also potentially involved in 
limiting early infection [6]. The overall outcome of infec-
tion depends on the quality of innate immune response elic-
ited by the host and for which the innate immunity cells 
are armed with a plethora of receptors and other mecha-
nisms. Mtb has a complex hydrophobic cell wall com-
posed mainly of peptidoglycan, arabinogalactan, mycolic 
acids, and glycolipids which are capable of influencing and 
resisting the innate and adaptive immune response of the 
human host cells [7]. The lipids present on the cell wall are 
highly immunomodulatory and can influence the innate 
immunity in a quest to establish a niche inside the phago-
cytes. Molecules like phthioceroldimycoceroserate (PDIM) 
interfere with its recognition and thus the recruitment of 
activated macrophages to the infection site [6]. Trehalose-
1,6-dimycolate (TDM) and lipoarabinomannan (LAM) 
are other powerful immunomodulators that interfere with 
phagosome maturation [8, 9]. Some of these bacterial sur-
face molecules serve as pathogen-associated molecular pat-
terns (PAMPs) that are detected by PRRs predominantly 
expressed on the cells of the innate immune system, such 
as monocytes and macrophages, DCs, as well as on some 
lymphocytes, and orchestrate Mtb-dependent innate and 
adaptive immune responses [10]. In this scenario, the best 
studied PRRs belong to the Toll-like receptor (TLR) family. 
TLR1, TLR2, TLR4, TLR6, and TLR9 have been reported 
to play an important initial role in the pathogenesis of TB 
[11–14].

Recent findings demonstrated that polymorphisms in 
several TLRs are associated with an increased susceptibil-
ity to Mtb, suggesting the importance of innate immunity 
in tackling the infection [15–20]. CTLRs are increasingly 
being recognized to play an important role in modulating 
Mtb-mediated immune responses, and several of its PAMPs 
are detected by this family of receptors [21–25]. In this 
review, we will, therefore, emphasize the role of CTLRs in 
Mtb recognition, TB susceptibility, and immune pathology 
of TB.

C‑type lectin receptors: general structure, 
function, and signaling mechanism

CTLRs comprise a large family of receptors that are char-
acterized by the presence of one or more carbohydrate-
recognition domains (CRDs) that can bind to carbohydrate 

molecules in a Ca2+-dependent manner [26]. In addition, 
lipids, proteins, and even inorganic compounds have been 
found to serve as ligands for this group of receptors in a 
Ca2+-dependent or Ca2+-independent manner. Thus, the 
more general term C-type lectin-like domains (CTLDs) 
was introduced for these domains [27]. The CTLD struc-
ture consists of a characteristic double loop stabilized at the 
base by highly conserved disulfide bridges, hydrophobic 
and polar interactions. The second loop exhibits structural 
and evolutionary flexibility and can bind to different car-
bohydrate species in the presence of Ca2+ ions, thus pro-
viding functional versatility [26]. For example, the EPN 
motif confers binding to sugars such as glucose, mannose, 
N-acetylglucosamine, whereas the QPD motif binds to 
galactose and N-acetylgalactosamine. Variations in CTLD 
fold structure have also been described [26].

The CTLR receptor family, which includes collectins, 
selectins, phagocytic receptors, and proteoglycans, has 
been classified into 17 groups, based on domain organiza-
tion and phylogenetic features [26, 28]. CTLRs have roles 
in maintaining homeostasis, as well as in anti-microbial 
host defense. They have been reported to be involved in 
several cellular functions, such as cell–cell adhesion, lipid 
scavenging, orchestrating immunity against tumors, as well 
as virus-infected self-cells, allergy, and the development of 
autoimmune reactions [29–32]. In addition, they have been 
shown to play an important role as PRRs in the recogni-
tion of many fungal pathogens, as has been reported in sev-
eral studies in the last decade [33–38]. It is notable that the 
polymorphisms in many of the CTLRs and also the adap-
tors involved in their pathways are being increasingly asso-
ciated with the susceptibility and severity of the clinical 
courses of several fungal infections [39–43]. Members of 
this receptor family have also been shown to interact with 
each other and to cross talk with other PRRs, for example, 
TLRs to modulate pathogen-associated immune responses 
[44–47].

CTLRs can be found in soluble form in body fluids or 
in transmembrane form on cell surfaces. The soluble forms 
which are called collectins are mainly found in oligomeric 
forms in serum, and in the mucosal fluids, such as in lung 
alveoli. Collectins enhance the aggregation, uptake, and 
neutralization of pathogens by cross-linking their surface 
carbohydrate antigens, attracting phagocytes and activat-
ing complement [48–54]. The transmembrane CTLRs, 
especially those expressed on myeloid cells, have also been 
broadly divided on the basis of the signaling effect that they 
exert: (1) CTLRs signaling via immunoreceptor tyrosine-
based activation motif (ITAM) domains; (2) CTLRs signal-
ing via an immunoreceptor tyrosine-based inhibitory motif 
(ITIM) domains; and (3) the CTLRs that do not bear any 
ITAM or ITIM domains [26, 55]. An ITAM motif typi-
cally consists of a two YxxL/I (Y = tyrosine, L = leucine, 
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I = isoleucine, and x = any residue) amino acid sequences 
separated by six to twelve intervening residues. Receptor 
ligation leads to the phosphorylation of the tyrosine resi-
due in ITAM by Src family kinases. This further leads to 
the recruitment of spleen tyrosine kinase (Syk) which acti-
vates transcription factors including NFκB via a complex 

consisting of caspase recruitment domain-containing pro-
tein 9 (CARD9), B cell lymphoma 10 (Bcl10) and mucosa-
associated lymphoid tissue lymphoma translocation protein 
1 (MALT1) (Fig. 1) [56, 57]. PKCδ has been shown to be 
important for linking Syk activation with CARD9 signal-
ing [58]. The consensus ITIM sequence consists of a I/V/L/

Fig. 1  Recognition of Mtb ligands (ManLAM, PIMs, TDM) by 
membrane-bound CLRs and subsequent signaling pathways acti-
vated by receptor–ligand interaction. MR recognizes the mannose-
containing molecules, such as ManLAM, and causes bacterial inter-
nalization, but inhibits phagosome–lysosome fusion and may also 
contribute to anti-inflammatory response. DC-SIGN activates Raf-1, 
possibly through other adaptors which, in turn, activate the NF-κB. 
Dectin-1 may potentially bind to α-glucans of Mtb and may cross talk 

with TLR2 to signal via Syk. MCL and Mincle form heterodimers 
and lead to pro-inflammatory cytokine production mainly via NF-κB 
activation. MCL also plays a role in bacterial phagocytosis [25]. Dec-
tin-2 also probably signals through the Syk-CARD9 pathway and 
produces both pro- and anti-inflammatory signals (‘?’ There are con-
flicting or no studies yet confirming these associations/pathways) [23, 
25, 128, 130, 183]



516 Med Microbiol Immunol (2016) 205:513–535

1 3

SxYxxI/L/V (V = valine; S = serine) motif. The tyrosine 
residue undergoes phosphorylation upon ligand recognition 
and recruits phosphatases Src homology 2 (SH2)-contain-
ing tyrosine phosphatase-1 (SHP-1), SHP-2, and/or SH2 
domain-containing inositol phosphatase (SHIP-1) [59–61]. 
The ITIMs were previously proposed to exert an inhibitory 
effect on cellular activation especially those caused by the 
ITAM-containing receptors. However, later it was shown 
that ITAMs may also send inhibitory signals, while ITIMs 
may act in activation of certain cellular responses [62, 63]. 
ITIMs may also affect the TLR pathways by reducing the 
NFκB activity [55]. Some of the CLRs, such as Dectin-2, 
Mincle, MCL, C-type lectin domain family 5 member a 
(CLEC5a), which do not bear any signaling domains, have 
been shown to associate with ITAM-bearing adaptors such 
as FcRγ, DAP10, or DAP12 and mediate similar responses 
through Syk-CARD9-Bcl10-MALT-1 (Fig. 1) [27, 55]. 
Nevertheless, while the balance between both the activa-
tion and inhibition of immune responses is likely to play an 
important role in the fine-tuning of the pathogen-mediated 
immune response, the function of receptor clustering of 
several ITAM- and ITIM-bearing CTLRs on immune cells 
for the generation of immune responses is currently not 
well understood.

In several studies, it has been demonstrated that many 
CTLRs serve as important receptors for the recognition 
of Mtb ligands eliciting innate immune response against 
the pathogen (Fig. 1) [21, 23, 25, 64–67]. In the follow-
ing sections, we will summarize current knowledge about 
each of those receptors which have been described as serv-
ing as PRR for Mtb. Taking each receptor individually, we 
will also collate the results of the studies associating SNPs 
in these CTLRs with the susceptibility to TB in different 
populations.

Soluble CTLRs: collectins

Collectins are collagenous soluble PRRs that mainly occur 
in mucosal lining fluids and in blood. They are a part of a 
first-line, non-specific defense system of innate immunity, 
that is able to recognize not only the gluco-conjugates, but 
also other type of ligands on the pathogen cell surface [68]. 
They consist of three chains, each with four domains—a 
cysteine-rich N-terminal which is required for oligomeriza-
tion, a collagen-like region that maintains the overall struc-
ture and shape of the molecule, an α-helical neck domain 
that functions in protein trimerization, and a C-terminal 
carbohydrate-binding region which mediates ligand bind-
ing—and are generally found in multimeric forms [68, 69]. 
Among collectins, surfactant proteins SP-A and SP-D, and 
the complement protein MBL have been reported to recog-
nize Mtb [65, 70–72].

Surfactant proteins (SP) A and D

SP-A and SP-D are large hydrophilic proteins of pulmo-
nary surfactant that lines the alveolar epithelium in lungs 
and maintains the minimal surface tension preventing 
lung collapse. They are secreted by alveolar type II cells 
and Clara cells (Table 1). They can recognize a vast vari-
ety of carbohydrate ligands, such as mannose, glucose, 
N-acetylglucosamine (GlcNAc), N-acetylmannosamine 
(ManNAc), bacterial lipopolysaccharide (LPS), and pen-
toses. Lipid ligands include dipalmitoylphosphatidylcho-
line (DPPC), which is recognized by SP-A, while SP-D can 
bind to phosphatidylinositol (PI) [68, 69, 73]. SP-A and 
SP-D also serve as PRRs and are able to detect mycobac-
terial LAMs and other antigens of Mycobacterium tuber-
culosis (Table 1) [72, 74]. SP-A increased the phagocy-
tosis of the Erdman strain, a virulent laboratory strain of 
Mtb, by human monocyte-derived macrophages (MDMs) 
which could be inhibited by anti-MR antibodies [75]. This 
observation was supported by another study demonstrating 
that SP-A upregulates the expression of mannose recep-
tor (MR) on human MDMs [54]. SP-A levels were sig-
nificantly decreased in BALF of TB patients and returned 
to normal in a month of therapy [65]. Low SP-A levels in 
patients’ BALF were also associated with increased inflam-
mation marked by high neutrophil numbers [65], while 
higher SP-A levels were observed in TB patients’ serum 
[76]. However, the levels during the course or after the 
treatment were not investigated [76]. SP-A has also been 
shown to play a role in mediating oxidative burst of Mtb-
infected macrophages. A study with rat AMs concluded 
that SP-A was able to suppress the production of reactive 
nitrogen intermediates in macrophages infected with the 
Mtb H37Ra strain [77]. In contrast, in another study, it 
was reported that SP-A enhanced the Mycobacterium bovis 
bacillus Calmette–Guerin (BCG)-induced production of 
nitric oxide synthase in rat BMMs [78]. The discrepancies 
in these studies might be attributed to the type of cells and 
the mycobacterial strains used.

SP-D can also cause agglutination of bacteria, but it has 
been associated with decreased adherence and phagocyto-
sis of Erdman strain of Mtb by human MDMs. On the other 
hand, it has been demonstrated to enhance the fusion of 
bacteria-containing phagosomes with the lysosomes inside 
the macrophages, contributing to the intracellular myco-
bacterial growth control [53, 79]. Although the SP-A- and 
SP-D-deficient mice did not show any obvious differences 
compared to WT, an increased granulomatous infiltration 
was observed in SP-A-deficient mice. However, despite the 
many proved in vitro immunomodulatory roles, SP-A and 
SP-D seem to be dispensable in controlling immune status 
in response to mycobacterial infection, at least in murine 
infection models infected with the Erdman strain [80].
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SP-A consists of two isoforms SP-A1 and SP-A2 
encoded by separate genes. Polymorphisms in both of 
these genes as well as in SP-D have been studied for their 
potential role in host susceptibility toward developing TB 
in different populations summarized in Table 2. A study in 
Mexican population revealed many marker alleles flank-
ing SP-A and SP-D that were protective or conferred sus-
ceptibility toward pulmonary TB in the given population 
[81]. In replication to this study, another group found that 
SP-A1 alleles SFTPA1 307A, SFTPA1 776T and SP-A2 
alleles SFTPA2 355C and SFTPA2 751C were significantly 
associated with TB in Ethiopian population. The SFTPA2 
751A/C polymorphism is present in the CTLD of SP-A, 
leading to a change of lysine to glutamine which could 
be influencing its binding to Mtb. The haplotype 1A3 in 
SP-A2, which also affects the amino acids in CTLD, was 
also found to be significantly associated with TB suscep-
tibility [82]. In another study, two intronic SNPs SP-A2 
G1649C and SPA2 A1660G in SP-A2 gene were identified 
to be associated with development of TB in an Indian pop-
ulation, whereas no association of SNPs in the SP-A1 gene 
was found [83]. In a more recent analysis, Yang et al. [84] 
also found a significant correlation of the SP-A2 1649G 
allele with pulmonary TB in Han Chinese population con-
sistent with the results from studies in Ethiopian and Indian 
population. This allele leads to a transversion from pro-
line to alanine at position 91 which may disturb the triple 
helical structure of SP-A, thus affecting its normal function 
[84]. An SP-D polymorphism, G459A in exon 7, has been 
reported to be significantly associated with TB susceptibil-
ity in an Indian population [85]. However, the molecular 
mechanism for these SNPs influencing the susceptibility to 
TB has not yet been elucidated.

Overall, it can be said that the surfactant proteins may 
play a role in the local immune responses during early 
infection in the lung alveoli. One of the several reasons 
for the discrepancy in the results from mouse models and 
human cell models might be that TB pathogenesis differs in 
mouse and human systems [86]. On the other hand, several 
SNPs have been shown to be associated with the regulation 
of SP-A1 and SP-A2 expression and others affecting their 
overall structure or binding affinity [82]. The association of 
these SNPs with TB in different populations suggests that 
surfactant proteins may have some immunomodulatory role 
in active TB infection. However, more studies with human 
cell or tissue models are required to establish a concrete 
role for these proteins in TB pathology.

Mannose‑binding lectin

Mannose-binding lectin, MBL, is a member of the lec-
tin pathway of complement system that consists of a col-
lagenous region and a lectin domain [85]. It circulates 

predominantly in the serum, but has also been detected at 
other sites, such as the synovial fluid of inflamed joints, 
nasopharyngeal secretions, amniotic fluid, and subcellular 
compartments, including endoplasmic reticulum (Table 1) 
[87]. MBL structure resembles that of the surfactant pro-
teins, with the basic structure being a trimer. In serum, it 
circulates as an oligomer of trimers, most often as hexam-
ers. MBL, in association with Ca2+ ions, is able to recog-
nize terminal sugars such as d-mannose, l-fucose, and 
N-acetyl-d-glucosamine, but not d-galactose and sialic 
acid, on the surface of a wide variety of bacteria, viruses, 
fungal species, parasites, as well as apoptotic and tumor 
cells [88, 89]. A recent study demonstrated mannosylated 
lipoarabinomannan (ManLAM) to be one of the main cell 
wall components of slow-growing mycobacteria interact-
ing with MBL [90]. MBL can directly act as an opsonin 
or, in association with MBL-associated serine proteases 
(MASPs), it can activate the lectin pathway of the comple-
ment system cleaving complement factor C3 in an anti-
body-independent manner, thereby enhancing the clearance 
of the pathogens via phagocytosis [89, 91]. In vivo studies 
have shown that the deficiency of MBL and other compo-
nents of complement lectin pathway increase the suscepti-
bility to certain bacteria, fungi, as well as viruses [92–95]. 
However, the role of MBL in TB has not yet been studied 
in murine infection models.

In humans, MBL is coded by the gene MBL2 on chro-
mosome 10. Serum levels of this protein exhibit high inter-
individual variations, which have been attributed mainly 
to the polymorphisms found in the promoter and exon 
1 of the MBL2 gene, although non-genetic factors like 
age, hormone levels, or inflammation may also influence 
the serum levels [96]. The missense mutations in codons 
52, 54, and 57 in exon 1, respectively, called D, B, and C 
alleles (the wild type is denoted as A and the three vari-
ant alleles as O), are known to disrupt the normal collagen 
helix, while the alleles H/L (−619), Y/X (−290), and P/Q 
(−66), upstream in the promoter region, affect the serum 
levels by regulating protein expression [88, 96]. These pol-
ymorphisms are in linkage disequilibrium and give rise to 
different haplotypes and genotypes, which may appear in 
varying frequencies among individuals, depending upon 
ethnicity [91, 97]. About 5–30 % of healthy individuals 
have MBL-deficient alleles, suggesting that these muta-
tions may confer some selective advantage, as they have 
not been wiped out by natural selection [96]. Neverthe-
less, these polymorphisms and serum MBL levels have 
been associated with TB and other infectious and inflam-
matory diseases in different ethnic groups [91, 97]. The 
variant alleles have been associated with susceptibility to 
TB in different populations, while in others no association 
was observed (Table 2) [98–106]. A meta-analysis car-
ried out by Denholm et al. comparing 17 different studies 
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Table 2  Overview of the identified functional SNPs in CLRs in different populations associated with susceptibility/protection toward 
tuberculosis

CTLR SNP and location Effect of SNP References

SP-A SPA-1
rs1059047 (exon 3)
rs1136450 (exon 3)
rs1136451 (exon 4)
rs1059057(exon 6)
rs4253527 (exon 6)
SPA-2
rs17886395 (exon 4)
rs1965707 (exon 6)
rs17886221 (exon 4)
rs1965708 (exon 6)

C allele—risk in Mexicans
G allele—protection in Mexicans
A allele—risk in Ethiopians, protection in 

Mexicans
G allele—risk in Mexicans
T allele—risk in Mexicans and Ethiopians
Haplotypes 6A4—risk in Mexicans
6A2—protection in Mexicans
CGAAC—protection in Chinese Han
G allele—risk in Indians and Chinese Han, 

protection in Ethiopians
T allele—risk in Chinese Han
A allele—protection in Indians
C allele—risk in Ethiopians
Haplotypes 1A3—risk in Mexicans and 

Ethiopians
1A—risk in Mexicans
1A6, 1A10, 1A9, 1A2—risk in Chinese Han
1A3, 1A5, 1A12, 1A11—protection in Chi-

nese Han

[81–84]

SP-D aa307 (exon 7) G allele—protection in Indian population [85]

MBL Exon 1 variations (B, C D, O and A alleles)
Promoter variations
(H/L, X/Y, P/Q)

O allele—no association in Hispanic, white 
Americans, South African colored

Risk in Indians
B allele—risk and protection in two differ-

ent Indian populations and African Ameri-
cans, protection and no association in two 
different Turkish children populations.

C allele—protection in Gambian population 
and Ghanaian (M. africanum infection) 
population

D allele—risk in Indians
XA/O haplotype—protection in white and 

non-white Americans
XY genotype—risk in Chinese
HYA/HYA haplotype—protection in Italians
YA/YA—protection in Vietnamese
LYB/LYD haplotype—risk in Italians
XB haplotype—risk in Chinese Han
HPYA, LPXA, LQYA, LPYB haplotypes—

risk in Chinese

[98–106, 109, 110, 112, 113, 115, 253]

MR rs34039386 (exon 7) G allele—risk in a Chinese population
Risk in Chinese Uygur
No association in Chinese Kazak

[135, 136]

DC-SIGN Promoter variations
 336A/G
 871A/G
 939G/A

A allele—protection in South African 
colored, Iranian

Risk in sub-Saharan Africans
No association in Colombians, Tunisians, 

Indians, Chinese, West Africans, Moroc-
cans

G allele—protection in South African 
colored

No association in Indonesians, Chinese, 
West Africans

G allele—risk in Indonesians
No association in Vietnamese

[161, 254]
[254, 255]
[256–261]
[161]
[259, 260, 262]
[262]
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and considering the effect of MBL polymorphisms and/
or serum levels found no significant association of MBL 
polymorphisms with TB, although a consistent increase in 
the serum MBL levels in TB patients was observed, which 
may have been an acute phase response during infection. 
It is worth noting that most of the studies included in this 
analysis did not investigate the MBL haplotypes includ-
ing promoter polymorphisms and the cohort, and the study 
design in these investigations were of highly heterogene-
ous nature [107]. In contrast, a meta-analysis involving 
Chinese populations concluded that presence of allele B 
might be a risk factor for developing TB [108]. In addition, 
more recent studies have focused on correlating the serum 
MBL levels with these genotypes and studying the effect 
of SNPs on factors, such as treatment progression and out-
come, interaction with environment, or other genes, and on 
TB caused by other mycobacterial species [109–114]. In a 
recent study in Vietnam, it was found that the YA/YA hap-
lotype had a protective effect against developing new pul-
monary TB in young adults. They also found that the MBL 
levels decreased over the course of treatment after seven 
months, again pointing to the fact that high MBL levels in 
TB patients may be the result of acute phase response and 
that this decrease was highly dependent upon the genotype 
[115].

Given that MBL is one of the acute phase proteins and 
its levels can be affected by several other factors and patho-
gens, as well as its complete absence in otherwise healthy 
individuals, it becomes difficult to ascertain a particular 
role for this CTLR in TB infection. Moreover, the conflict-
ing results from the genetic studies carried out with dif-
ferent populations suggest that MBL may not be directly 
involved pathogenesis of TB.

Membrane‑bound CTLRs

Transmembrane PRRs are present on the cells of the 
immune system and play an important role in modulating 
the innate immune response to pathogens. While among the 
CTL receptors MR, DC-SIGN, and complement receptor 

3 (CR3) have long been known to recognize Mtb [116–
118], some new receptors have emerged in the last decade 
which have been shown to be of direct importance in Mtb-
mediated immune response (Fig. 1). In humans, the genes 
encoding for these CTLs are located on chromosome 10, in 
the so-called Dectin-1 and Dectin-2 clusters of genes cod-
ing for Dectin-1, Dectin-2, Mincle, and MCL, among oth-
ers [32, 119].

Mannose receptor

The mannose receptor, MR (synonym CD206), is abun-
dantly expressed on AMs, monocyte-derived DCs (MDCs), 
and non-vascular endothelium (Table 1). It is a type I trans-
membrane protein with an extracellular N-terminal consist-
ing of three domains: a cysteine-rich domain, a fibronectin 
type II domain, and eight CTLDs, followed by a transmem-
brane domain and a tyrosine-based motif in the cytoplas-
mic tail involved in ligand internalization [87, 120, 121]. 
MR can recognize a number of endogenous and exogenous 
ligands and is so involved in both maintaining homeosta-
sis and acting as a PRR. Only CTLD4 seems to be able to 
bind to carbohydrate ligands such as terminal mannose-
containing glycoconjugates, fucose, and GlcNAc [121]. 
The signaling pathway downstream MR is poorly under-
stood. It may require aid from another receptor to initi-
ate phagocytosis [122]. It may also undergo proteolytic 
cleavage, forming soluble sMR, and modulate the immune 
response by competing with the membrane-bound form 
[121]. MR serves as an endocytic receptor that is involved 
in the internalization of ligands and antigen presentation 
via MHCII and CD1b [123]. MR can recognize ManLAM, 
higher phosphatidylinositol mannosides (PIMs), LM, and 
other mannosylated proteins on the Mtb cell wall (Table 1) 
[124–126]. MR aids in adherence of virulent Mtb strains 
to human MDMs [116]. In addition, some reports have 
shown that phagocytosis of mannosylated beads by MR, as 
well as MR–ManLAM engagement, interferes with phago-
some maturation, which may contribute to the intracel-
lular survival of mycobacteria [67, 127, 128]. ManLAM 
from both BCG and Mtb, on cross-linking with MR, can 

Table 2  continued

CTLR SNP and location Effect of SNP References

L-SIGN Neck region variations
 5 repeats
 9 repeats
 7 or 6 repeats
(exon 4)

Protection in Brazilians
Susceptibility in Brazilians
No association in South Africans

[166, 167]

Mincle rs10841845, rs10841847, rs10841856, 
rs4620776

No association in South African Population [229]

MCL rs4304840 (exon 3) G allele—risk in Indonesians [25]
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inhibit the TLR2-induced production of IL-12 by human 
DCs [129]. This was supported later by a study showing 
that ManLAM–MR engagement induced the production 
of anti-inflammatory factors IL-10, IL-1R antagonist, and 
IL-1R type II, and suppressed IL-12 secretion by human 
DCs [130]. Since Mtb has a plethora of ligands for dif-
ferent CTLRs, cross talk between these receptors is very 
likely. Indeed, MR together with DC-SIGN interferes with 
the Dectin-1-induced Th17 response and instead enhances 
the production of IFNγ by CD4+ cells favoring Th1 gen-
eration in the presence of Mtb-challenged human DCs 
[131]. Monocytes differentiated in the presence of irradi-
ated Mtb had a low-DC-SIGN/low-MR profile associated 
with the loss of phagocytosis of irradiated Mtb [132]. MR 
was also shown to induce the production of matrix metal-
loproteinase-9 (MMP-9) by THP-1 cells in response to 
Mtb indicating a contribution to lung tissue damage during 
TB [133]. Together, these studies point to the fact that MR 
might favor Mtb in establishing its niche inside the infected 
phagocytes. However, in murine in vivo infection models 
with Mtb, MR was not involved in survival or disease pro-
gression [134].

Human MR is expressed by the MRC1 gene on chromo-
some 10. Only a couple of recent investigations carried out 
by Zhang et al. in Chinese populations focus on the detec-
tion of SNPs within MRC1 and its role in TB susceptibility. 
They concluded that a non-synonymous SNP, rs34039386 
glycine to serine, in exon 7, coding for CTLD2 was asso-
ciated with risk or protection in different groups of the 
Chinese population, albeit with low significance (Table 2) 
[135, 136]. The molecular mechanisms linked to the effect 
of this SNP on receptor function have not been deduced, 
but the authors suggest that it might affect the MR–ligand 
interaction [136].

Overall, the role of MR in phagocytosis of Mtb seems to 
be redundant as many other PRRs and complement recep-
tors can aid in bacterial internalization. In contrast, results 
acquired from human cells suggest its negative immu-
nomodulatory role by avoiding the intracellular killing of 
Mtb. However, to further enlighten the significance of this 
receptor for TB disease pathology, dedicated genetic and 
functional studies are required.

Dendritic cell‑specific ICAM‑grabbing non‑integrin 
(DC‑SIGN)

Dendritic cell-specific ICAM-grabbing non-integrin, DC-
SIGN (synonym CD209), is a type II transmembrane 
receptor expressed mainly on myeloid DCs and some mac-
rophage subsets including AMs [89] and also activated 
B cells (Table 1) [137]. The N-terminal makes the cyto-
plasmic tail and is endowed with three different motifs: 
a tyrosine-based motif, a dileucine motif, and a triacidic 

amino acid motif, all of which are thought to be mainly 
involved in endocytosis and phagocytosis. The trans-
membrane region consists of tandem repeats of 23 amino 
acids, which stabilize the tetrameric form of DC-SIGN that 
enhances its ligand-binding efficiency, while the extracel-
lular C-terminus contains CTLD with an EPN motif and 
ligand-binding sites [89, 138]. DC-SIGN can bind to high 
mannose- and fucose-containing ligands and is able to bind 
to Mtb, as well as a variety of other pathogens. It has also 
been shown to bind to endogenous molecules of the human 
host-like intracellular adhesion molecules (ICAMs) and 
carcinoembryonic cell adhesion molecules CEACAM1, 
which is helpful in processes like DC migration, interac-
tion with neutrophils, T cell activation, and antigen presen-
tation [139, 140]. It can also serve as a signaling receptor. 
However, DC-SIGN triggering alone does not seem to initi-
ate a response by DCs and a prior activation of NFκB by 
TLR signaling is required for its modulatory function [27, 
55, 138, 141]. There is an evidence of TLR-independent 
signaling, as well [142]. It has been observed that differ-
ent kinds of ligands can induce different kinds of signaling 
through DC-SIGN [55, 141]. Mannose-containing ligand 
engagement (e.g., mycobacterial ManLAM) leads to phos-
phorylation of Raf-1 and subsequent phosphorylation of 
NFκB subunit p65, increasing the production of cytokines 
such as IL-12, IL-10, IL-6, and CXCL8, whereas fuco-
sylated antigens, such as Lewis antigens in LPS from H. 
pylori, seem to signal the DCs to suppress the pro-inflam-
matory cytokines production [141, 143].

In two independent studies, Geijtenbeek et al. and Tail-
leux et al. showed that mycobacteria directly bind to DC-
SIGN to gain entry into human DCs. DC-SIGN was shown 
to enhance the internalization of both M. bovis BCG and 
Mtb [64, 117]. ManLAM–DC-SIGN binding inhibited LPS 
and M. bovis-induced DC maturation as well as increased 
IL-10 and decreased IL-12 production by LPS-activated 
DCs [64]. Moreover, DC-SIGN has been shown to be 
expressed on human lung DCs and is induced on AMs on 
Mtb infection [117, 144]. Further studies have demon-
strated that, apart from ManLAM, DC-SIGN can also bind 
to other mannosylated ligands, PIMs, α-glucan on Mtb sur-
face (Table 1) which may also contribute to host–pathogen 
interaction significantly [145–148]. Indeed, phagocytosis 
of BCG by DC-SIGN-lacking DCs [149] and the inabil-
ity of mannose-dependent CLR inhibitor to inhibit Mtb 
infection in mice [150] suggest that the bacilli also use 
other modes of establishing intracellular niches and infec-
tion. Similar to MR, DC-SIGN co-stimulation also inhib-
its Dectin-1-induced Th17 response by Mtb-challenged 
DCs [131]. A transgenic mice expressing human DC-SIGN 
displayed higher survival rate and reduced tissue damage 
on high-dose infection with H37Rv advocating that DC-
SIGN–Mtb interaction in vivo may in fact be beneficial to 
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the host [151]. Also, the results obtained by knockout (KO) 
mice studies, which express eight different DC-SIGN hom-
ologues (SIGNR1-8), suggest that SIGNR3 (the closest 
human DC-SIGN orthologue)-deficient mice have impaired 
resistance to early Mtb infection in lungs [89, 152, 153].

A closely related CLR called L-SIGN, also known as 
DC-SIGNR/CD209L/CLEC4M, proposed to have origi-
nated by gene duplication of DC-SIGN has also been 
described [154]. L-SIGN also binds to high mannose 
ligands, but not fucose, and can recognize pathogens 
including Mtb. In fact, L-SIGN shows more than 70 % 
amino acid identity with DC-SIGN and has similar struc-
ture and binding properties (HIV-1 gp120, ManLAM, and 
ICAM-3) [155, 156]. It is expressed on a restricted set of 
endothelial cells. Both DC-SIGN and L-SIGN are found in 
a tetrameric form, with the transmembrane repeats forming 
the neck region to which the CRDs are flexibly attached 
on the extracellular part providing high-avidity binding to 
multivalent ligands [155, 157].

DC-SIGN and L-SIGN are expressed by the genes 
CD209 and CD-209L, respectively, in human chromosome 
19 [158]. Association of DC-SIGN promoter polymor-
phisms −336A/G and −871A/G with TB has been studied 
in many populations (Table 2). However, the results have 
been contrasting. Functionally, −336G was shown to be 
associated with decreased expression of DC-SIGN [159]. 
A meta-analysis performed to compare fourteen of these 
studies concluded that these promoter variations were not 
associated with susceptibility to TB, although an analysis 
performed and based on ethnicity revealed an association 
of the 336GG genotype as a risk for developing TB in an 
Asian population [160]. Barreiro et al. [161] showed that 
the haplotype −871G/−336A conferred protection in Afri-
cans. In another study, Russian males carrying −336GG 
were found to be more susceptible to lethal consequences 
of infection with Mtb Beijing strain than non-Beijing 
strains [162]. Thus, not only the host, but also the genotype 
and characteristics of Mtb may be responsible for different 
pathogenicity patterns.

Polymorphisms in the neck region of L-SIGN that lead 
to a change in the number of repeats (ranging from four 
to ten) have been attributed to variations in the binding 
affinity to the pathogenic antigens and are associated with 
developing an infection. Indeed, these polymorphisms in 
L-SIGN have been associated with viral infections [155, 
163–165]. With regard to TB, there have been conflicting 
results between the two studies conducted by Barreiro et al. 
and da Silva et al. in a South African and a Brazilian pop-
ulation, respectively. While, in the former, no association 
was found, in the Brazilian population the allele with nine 
repeats was related to susceptibility to develop TB, while 
the one with five repeats conferred protection. The authors 
hypothesize that low number of repeats may disrupt the 

binding of the receptor to Mtb, restricting its entry into the 
cell [166, 167].

In conclusion, the results from mice models and human 
cells provide conflicting results about the function of DC-
SIGN in TB pathology. Also, the genetic studies with DC-
SIGN promoter SNPs add to the confusion as to whether 
this receptor is beneficial for the host or the pathogen. As 
DC-SIGN recognizes a number of ligands on the Mtb sur-
face, more in vitro and in vivo studies are required that 
focus on the effects of binding of these ligands with the 
receptor and subsequent functional responses.

Dendritic cell‑associated C‑type lectin 1

Dendritic cell-associated C-type lectin 1, Dectin-1 (syno-
nym CLEC7A) was first discovered as a DC-specific 
receptor which binds to an unknown, probably proteina-
ceous, ligand on T cells increasing their proliferation and 
thereby acting as a co-stimulatory molecule [168]. Later, 
it was found to be a major receptor for β-1,3-glucans and 
expressed not only on DCs but also on monocytes, mac-
rophages, neutrophils, and on eosinophils, B cells, and 
mast cells, lung epithelium in humans [55, 169–171]. 
Dectin-1 is one of the seven genes belonging to the Dec-
tin-1 cluster in the natural killer gene complex (NKC) on 
chromosome 12 in humans. All the genes in this family are 
class V type II CLRs having a common structure consist-
ing of an extracellular CTLD connected to the cell surface 
by a stalk, followed by a transmembrane region and a cyto-
plasmic domain having signaling motifs. Dectin-1 is one of 
the non-classical CLRs bearing a hemITAM, with only one 
YXXL motif, apart from a triacidic DED motif for sign-
aling. Moreover, unlike many other CLRs, the β-glucan 
binding to Dectin-1 is Ca2+ independent [172]. Since it 
can bind to T cells, Dectin-1 has also been proposed to be 
a co-stimulatory molecule [168]. Dectin-1 can recognize 
Mtb, although the PAMP involved has yet to be deter-
mined. Because of its recognition of β-glucan signaling, 
mechanisms have been mostly studied in fungal infection 
models where ligand binding to Dectin-1 has been shown 
to induce a number of cellular processes, including the pro-
duction of cytokines and chemokines, respiratory burst, 
ligand uptake through phagocytosis/endocytosis, and DC 
maturation [173]. Dectin-1-mediated signaling is complex, 
involving activation of various transcription factors like 
NFκB, MAPKs, NFAT, IRF1, IRF5, and NLRP3 inflamma-
some through Syk-dependent or Syk-independent pathways 
[174, 175]. The canonical subunits of NFκB are activated 
via CARD9-Bcl10-MALT1 complex formation through 
Syk interaction with PLCγ2 and PKCδ, leading to the 
production of IL-1β and IL-23 which are Th17 response-
polarizing cytokines. It has also been shown to activate the 
non-canonical subunit NFκB RelB [27, 176–178]. A recent 
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study demonstrated that Dectin-1 induces pro-IL-1β pro-
cessing by forming non-canonical caspase-8 inflammasome 
[179]. The triacidic motif is also involved in phagocytosis 
and synergistically increasing the production of NFκB-
induced cytokines, as in the case of DC-SIGN, via activa-
tion of Raf-1, and leads to Th1-favoring cytokine produc-
tion [55, 180].

Dectin-1 has been shown to collaborate with TLR2 
in the recognition of some mycobacterial species to 
induce pro-inflammatory cytokine production (Table 1) 
[181–183]. The TLR2-mediated release of TNFα, IL-6, 
RANTES, and GM-CSF by mice bone-marrow-derived 
macrophages (BMDMs) infected with attenuated or non-
pathogenic mycobacteria such as M. smegmetis, BCG, 
Mtb H37Ra required Dectin-1, but not in the case of Mtb 
H37Rv [181]. In another study, Mtb-induced IL-12p40 pro-
duction in splenic DCs of TLR2−/− mice was reduced on 
blocking Dectin-1 with laminarin. The Mtb-triggered IL-
12p40 production was also reduced in response to inhibi-
tion of Syk, suggesting that Dectin-1 might mediate Syk-
dependent response independently in these cells [184]. In 
experiments with human cells, as well, there seems to be 
an interactive role of TLR2 and Dectin-1 in inducing Mtb-
specific immune response. In human lung epithelial cells, 
Mtb induced Dectin-1 expression, Src kinase, and ROS 
activation via TLR2. Dectin-1 activation, in turn, also 
enhanced internalization of bacteria [66]. A recent study 
in human DCs additionally showed similar Mtb-induced 
ROS production in a Dectin-1–TLR2-dependent manner 
[185]. Mtb–Dectin-1 engagement induces adaptive Th1/
Th17 response in human MDCs, and this effect seems to be 
inhibited by MR and DC-SIGN co-stimulation [131]. Mtb-
mediated Th17 responses in human PBMCs were studied 
by van de Veerdonk and colleagues, who concluded that 
Dectin-1 and TLR4 were responsible for these responses 
and IL-17A response was IL-1 pathway dependent. TLR2 
blocking had less effect on IL-17A production [186]. These 
Dectin-1-mediated responses may contribute to mycobac-
terial immunity, but KO studies in mice suggest a redun-
dant role of this receptor in Mtb infection. Although the 
Dectin-1−/− mice had a low bacterial burden, it was not 
related to animal survival on Mtb challenge compared 
with wild type [187]. An early stop codon polymorphism 
Y238X which produces a truncated Dectin-1 has been stud-
ied in some fungal diseases [40, 41, 188, 189]. However, 
to date, no susceptibility studies focusing on the identifica-
tion of SNPs in the CLEC7A gene have been carried out in 
patients with TB.

In summary, these studies suggest that Dectin-1 exerts 
a protective role by enhancing the pro-inflammatory 
immune response against Mtb, at least in experiments 
with human cells. Genetic studies investigating Dectin-1 
SNPs associated with TB would provide further insights 

into the functional importance of this receptor in TB 
development.

Dendritic cell‑associated C‑type lectin 2

Dendritic cell-associated C-type lectin, Dectin-2 (syno-
nyms CLEC6A, CLECSF2), is a member of the Dectin-2 
cluster in the NKC region on chromosome 12 consisting of 
six genes, all of which are type II transmembrane group II 
CTLRs. Believed to have originated by gene duplication, 
they share a common structure—an N-terminal cytoplas-
mic tail which is usually short and lacks a signaling motif, 
a transmembrane domain, a stalk, and a C-terminal extra-
cellular domain with a Ca2+ binding and a CRD motif. The 
transmembrane domain bears a positively charged resi-
due that aids in association with an ITAM-bearing adap-
tor molecule like FcRγ, DAP10, and DAP12 required for 
signaling [190–192]. In humans, Dectin-2 is expressed 
strongly in lungs, whereas weak expression is observed 
in spleen and lymph nodes. It is expressed on DC sub-
sets, monocytes, tissue macrophages including AMs, and 
weakly on B cells (Table 1) [55, 192]. Its expression can 
be altered on peripheral blood cells by treatment with dif-
ferent stimuli, as has been observed in mice, as well as in 
humans [193, 194]. The EPN motif in CRD helps in the 
recognition of high mannose structures (albeit with low 
affinity) in a Ca2+-dependent manner, as the ligand bind-
ing is completely inhibited in the presence of chelators 
[195]. Thereby, Dectin-1 acts as a PRR for mycobacte-
rial ManLAM apart from many fungi [23]. Signaling has 
been mainly studied in fungal interactions, in particular 
with C. albicans. Ligand binding to Dectin-2 induces cel-
lular activation, via FcRγ recruitment activating NFκB in 
a Syk-dependent manner, and is important in inducing a 
Th17 response, as well as other cytokines including TNF, 
IL-1RA, IL-6, IL-12, and IL-10 [191, 196–200]. Gringhuis 
et al. [199] showed that Dectin-2 induces Th17 immunity 
by Malt-1-mediated activation of c-Rel subunits of NFκB. 
Also, PLCγ has been shown to be important for the proper 
activation of Dectin-2-mediated NFκB and MAPKs [201]. 
Dectin-2 can also activate the NLRP3 inflammasome and 
induce allergic inflammation [202, 203]. Soluble recom-
binant Dectin-2 is able to bind with Mtb [195]. Yonekawa 
et al. [23] have recently demonstrated that Dectin-2 binds 
directly to ManLAM. They showed that the receptor could 
bind to Mtb and BCG and other slow-growing mycobacte-
ria, but not to M. abscessus and M. smegmatis whose LAM 
lacks capped mannose, and mediated IL-6, TNF, MIP-2, 
IL-2, and IL-10 production by bone-marrow-derived DCs 
(BMDCs) in mice. Also, DC maturation and IL-17 produc-
tion by activated T cells were all abrogated in Dectin-2-de-
ficient Clec4n−/− mice [23]. Besides, the Clec4n−/− mice 
displayed augmented lung pathology on infection with M. 
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avium complex compared to WT. Moreover, IFNγ produc-
tion in PBMCs from TB patients in response to mycobacte-
rial antigenic peptides was enhanced on addition of Man-
LAM and was significantly inhibited on treatment with 
anti-hDectin-2 Mab. However, whether this signaling was 
also Syk dependent was not tested [23].

Dectin-2 has been predominantly studied as a fungal 
receptor, and knowledge of its role in bacterial infections is 
still in its infancy. Nevertheless, recent results from in vitro 
human cell studies and KO mouse models suggest a pro-
tective function for it in TB infection. To date, the role of 
polymorphisms in this gene has not been studied in human 
TB infections and further studies focusing on this aspect 
may reveal the importance of this receptor in TB pathology.

Macrophage‑inducible C‑type lectin

Macrophage-inducible C-type lectin, Mincle (synonym 
CLEC4E), is another member of the Dectin-2 cluster with a 
similar structure. It was first identified as a downstream tar-
get of NF-IL-6 transcription factor in murine macrophages 
and was inducible by treatment with inflammatory stimuli 
like LPS, IFNγ, IL-6, and TNFα, hence the name Mincle 
[204]. It is expressed on monocytes, macrophages, neu-
trophils, and myeloid DCs, and also some B cell subsets 
(Table 1) [205]. It binds mainly to mannose and fucose, 
but also shows some affinity for glucose, GlcNAc, galac-
tose, and GalNAc [206]. Mincle also couples with ITAM-
containing FcRγ and signals via the Syk-CARD9 pathway, 
inducing pro-inflammatory cytokine production [22, 207]. 
Mincle directly recognizes the mycobacterial cord factor 
[21] and many fungal species [35, 36]. Mycobacterial cord 
factor, TDM, is an important structural molecule in the 
cell wall of Mtb that functions as a PAMP. TDM has been 
shown to contribute to granuloma formation on Mtb infec-
tion in mice lungs [21]. The cord factor is also known to 
abrogate phagosome maturation and impairs the develop-
ment of effective immune response enhancing the survival 
chances of the bacterium inside the cell and breaking the 
link between the innate and acquired arms of immunity, as 
the cell is unable to present the antigens to T cells [208–
212]. TDM- and its synthetic analogue trehalose-6,6-dibe-
henate (TDB)-mediated adjuvanticity to induce Th1 and 
Th17 responses was lost in Mincle-deficient mice [22]. 
TDM-induced Mincle signaling in mice neutrophils leads 
to increased surface expression of CR3, ROS, and TNFα 
in synergy with TLR2 activation. Also, the Mincle−/− mice 
showed higher lung bacterial burden on Mtb infection 
[213]. However, Heitmann and colleagues reported that 
Mincle−/− mice were able to develop granuloma, generate 
Th1 and Th17 response, and control the infection similar 
to WT mice on aerosol infection with Mtb [214]. In line 
with this, Behler et al. [215] also obtained similar results 

on intratracheal BCG infection of WT and Mincle−/− 
mice, but the KO mice were more susceptible to intrave-
nous administration of BCG, developing high bacterial 
loads in the lung, as well as other tissues. Besides, Mincle 
was inducible in AMs of WT mice on BCG challenge and 
showed increased anti-mycobacterial immune response on 
a secondary BCG infection in vivo [215]. The group later 
also investigated the role of Mincle in systemic infection in 
KO mice and concluded that Mincle-expressing DCs elicit 
a Th1 response in spleen, but not in liver [216]. It may 
be noted that these studies involved different Mtb strains 
and/or administration methods which may contribute in 
part to the discrepancy in results. Mincle recognition of 
TDB has also been shown to activate the NLRP3 inflam-
masome via IL-1-dependent Myd88 pathway to induce a 
Th1 and Th17 response in mice BMDCs, and the adaptor 
ASC and caspase-1 were also required for this response 
[217–219], while in a recent work, Wook-bin Lee and col-
leagues demonstrated that Mincle–TDM engagement pro-
motes nitric oxide (NO) production which in turn inhibits 
the inflammasome and that Mincle also has a stimulatory 
effect on TLR signaling [220]. Again, the results may 
be contrasting because of the type of cells used. Min-
cle shows low expression on resting macrophages, but is 
inducible on stimulation with TLR ligands in mice [204] 
and transcription factor C/EBPβ seems to play a role in 
the Myd88-dependent upregulation of Mincle, TDM/TDB 
responsiveness, and also HIF1α-mediated NO produc-
tion [221, 222]. A recent study reported that human APCs 
respond similarly as the rodent cells to TDM/TDB, induc-
ing cytokines like IL-6, IL-8, IL-1A, IL-1B, and G-CSF 
in a Syk-dependent manner [223]. Indeed, the CRDs of 
mice and human Mincle have been shown to have simi-
lar TDM-binding properties, but some differences have 
been observed with regard to other mycobacterial ligands, 
namely β-gentiobiosyldiacylglycerides and 2′S-stereoiso-
mer of glycerol monomycolate (GroMM) [224–226]. TDM 
and BCG interaction with Mincle may also induce anti-
inflammatory IL-10 cytokine production in mice BMDMs 
and modulate IL-12p40 production, as reported recently 
[227]. Besides its role as a PRR, Mincle can also recognize 
the damage-associated molecular patterns (DAMPs) like 
SAP130 released by damaged self-cells, suggesting its role 
in sensing necrosis [207]. More recently, cholesterol crys-
tals have been reported as an endogenous ligand for Mincle 
in human monocyte-derived DCs upregulating pro-inflam-
matory cytokine and chemokine synthesis [228]. A recent 
study found no association of Mincle SNPs (Table 2) with 
TB in South African colored population [229].

Overall, Mincle has been associated with pro-inflam-
matory responses in human cell models. The new reports 
about additional Mtb ligands for Mincle and the anti-
inflammatory effects show that our understanding of the 
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role of this receptor is still incomplete. Further studies need 
to be carried out to investigate if potential SNPs in Mincle 
gene might contribute to the pathogenesis of TB.

Macrophage C‑type lectin

Macrophage C-type lectin (MCL) (synonyms CLEC4D/
Clecsf8/Dectin-3) is another newly described member 
of Dectin-2 family. It was first described as macrophage-
restricted CLR in mice [230]. Human MCL is a type II 
transmembrane receptor with an intracellular N-terminal 
lacking any signaling motif, a transmembrane domain, 
and extracellular C-terminal connected via stalk to the 
cell surface bearing a single CRD [231]. It is expressed 
by neutrophils, CD14+ CD16− monocytes, and some DC 
subsets (Table 1). Although constitutively expressed on 
myeloid cells [232], monocyte differentiation into mac-
rophages or DCs has been shown to downregulate MCL 
expression [233]. MCL has been proposed to have origi-
nated by Mincle duplication and, likewise, it can also rec-
ognize TDM and some fungi [45, 232], albeit with lower 
affinity, since the CRD of MCL lacks the conserved trip-
eptide motif required for carbohydrate recognition [231]. 
Arce et al. [231] reported that MCL lacks an intracellular 
positively charged residue for pairing with adaptors and 
that cross-linking of this receptor leads to its internaliza-
tion, suggesting a role in antigen uptake, while later it was 
shown that it can also induce phagocytosis, respiratory 
burst, and cytokine production in a Syk-dependent man-
ner [233]. More recently, MCL has been associated with 
Mincle-related responses. Here, MCL associates with FcRγ 
and is required for inducing Mincle expression on TDM 
stimulation. In addition, Clec4d−/− mice showed impaired 
TDM-induced responses, such as granuloma formation 
and cytokine production (TNF, MIP-2, IL-1β, IL-6) [24, 
232]. Along this line, Lobato-Pascual also observed simi-
lar results for rat receptors expressed on HEK293T cells 
and proposed Mincle–MCL heterodimer to be a functional 
unit mediating Mincle-associated immune response [234]. 
It was later confirmed in mice and human cells that MCL 
indeed associates with Mincle through its stalk region 
[235]. Recent studies suggest that MCL expression is co-
regulated with Mincle and can be induced in mice in a 
Myd88-dependent manner [222, 236]. However, Zhao and 
colleagues, in their experiments, negated any such associ-
ation between MCL and Mincle to form dimers and sug-
gested that the main function of MCL is to induce initial 
Mincle expression in response to TDM via CARD9/Bcl10/
MALT1-dependent NFκB activation [24]. A resolution 
of these differing results has yet to be made. Wilson et al. 
[25] concluded that MCL is non-redundantly important 
for anti-mycobacterial immunity. Infection with BCG or 

H37Rv leads to higher bacterial burdens, increased produc-
tion of TNFα, IFN-γ, and G-CSF, as well as higher neutro-
phil infiltration in lungs of Clec4d−/−mice. Moreover, the 
in vitro studies showed that loss of MCL affects the bac-
terial binding to leukocytes and thus reduces phagocytosis 
[25].

Only a few data are available regarding the impact on 
SNPs in the MCL gene for TB susceptibility. A non-synon-
ymous SNP Ser32Gly has been associated with pulmonary 
TB in an Indonesian cohort with the G allele associated 
with disease susceptibility in a dominant model (Table 2). 
The polymorphism causes a missense mutation in the trans-
membrane region of the protein affecting its association 
with adaptor Fcγ and influencing its surface expression 
[25].

In a nutshell, MCL has an important protective function 
in generating anti-mycobacterial immunity by enhancing 
Mincle expression, Mtb recognition, and internalization. 
The only genetic study has further supported its role in TB, 
and further studies would be interesting to more deeply 
understand its significance in mycobacterial infections.

Complement receptor 3

Complement receptor 3, CR3 [synonyms αMβ2, CD11b/
CD18, macrophage-1 antigen (Mac-1)], is a heterodimeric 
membrane receptor belonging to the integrin superfam-
ily. It is expressed on neutrophils, macrophages, natural 
killer cells, and monocytes (Table 1) [237]. The extracel-
lular part of its α chain, which is a type I transmembrane 
protein, consists of an I domain for binding a variety of 
ligands like iC3b (making it a major complement recep-
tor for opsonized tubercle bacteria), mycobacterial Ag85C, 
ICAM-1, and many bacterial components [238, 239], while 
the C domain having a lectin-like site can interact with 
sugars like β-glucan, glucose, GlcNAc, and mycobacterial 
oligosaccharides, including LAM and PIMs (Table 1) [238, 
240]. Thus, CR3 is capable of inducing both opsonic and 
non-opsonic phagocytosis [238, 241]. Increased expression 
of CR3 was observed in the peripheral blood phagocytes 
and AMs in TB patients, suggesting its role in pathogenesis 
[242–244]. Studies with human BALF suggest that classi-
cal complement pathway activation leads to opsonization of 
pathogens like Mtb and may enhance their phagocytosis by 
AMs [245, 246]. However, it was shown that the absence 
of CR3 does not influence bacterial survival inside the cell 
as observed in CR3- and CD11b-deficient mice [118, 247, 
248]. This suggests that, in the absence of CR3, mycobac-
teria can still be internalized by other receptors; thus, the 
role of CR3 in Mtb pathogenesis seems to be redundant. 
Besides, no SNP studies have been performed in humans to 
support its role in the development of TB.
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Conclusion

CTLRs have gained attention in recent decades with 
respect to the increasing numbers of pathogens and endog-
enous ligands that are recognized by these PRRs, strength-
ening their significance in maintaining immunity and 
homeostasis. While some CTLRs with newly discovered 
roles in mycobacterial infections, such as MCL and Min-
cle, are important for inducing a specific immune response 
against the pathogen, there are others, such as CR3, MR, 
DC-SIGN, which may in fact contribute to immune eva-
sion strategies of mycobacteria. The outcome may depend 
on various factors which include, but are not limited to the 
type of cells infected, surface expression of receptors, and 
interactions between them, the cell’s gene expression pro-
files of receptors and adaptors involved in Mtb recognition, 
extracellular factors, and bacterial, as well as host genetics. 
Apart from this, standardization of the experimental proce-
dures and practices, such as ensuring the purity of ligands 
used and minimizing the endotoxin contamination, is also 
crucially important to attain reliable results. Recent finding 
that MCL is indispensable for anti-mycobacterial response 
and that it also regulates the expression of Mincle sug-
gests the importance of interactions between the receptors 
in defining a specific immune response. Genetic associa-
tion studies offer further information on the relevance of a 
receptor and its function. However, in several genetic stud-
ies, polymorphisms are not investigated for their functional 
effect, and in others, the significance level for the associa-
tion between the SNPs and TB is rather low. Additionally, 
while performing such studies, it is to be considered that 
complex diseases like TB do not follow the patterns of 
Mendelian diseases and are in fact polygenic, being largely 
affected by gene–gene interaction. Mtb is recognized by a 
number of PRRs and precise knowledge about cross talk 
between these receptors and their signaling, as well as the 
manipulation elicited by bacteria, in order to develop its 
niche would enable us to better understand the host–bacte-
ria interaction and control the infection and also block fur-
ther spread.

Elucidating the mechanisms of ligand recognition, adap-
tors involved in signaling cascades and signaling regula-
tion by CTLRs, and other receptors involved in TB may 
be helpful in designing vaccine adjuvants that can specifi-
cally activate an adaptive response and help develop other 
protective strategies, such as targeting the key components 
in specific signaling pathways via immunomodulation. 
Along with this information, the host genetics profile data, 
including the SNPs in different genes involved in specific 
responses toward TB, should be further elucidated for their 
functional significance which will help in identifying prog-
nostic markers and aid in the ambitious goal of tailoring 

individual specific therapies. As knowledge about the sig-
nificance of Mtb-recognizing members of CTLRs is in 
preface, they serve as an important and promising group of 
receptors that have the potential to be further explored and 
more clearly define their roles in mycobacterial infections.
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