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Introduction

Over the long evolutionary history, interaction between 
host and invading retroviruses has driven the develop-
ment of some intrinsic barriers to pathogens. Retroviruses 
rely on host factors for many aspects of their replication 
cycle, including viral entry, uncoating, reverse transcrip-
tion, nuclear import, proviral transcription, viral assem-
bly and budding. Despite its limited genomic capacity, 
human immunodeficiency virus type 1 (HIV-1) hijacks 
host proteins to complete its replication life cycle. On the 
other hand, the host has evolved restriction factors, includ-
ing APOBEC3G/F (apolipoprotein B mRNA-editing, 
enzyme-catalytic, polypeptide-like 3G/F) [1, 2], TRIM5α 
(tripartite motif protein 5α) [3], tetherin/BST-2/CD317 [4, 
5], SAMHD1 (SAM domain and HD domain-containing 
protein 1) [6, 7] and Mx2 (myxovirus resistance 2) [8, 9] 
to counteract HIV-1 in different susceptible cells. These 
HIV-1 restriction factors are also called innate immune 
factors, which are stimulated by type I interferon (IFN). 
Moreover, the transcription level of certain IFN-interact-
ing cytokine like IL32 has significant positive correlation 
with restriction factors such as Mx1 and APOBEC3G/F 
in untreated chronically HIV-1-infected patients [10]. In 
1993, the host Cyclophilin A (CypA) was identified as an 
interacting protein that binds to the structure protein cap-
sid (CA) of HIV-1 [11] and serves as a very important host 
factor during the HIV-1 infection and replication processes. 
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In 2004, TRIM5α, the longest splicing isoform of TRIM5 
gene, was identified as a key host restriction factor that 
inhibits the replication of a variety of retroviruses includ-
ing HIV-1 in primate cells [3]. The host CypA is involved 
in modulating the restriction activity of TRIM5α, although 
it is not indispensable [12, 13]. Further work by others 
and us demonstrated that during the long-term host–virus 
interaction history, TRIM5 and CypA genes formed fusion 
genes in diverse patterns in a number of New World and 
Old World primates [14–20]. The chimeric protein products 
of the TRIM5–CypA (TRIMCyp) fusion genes mediate the 
restriction to retroviruses replication involving a similar 
mechanism of TRIM5α in primates.

Retroviruses, including HIV, can activate innate immune 
responses, but the host sensors for retroviruses are largely 
unknown. Recently, it has been shown that dendritic cells 
(DCs) activation required CypA interaction with newly 
synthesized HIV-1 CA protein during HIV-1 infection [21]. 
Upon recognition of CA, CypA acts as a cytosolic recep-
tor that activates DCs, stimulates type I IFN production and 
induces HIV-1-specific CD4+ and CD8+ T cells [21]. Also, 
CypA activates nuclear factor-kappa B (NF-κB) signaling 
and downstream gene expression via interaction with p65/
RelA [22]. Intriguingly, TRIM5α has emerged as a pattern 
recognition receptor (PRR) that recognizes HIV-1 CA, acti-
vates NF-κB and AP-1 (activator protein-1) and enhances 
the transcription of IFN-β via IRF3. Moreover, they show 
that TRIM5α is also involved in LPS-induced Toll-like 
receptor 4 (TLR-4) signaling pathway [23]. The TRIM5α 
and CypA (in TRIMCyp) are deemed to act as cytosolic 
sensors to recognize CA lattice and activate antiviral innate 
immune responses to combat HIV-1 infection [24]. In 
addition to the TRIM5α and CypA, the cyclic guanosine 
monophosphate–adenosine monophosphate (cGAMP) syn-
thase (cGAS) was also identified as an innate immune sen-
sor of HIV and other retroviruses [25].

Here, we will review the effects of CypA on HIV-1 rep-
lication and its contribution to the identification of TRIM5α 
and then explain how CypA modulates the recognition 
of HIV-1 CA, thus mediating the sensing by the innate 
immune pathway and restriction activity of TRIM5α. In 
addition, the review will present the most recent findings 
about the role of TRIM5–CypA fusion gene in primates and 
the mechanisms involved in the replication of HIV-1 in host 
cells.

CypA–CA interaction and the identification 
of TRIM5α

Increasing evidence has shown that host CypA is a piv-
otal modulator in HIV-1 replication and TRIM5α restric-
tion activity. In 1993, CypA and CypB were discovered 

to interact with the HIV-1 structure precursor protein Gag 
by a yeast two-hybrid screening. Cyclosporin A (CsA), an 
immunosuppressant drug binds to CypA, efficiently dis-
rupts the CypA–Gag interaction and, less efficiently, dis-
rupts the CypB–Gag interaction [11]. Shortly after, two 
groups demonstrated that the Cyclophilin–Gag interaction 
is mediated by the CA unit of Gag protein [26, 27]. CypA 
from virion-producing cells is efficiently incorporated into 
the virions; the CypA–CA interaction is important for 
the HIV-1 life cycle and may be relevant to the pathology 
caused by this immunosuppressive virus [26, 27]. Although 
the CypA–CA interaction is important for the formation of 
infectious HIV-1 virions [26], it is not essential. It appears 
that the interaction is involved in the dynamic procedures 
of HIV-1 infection and mediating CA recognition by host 
restriction factors. It is known that CypA is incorporated 
into HIV-1 virions and locates inside the viral membrane 
with a CypA/CA ratio of about 1:10 [26–28]. Further gene-
targeting assays of the host CypA in human cells formally 
demonstrated that CypA regulates the infectivity of HIV-1 
virion via interactions with CA [29].

It has been long shown that the HIV-1 Gag precursor 
protein encodes determinants of species-specific lentiviral 
infection, related in part to host restriction factors. Inter-
action between CA and host CypA protects HIV-1 from 
restriction in human cells, but is essential for maximal 
restriction in simian cells. However, CypA antagonist CsA 
displays differential roles on simian immunodeficiency 
virus (SIV) replication in human and macaque T cells. In 
human T cells, CsA treatment enhanced SIV replication but 
abrogated SIV replication in macaque T cells. Concomi-
tantly, further analyses indicated that CypA promotes SIV 
infection into macaque but not into human T cells. These 
results suggest a host cell species-specific effect of CsA 
on SIV replication, and the CypA appears to contribute to 
the determination of SIV tropism [30]. Actually, sequence 
variation between HIV-1 isolates leads to variation in sen-
sitivity to restriction factors in human and simian cells. The 
sensitivity to restriction is controlled by some mutations 
like H87Q in the CypA-binding loop of CA [31]. As a mat-
ter of fact, it was known for a long time that the CA inter-
action with CypA is a determinant for the species-specific 
tropism of HIV-1 or SIV. The narrow host range of HIV-1 
is due in part to dominant acting restriction factor 1 (Ref1) 
in humans and lentivirus susceptibility factor 1 (Lv1) in 
monkeys [31]. It later became clear that TRIM5α is the fac-
tor responsible for the previously described Lv1 and Ref1 
antiretroviral activities [32–35]. The block to HIV-1 infec-
tion in nonhuman primate cells generally occurs at a pos-
tentry step, but prior to reverse transcription [36].

In 2004, TRIM5α was identified as the predominant 
host factor that restricts the replication of HIV-1 postentry 
in rhesus macaque cells [3]. A genetic screening of rhesus 
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macaque fibroblast cDNA library revealed that TRIM5α, 
a splicing isoform product of TRIM5 gene, confers HIV-1 
resistance to otherwise permissive human cells. TRIM5 
belongs to the large tripartite motif family of proteins (over 
70 family members in human genome) that is defined by 
the tandem presence of RING (really interesting gene) fin-
ger, B-box and coiled-coil (RBCC) domains [37]. Among 
four alternative splicing TRIM5 isoforms, TRIM5α is the 
longest one that possesses a PRY/SPRY (SPla and the 
RYanodine Receptor) domain at the C-terminus. Shortly 
after the identification of TRIM5α in rhesus macaque, 
a couple of research groups demonstrated that TRIM5α 
orthologous from other mammals inhibits the replication of 
a broad range of retroviruses [33–35, 38, 39].

TRIM5α activates innate immune response 
to HIV‑1 via sensing of CA lattice

Restriction mechanisms of TRIM5α besides direct 
action on HIV‑1

TRIM5α is a cytoplasmic protein in host cells; the exact 
mechanism of its restriction remains unknown. Early stud-
ies indicate that TRIM5α has a direct effect on HIV-1 
infection by blocking viral replication soon after the 
virion enters the target cell cytosol [3, 12, 35, 40]. The 
process is possibly that TRIM5α accelerates the uncoat-
ing of the incoming viral core, thus resulting in the aber-
rant viral uncoating or the rapid degradation of the viral 
RNA which impedes HIV-1 reverse transcription [3, 40]. 
CypA has been proposed to prevent restriction factor bind-
ing in human cells, thus optimizing HIV-1 infectivity, 
while potentiating restriction of HIV-1 in monkey cells. 
Early studies have shown that the host CypA is involved 
and modulates TRIM5α restriction postentry [12, 13]. 
However, Sokolskaja et  al. [41] showed that CypA and 
TRIM5α independently regulate HIV-1 infectivity in 
human cells. In accordance with this, it was reported that 
the CypA–CA interaction occurs early after viral entry, but 
the CypA-enhanced restriction mostly acts on the stage 
after reverse transcription [42]. Disruption of CypA–CA 
interaction partially relieved the block to HIV-1 infection, 
and the CypA–CA binding was not absolutely required for 
TRIM5α antiviral activity [43]. It has also been shown that 
if the block to reverse transcription is bypassed, HIV-1 rep-
lication steps after reverse transcription are also blocked by 
TRIM5α [44]. In addition to the action in the host cell cyto-
plasm, biochemical experiments also showed that TRIM5α 
is shuttled in and out the cell nucleus [45], which implies 
that more intricate mechanisms might be involved. More 
recently, work has revealed versatile roles of TRIM5α 
on HIV-1 replication in host cells, which are not fully 

associated with viral restriction. TRIM5α affects various 
retroviral core components and indicates that proteasomes 
are required for TRIM5α-induced core disruption but not 
for TRIM5α-induced restriction of HIV-1 [46].

Despite the observations mentioned above, an increas-
ing body of knowledge on TRIM members contributes to 
the finding of innate immune roles of TRIM5α. Among 
the TRIM family members, some other members such as 
TRIM1 and TRIM34 have also shown modest retroviral 
restriction activity [39, 47, 48]. In fact, the TRIM5 locus 
has undergone expansions on more than one occasion in 
mammals. For example, there have been two independent 
paralogous expansions of TRIM5 genes in cows and rodents 
[39, 47]. Cows have up to five TRIM5 genes [39, 49], while 
rats have three and mice have up to eight [50]. Two of the 
mouse TRIM5 genes were previously known as TRIM12 
and TRIM30. However, further phylogenetic analysis dem-
onstrated that these two genes and their paralogs turn out 
to be the homologs of TRIM5 gene [50]. Intriguingly, both 
mouse and primate (human and rhesus macaque) TRIM5α 
have been shown to negatively regulate TLR-mediated 
NF-κB activation by targeting TAB 2 (TAK1-binding pro-
tein 2) and TAB 3 (TAK1-binding protein 3) for degrada-
tion, though different effect levels were observed [51–53]. 
These observations suggested that TRIM5α might have 
additional roles in innate immunity besides direct recogni-
tion and degradation of retroviral CA [53].

TRIM5α activates innate immune to HIV‑1 
by acting as a PRR

More recently, studies have shown that, in addition to 
direct inhibition of the replication process of retroviruses, 
TRIM5α inhibits HIV-1 infection by acting as a PRR, 
which is inducing innate immune responses. The knock-
down of TRIM5α in DCs prevents innate immune signal-
ing downstream of LPS and other pathogen-associated 
molecular patterns [23]. TRIM5α, an E3 ubiquitin (Ub) 
ligase, exists as a dimer in the cytoplasm, and its restric-
tion activity is very weak. TRIM5α multimerizes during 
HIV-1 invasion into the cytosol of the target cell, and its 
avidity for HIV-1 CA lattice increases accordingly [54]. 
Dissection of the mechanism by which TRIM5α activates 
innate immune signaling showed that HIV-1 CA binds to 
TRIM5α and activates its E3 Ub ligase activity, and then, 
TRIM5α recruits Ub-conjugating enzyme E2 heterodi-
mer UBC13 (ubiquitin-conjugating enzyme 13)–UEV1A 
(ubiquitin-conjugating enzyme variant 1A) and other ubiq-
uitination enzymes. This big ubiquitination enzyme com-
plex catalyzes the synthesis of the Ub chains through the 
Lysine 63 (K63) residues of free Ub molecules (K63-linked 
Ub chains). After that complex formation, the Ub chain 
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promotes the phosphorylation of TAK1 (transforming 
growth factor β-activated kinase-1) of the protein kinase 
complex. The activated TAK1 triggers the transcription 
of AP-1 and NF-κB and thus up-regulating the expression 
of cytokines and chemokines, thus initiating host antiviral 
innate immune responses (Fig. 1) [23, 55, 56]. In addition, 
it is rational to speculate that the up-regulated expression of 
cytokines or chemokines within the cell might activate lys-
osome formation, and the secreted chemokines activate fur-
ther cells such as neutrophils, macrophages and mast cells, 
as well as the complement cascade and the synthesis of 
acute-phase proteins, which all together compose the innate 
immune response. All these hypotheses call for much more 
experimental studies in the future work.

Pilot screening of TRIM proteins that are able to acti-
vate innate immune signaling pathways identified 16 TRIM 
proteins that induced NF-κB and/or AP-1 [57]. A recent 
systemic study of 75 human TRIM members suggests 
that about half of TRIM proteins possess the potential to 
enhance innate immune response [58]. Although the E3 Ub 
ligase activity mediated by the RING domain of TRIM5α 
is proved to be important for the innate signaling pathway 
activation [23, 59], two TRIM family members without 
RING domain, TRIM14 and TRIM66, have also demon-
strated strong enhanced immune induction activity [58]. It 
appears that RING domain is not indispensable for innate 
immune activation, which calls for more investigations in 
the future.

Small ubiquitin-like modifier (SUMO) proteins conju-
gation of viral proteins can be essential for viral replica-
tion. Recently, in the effort to further elucidate the rela-
tionship between SUMO conjugation and early events of 
the murine leukemia virus (MLV) replication, Arriagada 
et  al. [60] identified that human TRIM5α contains three 
small ubiquitin-like modifier 1 (SUMO-1)-interacting 
motifs (SIMs) in the B30.2/SPRY domain, and the SIM-
mutated TRIM5α was unable to block the N-tropic MLV 
(N-MLV). The restriction activity to HIV-1 is required by 
TRIM5α SIMs binding to the SUMO-conjugated CA [60]. 
Interestingly, the SIM-mutated rhesus TRIM5α also failed 
to restrict HIV-1 and translocate into the nucleus [61, 62]. 
However, there was no interaction between SIM and HIV-1 
CA, and the interaction between B30.2/SPRY domain and 
the SUMO-1 was observed [61, 62]. Furthermore, the 
SUMO-1 knockdown attenuated the TRIM5α-activated 
NF-κB signaling [62], which suggests that the domains 
of TRIM5α are probably involved in the triggering of 
innate immune responses to incoming retroviruses except 
for the RING domain. Work by Nepveu-Traversy et  al. 
[63] showed that the sumoylated lysine mutant (lysine 
to arginine, K10R) decreased the TRIM5α-induced gen-
eration of free K63-linked ubiquitin chains. Naturally, it 
decreases TRIM5α-mediated activation of both NF-κB and 

AP-1. The K10R mutant also generated numerous ubiqui-
tylated TRIM5α proteins in the cells. Taken together, the 
RING domain, in synergy with the B30.2/SPRY domain, 
is involved in modulating the TRIM5α-induced innate 
immune response through the SUMO-1 pathways. This 
modulatory mechanism is associated with the nuclear 
shuttle of TRIM5α [61].

TRIM5–CypA and HIV‑1 restriction

Formation of TRIM5–CypA and TRIMCyp’s 
restriction activity to retroviruses

Members of the TRIM big family share a conserved tan-
dem arrangement of three functional domains, an N-ter-
minal RING domain, followed by one or two B-boxes and 
a coiled coil at the C-terminus, which constitutes the tri-
partite motif for which the family is named. However, the 
C-termini of TRIM proteins vary and include at least nine 
evolutionarily distinct, unrelated protein domains. Intrigu-
ing work in the Luban and Stoye laboratories showed that 
in Owl monkey (Aotus trivirgatus), a New World monkey 
species, CypA cDNA is retrotransposed into the TRIM5 
locus [14, 15]. The retrotransposed CypA copy is only 
present in four species of Aotus genus among New World 
monkeys; the other 15 genera do not possess the TRIM5–
CypA fusion pattern [64]. In contrast, the TRIM5–CypA 
fusion phenomenon occurs in some Old World monkeys, 
including northern pigtailed macaque (M. leonina), Sunda 
pigtailed macaque (M. nemestrina), Indian rhesus macaque 
(M. mulatta), cynomolgus macaque (M. fascicularis) and 
assam macaque (M. assamensis) [16–20, 65]. The LINE-1 
element mediates retrotransposition of CypA cDNA into 
TRIM5 locus in distinct fusion patterns and genotype 
among New and Old World primates. In the Aotus genus of 
New World monkeys, the TRIMCyp exists in the pattern of 
homozygosity at the TRIM5 locus; there was no TRIMCyp/
TRIM5 heterozygote observed [14, 64, 66]. The TRIMCyp 
identified in the rhesus macaques of the Old World monkey 
is encoded by a single, but common, allele (Mamu7) of the 
rhesus TRIM5 gene, among at least six further alleles that 
encode full-length TRIM5 proteins with no homology to 
CypA [66]. However, in Old World monkeys, the cynomol-
gus macaques and Indian rhesus macaques contain het-
erozygous TRIM5/TRIMCyp existing at different portions 
in the populations; the homozygous TRIMCyp exists as 
well [16, 19, 67]. In Sunda pigtailed macaque, all screened 
macaque individuals were homozygous for the CypA inser-
tion. In contrast, the CypA-containing allele was present 
in 17  % (17/101) of rhesus macaques [67]. Further stud-
ies demonstrated that the generation of the TRIM5–CypA 
is caused by the G-to-T mutation at the 3′ splice site in 
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Fig. 1   The innate immune activation by TRIM5α or TRIMCyp dur-
ing HIV-1 infection. In the target cell, the invasive HIV-1 CA lattice 
in the cytosol is recognized and bound by TRIM5α via the SPRY 
domain or TRIMCyp via the CypA domain. TRIM5α multimerizes 
and forms a hexagonal lattice on top of the CA. TRIM5α binding 
to CA triggers its E3 Ub ligase activity and subsequently promotes 
the formation of the E2 Ub-conjugating enzyme complex UBC13–
UEV1A. Then, the UBC13–UEV1A heterodimer catalyzes the syn-
thesis of free K63-linked Ub chain complex (indicated with Ub in 
red circle), which in turn activates the phosphorylation (indicated as 
a letter P in orange circle) of the TAK1 and in complex with TAB 
2 and TAB 3. The TAK1–TAB 2–TAB 3 complex results in the 
induction and expression of downstream NF-κB-responsive and AP-

1-responsive inflammatory genes, thereby leading to the cytokines 
or chemokines expression-mediated innate immune response to 
HIV-1 in the infected cell. The secretory cytokines (IL6 and IL8) and 
chemokines (CXCL9 and CXCL10) directly act as the innate immune 
factors outside the cell. The cytokines and chemokines inside host 
cells might involve other components, such as the formation of the 
lysosome, to act as a part of the role of innate immune system, which 
remains unknown. SPRY SPla and the RYanodine Receptor, Ub ubiq-
uitin, UBC13 ubiquitin-conjugating enzyme 13, UEV1A ubiquitin-
conjugating enzyme variant 1A, K63 Lysine 63, TAK1 transforming 
growth factor β-activated kinase-1, TAB 2 TAK1-binding protein 2, 
TAB 3 TAK1-binding protein 3, NF-κB nuclear factor-kappa B, AP-1 
activator protein-1 (color figure online)
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TRIM5 intron 6 [19, 67], and this might be associated with 
the loss of exon 7 in transcripts [68].

The cynomolgus macaque TRIMCyp is unable to inhibit 
HIV-1 and SIVmac239 [17, 18]. Nevertheless, the TRIM-
Cyp in Indonesian cynomolgus macaques could restrict 
HIV-1, SIVAGMTan (SIV from African green monkey tan-
talus species) and FIV (feline immunodeficiency virus), but 
failed to restrict HIV-2 [69]. Further work showed that the 
single mutation, E143K, results in the loss of restriction to 
HIV-2 and a significant decrease in restriction activity to 
SIVAGMTan by TRIMCyp in cynomolgus macaques [70]. 
Dietrich et al. [71] analyzed the prevalence of TRIMCyp in 
cynomolgus macaque samples from four different regions, 
i.e., Indonesia, Indochina, Philippines and Mauritius. The 
TRIMCyp is present at a higher frequency in Indonesian 
than in Indochinese cynomolgus macaques and is also pre-
sent in macaques from the Philippines. Interestingly, the 
different TRIM5–CypA fusion frequency is also different in 
two rhesus macaques: Indian rhesus macaque and Chinese 
rhesus macaque (reference [55] and our unpublished data). 
TRIMCyp is absent in Mauritian cynomolgus macaques. 
The restriction specificity of TRIMCyp derived from three 
animals of Indonesian origin is different as well. One 
allele, like the prototypic TRIMCyp alleles described for 
rhesus macaques and Sunda pigtailed macaques, restricts 
HIV-2 and FIV but not HIV-1 replication. The other alleles 
of Indonesian TRIMCyp restrict HIV-1 and FIV, but they 
do not restrict HIV-2 replication. Taken together, these 
data suggest that the high diversity of TRIMCyp in Asian 
macaques may contribute to the diverse retroviral restric-
tions during their evolution.

TRIMCyp restriction mechanisms to HIV‑1

Although the RING and B-box2 domains affect TRIMCyp 
half life and anti-HIV-1 activity, they are not absolutely 
necessary for TRIMCyp antiviral activity [69]. This may 
attribute to that CypA itself has the ability to promote CA 
shedding and restrict HIV-1 in making TRIMCyp anti-
viral activity; thus, it is less dependent on the proceeds 
from the cofactor by the RBCC [72]. Early studies have 
shown that TRIMCyp in mammalian cells, mainly in the 
form of trimer, the CA binding mediated by coiled coil and 
CypA and B-box2-mediated effector function are required 
for TRIMCyp restriction of HIV-1 [73, 74]. However, in 
recent years, the TRIMCyp dimer, hexamer and other 
very complex polymers were also found in addition to 
the trimeric form, and the hexamer seems to be the main 
polymer form of TRIMCyp that exists in the mammalian 
cells. The hexamer TRIMCyp structure is a benefit to the 
recognition of mature retroviral CA component units of 
the hexamer CA particles (Capsomer), but the TRIMCyp 

polymerization is not associated with the specific viral CA 
recognition [75]. CypA displays different roles in restric-
tion by Old World monkey TRIM5α and owl monkey 
TRIMCyp. In Old World monkeys, CypA isomerization 
of a proline residue in the TRIM5α sensitivity determinant 
of the HIV-1 CA sensitizes it to restriction by Old World 
monkey TRIM5α. Owl monkey TRIMCyp recruits its tri-
partite motif to HIV-1 CA via the CypA domain and inhib-
its HIV-1 replication [76].

Host antiviral proteins and pathogenic viruses coun-
tervail each other with the long-term evolution history. 
Selection pressure from pathogenic infection has driven 
rapid evolution of TRIM5 genes in primates, leading to the 
antiviral specificities we see today. Remarkably, the New 
World owl monkey encoded TRIMCyp restricts infection 
by a subset of lentiviruses that recruit CypA to their CAs, 
including HIV-1 and FIV. The hypothesis has been estab-
lished that owl monkey TRIMCyp fusion protein may limit 
the HIV-1 infection by the following mechanisms: Firstly, 
after HIV-1 entering into the target cells, the CypA domain 
of TRIMCyp immediately binds to the HIV-1 CA [13, 
14, 64, 77], accelerating the uncoating of HIV-1 core and 
CA degradation to prevent HIV-1 RNA from reverse tran-
scription [74, 78]. In this process, the coiled-coil domain 
and CypA domain are crucial for the interaction between 
TRIMCyp and HIV-1 CA-NC (capsid–nucleocapsid) com-
plex. The TRIMCyp trimer that contains the two domains 
is more effective in combination with the CA protein [43]. 
Secondly, although the proteasome inhibitor can restore 
HIV-1 reverse transcription and promote the formation of 
an active PIC (pre-integration complex), the PIC nuclear 
import is blocked via an unknown way by TRIMCyp, thus 
limiting further viral replication [79]. The antiviral speci-
ficity of the rhesus TRIMCyp is distinct, restricting infec-
tion of HIV-2 and FIV but not HIV-1. Restriction by rhesus 
TRIMCyp is before reverse transcription and inhibited by 
blocking CypA binding, with CsA or by mutation of the 
CA–CypA-binding site [66]. These observations suggest a 
mechanism of restriction that is conserved between TRIM-
Cyp proteins. The detailed working mechanism of Old 
World monkey TRIMCyp needs more studies in the future.

Like the innate immune activity of TRIM5α, the owl 
monkey TRIMCyp fusion protein was also proved to be 
able to catalyze free K63-linked Ub chain synthesis in 
vitro. After the recognition and binding to HIV-1 CA via 
CypA domain, the amount of free Ub chains will increase 
substantially, newly synthesized Ub chains promote TAK1 
phosphorylation [23, 55, 80]. It implies that the owl mon-
key TRIMCyp also could act as a PPR and interact with 
retroviral CA proteins, thus eliciting the antiviral functions 
of host innate immune system. However, the exact mech-
anism of TRIMCyp in the PPRs signaling pathway is not 
clear and remains to be elucidated.
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Conclusions

The identification of TRIM5α is tightly associated with the 
interaction between CypA and CA in infected cells. The 
cytoplasmic E3 Ub ligase TRIM5α exists as a dimer in the 
cytosol; it recognizes HIV-1 CA lattice and triggers the 
innate immune response to incoming virion by activating 
the TAK1. Besides, the formation of TRIM5–CypA fusion 
gene in primate genomes especially calls for more appre-
ciations. The host protein CypA could also sense the CA 
proteins in DCs, thus helping the innate immune activity 
of TRIMCyp fusion protein. The species-specific sensing 
and activation of innate immune response by TRIM5α and 
CypA were observed in T cells, macrophages and DCs. 
Further investigation into the function and the mechanism 
of TRIM5α as an innate immune sensor for retrovirus CA 
might shed light on developing more effective interven-
tions against HIV-1 infection. Although a robust prophy-
lactic vaccine based on adaptive immune memory response 
is irreplaceable to prevent AIDS progression, finding ways 
to artificially employ TRIM5α to induce more highly pro-
tective responses in the context of candidate HIV vaccines 
might prove to be a helpful strategy, and the TRIMCyp 
has been proposed to as candidate gene in gene therapy 
approaches as well [81, 82].
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