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this deficit, many bacteria secrete iron-binding proteins 
called siderophores, which due to their high affinity for 
iron “steal” Fe3+ from host iron-binding proteins such 
as lactoferrin and transferrin [2]. To prevent bacterial 
iron acquisition via siderophores, mammals employ the 
siderophore-binding protein neutrophil gelatinase-associ-
ated lipocalin (NGAL), also known as human neutrophil 
lipocalin or lipocalin 2. NGAL belongs to the lipocalin 
family, a diverse group of small proteins that bind small 
mainly hydrophobic molecules such as iron, fatty acids, 
prostaglandins, steroids and matrix metalloproteinases [3]. 
NGAL can be found as a monomer, a homodimer or as a 
heterodimer, disulfide linked with matrix metalloprotein-
ase (MMP)-9 [4, 5]. NGAL is constitutively present in per-
oxidase negative granules of neutrophils, co-localized with 
lactoferrin, and is released following neutrophil activation 
[6, 7]. It appears early in the granulocyte differentiation 
pathway and thus is a marker of neutrophil formation [8]. 
In addition, NGAL can be found in a large number of tis-
sues such as colon, uterus, trachea, lung, stomach, prostate 
and salivary gland [9]. Its concentration has been shown to 
increase in kidney tubular cells, intestinal epithelial cells, 
stomach cells and hepatic cells in response to a variety 
of noxious stimuli, which include infection or ischemia  
[10–13]. In this review, we highlight the role of NGAL in 
antimicrobial immunity against human pathogens at diverse 
body sites, describe how some bacteria evade NGAL-
mediated effects, and highlight potential avenues for future 
investigation.

Biological functions of NGAL

In vitro and in vivo experiments have confirmed that 
NGAL is an essential component of antimicrobial innate 

Abstract Neutrophil gelatinase-associated lipocalin 
(NGAL), an essential component of the antimicrobial 
innate immune system, is present in neutrophils and mul-
tiple other tissues. It prevents iron acquisition by micro-
organisms by sequestering iron-loaded bacterial sidero-
phores. NGAL also modulates neutrophil functions. Its 
production is inducible following Toll-like receptor 4 acti-
vation and release of pro-inflammatory cytokines. NGAL is 
employed clinically in the diagnosis of acute kidney injury 
and may be useful in general in the differential diagnosis 
of a bacterial-mediated infectious process. Elevated lev-
els of NGAL have been detected in the blood of patients 
with bacterial urinary tract infection, community-acquired 
pneumonia, sepsis, as well as in the cerebrospinal fluid 
and peritoneal fluid of patients with bacterial meningitis 
and peritonitis. Some bacteria have developed resistance to 
NGAL-mediated iron sequestration by production of modi-
fied siderophores that are not recognized by NGAL.
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Introduction

Iron is an essential micro-element for bacteria, fungi and 
mammals. The iron concentration required for growth 
of most bacteria in a human host is much higher than the 
concentration of free available iron [1]. To overcome 
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immunity, especially during the early stages of infec-
tion. NGAL-deficient mice display increased susceptibil-
ity to infections and an inability to clear invading bacteria 
[14, 15]. The main bacteriostatic function of NGAL is its 
binding and sequestration of bacterial siderophores, thus 
depriving bacteria of iron [16]. NGAL also deprives bacte-
ria from iron acquisition from catecholamines by strongly 
binding to iron-loaded norepinephrine [17]. NGAL-ferric 
siderophore complexes interact with megalin, a multi-
ligand receptor present on host cells and are endocytosed 
and degraded in the cytoplasm [18]. A second receptor 
for NGAL is 24p3R, which induces apoptosis in response 
to low intracellular iron concentrations [19]. The role of 
NGAL in antimicrobial innate immunity is not limited 
solely to iron deprivation. NGAL also modulates several 
neutrophil functions. Neutrophils derived from NGAL-
deficient mice failed to phagocytose and kill bacteria, did 
not extravasate to infection sites, and had impaired chem-
otaxis and adhesion [20, 21]. Moreover, there is in vitro 
evidence that NGAL can link innate and adaptive immu-
nity. NGAL increases in an iron-independent manner the 
expression of HLA-G (a HLA class I molecule involved 
in tolerance) on CD4+ T lymphocytes. Iron-bound NGAL 
also activates CD4+/FoxP3+ regulatory T lymphocytes, 
suggesting its possible involvement in modulating cell-
mediated immunity [22].

Other biological functions have also been attributed 
to NGAL. It has antioxidative properties [23], promotes 
apoptosis [19], and participates in kidney organogenesis 
by inducing epithelial cell development [24]. NGAL has 
a documented role in the development of cardiovascular 
disease [25] and is currently promoted as a “troponin-like” 
marker for the early diagnosis of acute kidney injury (AKI) 
[26, 27], although there are recent concerns regarding this 
property, especially in an intensive care unit (ICU) set-
ting [28]. There is no clear consensus regarding the role 
of NGAL in tumorigenesis and tumor progression; stud-
ies have identified both pro- and anti-tumor properties of 
NGAL [29]. The antimicrobial properties of NGAL are 
summarized in Table 1.

Under some conditions, NGAL-related effects may be 
detrimental to antimicrobial host defenses. NGAL stabili-
zation of MMP-9 has been shown to aggravate Salmonella 
typhimurium-induced colitis, by promoting degradation of 
the extracellular matrix [30]. Increased levels of NGAL 
during an infection may also induce anemia since it sup-
presses red blood cell production by inhibiting hematopoi-
etic stem/progenitor cell differentiation and inducing apop-
tosis [31, 32].

Gene expression and regulation

Initial cloning and sequencing of the NGAL gene identi-
fied a 3696 base pair coding region, organized into 7 exons 
and 6 introns, along with a number of possible cis act-
ing elements within the promoter region, which included 
a binding site for NF-kappaB (NFκB) [9]. NGAL gene 
expression is strongly induced in human epithelial cells by 
interleukin (IL)-1β. Its induction is dependent on the pres-
ence of the NFκB transcription factor and the de novo syn-
thesis of the IKappaB zeta cofactor, which in turn interacts 
with the p50 subunit of NFκB [33–35]. Secretion of IL-17 
by Th17 + CD4 lymphocytes stabilizes the ikappaB zeta 
transcript and may enable a tumor necrosis factor (TNF)-
a-dependent up-regulation of NGAL gene expression [36]. 
This is supported by the observation that NGAL gene tran-
scription within intestinal epithelial cells is induced by the 
synergistic action of IL-17 and IL-22 [37]. Likewise, in 
a murine model of oral candidiasis, the NGAL gene was 
strongly induced by IL-17 within infected mucosal tissue 
[38]. Also, NGAL gene expression has been induced in adi-
pocytes after exposure to interferon (IFN)-γ [39]. Further-
more, Toll-like receptor (TLR) 4 activation has been shown 
to be essential for NGAL gene induction by lipopolysac-
charide (LPS) [33, 34].

Central nervous system

In murine models of systemic endotoxemia induced by 
intraperitoneal injection of LPS, NGAL expression was 
up-regulated in brain tissue and was located mainly in 
endothelial cells of blood vessels, microglia, epithelial 
cells of choroid plexus and astrocytes [40–42]. NGAL pro-
motes microglial activation by stimulating their M1 pheno-
type, which results in the production of pro-inflammatory 
cytokines; their conversion to the M2 phenotype associated 
with phagocytosis and wound repair is inhibited. NGAL 
knockout (KO) mice display lower levels of glial activa-
tion and related neurotoxicity, with a positive net effect 
on motor behavior and cognitive function [42, 43]. Also, 
NGAL acts in an autocrine manner, regulating the function 

Table 1  Summary of antimicrobial effects of NGAL

Property References

1. Sequesters iron-loaded bacterial siderophores [16]

2. Sequesters iron-loaded l-norepinephrine [17]

3. Promotes neutrophil adhesion and extravasation [21]

4. Acts as chemoattractant for neutrophils [20, 21]

6. Promotes phagocytosis and bacterial killing by 
neutrophils

[20]

7. Promotes neutrophil maturation [20]

8. Activates CD4+/FoxP3+ T regulatory cells [22]
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of astrocytes; more specifically, it promotes a pro-inflam-
matory astrocyte phenotype and controls their migration 
[44, 45].

In clinical settings, patients with acute meningitis of 
bacterial origin have higher cerebrospinal fluid (CSF) lev-
els of NGAL compared to patients with acute viral men-
ingitis [46]. A separate study confirmed these results and 
reported a significant correlation of CSF NGAL with CSF 
values of polymorphonuclear leukocytes, total white blood 
cells, erythrocytes and total protein [47]. Pending addi-
tional confirmatory studies, these clinical findings suggest 
that CSF NGAL may be a promising marker for the early 
identification of bacteria-mediated acute meningitis.

Respiratory system

In normal human lung tissue, NGAL is present constitu-
ently within tracheal goblet cells and type II pneumocytes 
[33]. In an experimental murine model of gram-negative 
bacterial pneumonia, expression of NGAL from these cells 
was induced after exposure to Escherichia coli, contribut-
ing along with migratory neutrophils, to the increased lev-
els of NGAL within the infection site. In the same model, 
a higher bacterial load was reported in NGAL KO mice, 
suggesting its important role in the clearance of E. coli 
and prevention of its dissemination [48]. NGAL produc-
tion from exogenously administrated mesenchymal stem 
cells can also assist in bacterial clearance from the lungs 
[49]. Thus, NGAL may play a protective role against lung 
infections from siderophore-producing bacteria. In addi-
tion, exogenous NGAL was shown to promote clearance 
of Staphylococcus aureus and dampen lung inflammation 
[50].

One in vitro study has suggested that NGAL may also 
participate in host defense against Chlamydia pneumoniae. 
Higher numbers of C. pneumoniae, a pathogen responsi-
ble for a large portion of community-acquired pneumonia 
(CAP), have been observed in cultured peritoneal mac-
rophages derived from NGAL KO mice [51].

NGAL is able to bind and sequester enterobactin, the 
siderophore produced by Klebsiella pneumoniae, a com-
mon gram-negative pathogen of the respiratory tract. How-
ever, some strains of this organism can employ additional 
siderophores such as yersiniabactin and salmochelin, which 
cannot be sequestered by NGAL within the lung tissue, 
thus evading its bacteriostatic effects [52]. K. pneumoniae 
strains, isolated from the respiratory tract or that exhibit 
carbapenemase production, are more likely to be yersinia-
bactin-secreting strains [53]. In an experimental model of 
K. pneumoniae pneumonia, NGAL was indispensable for 
the prevention of perivascular invasion and dissemination. 

However, infection with yersiniabactin-positive strains was 
associated with a greater extent of lung pathology [54].

Pseudomonas aeruginosa, another lung pathogen related 
to high morbidity and mortality especially in cystic fibrosis 
patients, secretes pyochelin and pyoverdine, siderophores 
that evade NGAL recognition [55]. In clinical settings, 
NGAL was not a biomarker for pulmonary exacerbation in 
cystic fibrosis even though patients displayed higher serum 
levels of NGAL compared with healthy controls [56].

Tuberculosis is a re-emerging infection worldwide, 
and knowledge of the innate defenses against Mycobac-
terium tuberculosis is of great interest. NGAL is able to 
bind siderophores employed by Mycobacterium species, 
such as exochelins, mycobactins and carboxymycobac-
tins [57]. However, carboxymycobactins are a chemically 
heterogenous group, and NGAL has a different affinity for 
each member depending on the length of the fatty acid tail 
present [58, 59]. Some Mycobacterium strains have devel-
oped in vivo mechanisms to evade the bacteriostatic effect 
of NGAL and to obtain iron. Even though NGAL limited 
M. avium spread during the initial extracellular phase of 
infection in vivo, it could not contribute to bacterial clear-
ance in the context of long-term infection. Intracellular  
M. avium in macrophages evades endocytosed NGAL 
present within lysosomes, but still retains access to trans-
ferrin by residing in different intracellular compartments 
[60]. On the other hand, exogenously administered NGAL 
limited the intracellular growth of M. tuberculosis within 
macrophages in vitro [61]. In an experimental model of  
M. tuberculosis pulmonary infection, during the initial 
phase, NGAL was secreted into the alveolar space by alve-
olar macrophages and epithelial cells. Increased mycobac-
terial growth within alveolar epithelial cells was observed 
in NGAL KO mice. Moreover, internalization via endo-
cytosis of the NGAL molecule was pivotal for the inhibi-
tion of intracellular mycobacteria growth within alveolar 
epithelial cells, possibly due to co-localization in the same 
cellular compartments [62]. Recent evidence suggests an 
additional role for NGAL in the context of mycobacterial 
pulmonary infections, that of cytokine regulator. More spe-
cifically, NGAL constrains CXCL9 induction, a lympho-
cyte recruiting chemokine, which promotes T lymphocyte 
accretion and subsequent granulomatous inflammation. 
Also, NGAL stimulates granulocyte colony-stimulating 
factor (G-CSF) and keratinocyte-derived chemokine (KC) 
production and enhances neutrophil recruitment [63]. In 
clinical settings, higher levels of NGAL and the NGAL/
MMP-9 complex were detected in hospitalized adult 
patients with CAP compared with healthy controls. Also, 
plasma levels of NGAL but not C-reactive protein (CRP) 
before initiation of antibiotic treatment correlated with the 
severity of CAP [64].
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Peritoneal cavity

NGAL has been isolated from peritoneal exudates of 
patients with severe acute peritonitis, and its levels strongly 
correlated with leukocyte elastase and neutrophil proteinase 
4 activity, suggesting its neutrophilic origin [65]. Peritoneal 
mesothelial cells, after stimulation by IL-1, may also pro-
vide an additional source of NGAL within the peritoneal 
cavity [66]. In clinical settings, NGAL can be employed 
to discriminate bacterial from non-bacterial causes of peri-
tonitis in patients undergoing peritoneal dialysis [66, 67]. 
Also, when combined with lactic dehydrogenase measure-
ment, the presence of NGAL can differentiate with high 
accuracy bacterial peritonitis in patients with new onset 
non-malignant ascites [68].

Urinary tract

The urinary NGAL (uNGAL) concentration correlates with 
urinary white blood cell count [69]. Recent evidence from 
a murine model demonstrated that kidney α-intercalated 
cells, which are located within the collecting ducts and 
modulate acid–base balance, can also detect the presence 
of uropathogenic E. coli, via TLR4 and actively secrete 
NGAL. This contributes to bacterial clearance from the 
urinary tract [70]. In vivo and in vitro experiments suggest 
that glomerular podocytes are also capable of producing 
NGAL following stimulation by LPS [71]. Increased lev-
els of uNGAL have been observed in a murine model of 
acute pyelonephritis, with macrophages and damaged renal 
tubular cells identified as the source. Interestingly, elevated 
NGAL expression in renal tubular cells persisted even after 
bacterial clearance, coinciding with the development of 
renal scaring [72]. Mean levels of uNGAL were elevated in 
adult patients with upper and lower urinary tract infections 
(UTIs) when compared to healthy controls [73].

Due to the detrimental sequelae of untreated UTIs and 
its high incidence within the pediatric population, there is 
interest in the discovery of novel noninvasive markers for 
its early detection and NGAL has been proposed as a can-
didate marker. Higher mean uNGAL levels were observed 
in children with UTI. Also, the mean urinary NGAL/cre-
atine ratio (which controls for urinary dilution effect) was 
increased in the UTI group. The sensitivity of these mark-
ers out-performed leukocyte esterase and the nitrite test but 
displayed inferior specificity [74]. Mean urinary MMP-9/
NGAL complex/creatine levels were also elevated in chil-
dren with UTI when compared to normal controls or 
asymptomatic children with contaminated urine, and they 
decreased after initiation of antibiotic treatment [75]. Like-
wise, the mean uNGAL/creatine ratio was increased in 
children with febrile UTI when compared to non-febrile 

and febrile control groups [76]. Moreover, median plasma 
levels of NGAL on admission were elevated in children 
with UTI complicated with pyelonephritis compared with 
controls and uncomplicated UTI, but its usefulness as a 
stand-alone test for diagnosing acute pyelonephritis was 
considered limited [77]. Contrary to the previous results, 
a large-scale study recruiting children with/without UTI 
failed to reproduce the aforementioned findings or detect 
a statistically significant difference regarding uNGAL or 
serum NGAL levels [78].

Hepatocytes

Recent evidence from murine models indicates that liver 
is a significant source of NGAL under a number of con-
ditions. More specifically, following a bacterial infection, 
hepatocytes produce significant amounts of NGAL possi-
bly through activation of the STAT3 pathway [13]. In addi-
tion, hepatectomy strongly induces hepatic NGAL expres-
sion [79]. Its role in liver regeneration, however, remains 
to be determined. Nevertheless, NGAL appears to exert a 
protective effect during acute liver injury, correlating with 
the degree of inflammation [80].

Sepsis

After systematic administration of LPS in a murine model 
mimicking sepsis, an increase in serum NGAL levels was 
observed. NGAL gene expression was induced in liver and 
lung macrophages, as well as in type II alveolar cells, with 
TLR4 having a key role in LPS-induced NGAL gene up-
regulation [81, 82]. Moreover, NGAL KO mice displayed 
increased LPS-related toxicity, pro-inflammatory gene 
expression, immune cell apoptosis and oxidative stress, 
with the latter being linked to delayed hypoferremia [81]. 
In a clinical setting, septic patients diagnosed with sys-
tematic inflammatory response syndrome (SIRS) had 
higher plasma NGAL levels than did other patients admit-
ted to the ICU [83]. In another study recruiting critically 
ill patients, NGAL levels differed significantly only when 
a sepsis diagnosis was based on procalcitonin (PCT) values 
[84]. Also, neonates with severe sepsis had elevated serum 
and uNGAL when compared to a control group, and its 
levels strongly correlated with CRP and PCT levels [85]. 
In addition, plasma NGAL could discriminate fairly well 
the presence of bacterial sepsis from other non-infectious 
causes of SIRS in ICU patients, outperforming both PCT 
and CRP [86]. It should be noted that serum NGAL lev-
els at presentation in sepsis patients are affected by the 
patient’s age, even after controlling for sepsis severity [87]. 
NGAL levels may also be useful in discriminating patients 
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with septic from non-septic-induced AKI or identify septic 
patients who subsequently develop AKI [83, 88]. It must 
be acknowledged, however, that in a septic patient, NGAL 
present in serum and urine may be of multiple cell origin. 
The pathophysiology of AKI in septic patients is complex 
and has not yet been fully elucidated. Overlapping mecha-
nisms involved in the pathogenesis of septic-induced AKI 
may include tissue hypoperfusion, alterations of renal 
microcirculation, release of inflammatory mediators and 
adaptive responses of tubular cells [89]. In this context, 
there is a need for the development of biomarkers that can 
assist physicians in discriminating the dominant underlying 
pathophysiologic mechanism of AKI in a septic patient and 
guide the application of tailor-made interventions. A poten-
tial candidate marker may be NGAL, and further clinical 
research is warranted in this direction.

Fungal infections

The NGAL gene was shown to be highly induced in a 
murine model of oropharyngeal candidiasis. However, 
not only did this not confer any protection, but NGAL 
KO mice displayed a lower fungal load [90]. This may 
be attributed to the fact that Candida albicans does not 
produce any siderophores on its own, but has the ability 
to uptake bacterial siderophores [91]. Contrary to these 
results, NGAL did confer a protective effect in a murine 
model of systematic infection from C. albicans [20]. 
Recent experiments from our laboratory demonstrated 
that a cultured vaginal epithelial cell line was induced to 
secrete NGAL following co-culture with C. albicans. Sim-
ilarly, when compared to healthy controls, women with 
vulvovaginal candidiasis had elevated NGAL levels in 
their vaginal secretions [92].

Genital tract bacterial infections

Plasma levels of NGAL and NGAL/MMP-9 complexes 
were shown to be elevated in women with pelvic inflam-
matory disease (PID) when compared to healthy controls. 
These values dropped significantly following a 3-day anti-
biotic treatment [93]. However, plasma NGAL levels in 
PID patients did not further increase in the presence of a 
tubo-ovarian abscess [94]. NGAL is present in vaginal 
fluid, and its concentration is reduced in women with bac-
terial vaginosis, a common disorder in which Lactobacilli 
are replaced by large numbers of anaerobic bacilli and fac-
ultative bacteria. Vaginal NGAL levels were strongly cor-
related with the vaginal l-lactic acid concentration, sug-
gesting that vaginal Lactobacilli may enhance production 
of NGAL [92]. Studies are lacking on the possible role of 

NGAL in male genital tract infections such as prostatitis 
and epididymitis.

Infection‑related preterm birth

NGAL has been shown to be constitutively present in 
human fetal trophoblast cells but absent from cells in the 
maternal decidua. Furthermore, elevated NGAL levels 
were observed in placental tissues from women with an 
intraamniotic infection. The in vitro stimulation of tropho-
blast cells with IL-1β or TNF-α also enhanced NGAL pro-
duction [95]. Thus, it appears that fetal NGAL participates 
in antimicrobial immunity during gestation. There is also 
evidence that alterations in NGAL concentrations are char-
acteristic of other non-infectious disturbances of pregnancy 
such as preeclampsia and gestational diabetes [96, 97].

Viral infections

The role of NGAL in defense against viral infections has 
not been clearly defined, with only a small number of stud-
ies being published. Serum NGAL was able to discrimi-
nate between viral and bacterial infections with a higher 
sensitivity and specificity than CRP in a sample of patients 
with acute infections [98]. NGAL did not have a protec-
tive effect against West Nile encephalitis even though its 
gene expression was induced in brain tissue [99]. Other 
viruses, such as rotavirus and SV40 virus, induce NGAL 
gene expression in human intestinal epithelial cells and 
murine kidney cells, respectively [100, 101]. NGAL gene 
up-regulation has been detected in human papillomavirus 
(HPV)-positive cervical lesions, as well as in HPV-infected 
keratinocytes [102, 103]. Human immunodeficiency virus 
(HIV)-infected patients display significantly decreased 
serum NGAL levels when compared to healthy controls, 
which rise after initiation of highly active antiretroviral 
therapy (HAART), especially in the case of good respond-
ers. These findings may be linked to the neutrophil count 
since a strong positive correlation existed with NGAL lev-
els [104]. Furthermore, NGAL is a promising marker in 
the diagnosis of HIV-associated nephropathy, a progressive 
form of chronic kidney disease that is currently diagnosed 
by an invasive renal biopsy [105].

Bacterial resistance to NGAL

Bacteria are under intense selective pressure to overcome 
the effects of NGAL on reducing iron availability, and 
some species have developed a variety of mechanisms to 
evade this bacteriostatic properties. Haemophilus influenza 
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and Streptococcus pneumoniae have developed alternative 
modes of iron acquisition that do not rely on siderophores 
[106]. Other bacteria secrete “stealth” siderophores that are 
not recognized and sequestered by NGAL. These include 
petrobactin of Bacillus anthracis and B. cereus [107], vul-
nibactin of Vibrio vulnificus [108], pyoverdine of P. aerugi-
nosa [55], certain carboxymycobactins [58], aerobactin of 
Enterobacteria [14] and yersiniabactin of Yersinia pestis 
and K. pneumoniae [53]. Fungi such as Aspergillus, Micro-
sporum and Trichofyton secrete a hydroxamate siderophore 
known as ferrichrome, and Zygomycetes employs a citric 
acid-based polycarboxylate siderophore, rhizoferrin, that 
cannot be bound by NGAL [14]. NGAL-resistant bacterial 
siderophores are listed in Table 2.

A second bacterial resistance mechanism to NGAL 
involves the addition of sugars to the siderophore molecule, 
which makes it bulkier and clashes sterically with the criti-
cal residues of the binding pocket of NGAL, thus rendering 
impossible its recognition and sequestration [109, 110]. In 
addition, glycosylation can enhance the aqueous solubil-
ity of some siderophores, such as enterobactin, boosting 
its biological activity [109]. C-glycosylated enterobac-
tin, known as salmochelin, has been isolated from enteric  
E. coli, Salmonella spp. and K. pneumoniae [111].

Conclusions and future directions

NGAL is constituently present within neutrophils as well 
as in many other tissues and is a contributing component of 
innate immunity, mainly by binding bacterial siderophores 
and depriving bacteria of iron. The observation that NGAL 
production increases in response to a variety of stimuli 
limits its applicability as a diagnostic marker for a specific 
infection in clinical practice. However, in normally sterile 
compartments such as CSF, the peritoneal cavity or uri-
nary tract and especially in patients without kidney pathol-
ogy, detection of NGAL may be effective for differential 
diagnosis of a bacterial infection. Additional clinical trials 
are needed for the validation of this biomarker in specific 

pathologies and toward the elucidation of its role in geni-
tal tract infections. Also, investigation into the occurrence 
of NGAL gene polymorphisms that may increase suscepti-
bility of certain individuals to infections would be of great 
interest. Some bacteria have developed multiple mecha-
nisms to evade the anti-iron bacteriostatic effect of NGAL, 
and further research is needed to identify reagents effective 
against NGAL-resistant siderophores. An improved knowl-
edge of host defenses and bacterial resistance mechanisms 
may aid clinicians in better understanding the pathophysi-
ology of various infections as well as the development of 
novel prevention and treatment strategies.
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