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Introduction

According to the estimation of World Health Organisa-
tion, there are about 240 million people who are chroni-
cally infected with hepatitis B virus (HBV). The chronic 
HBV infection is one of the major causes of hepato-
cellular carcinoma and liver cirrhosis. There is a large 
body of evidence for the essential role of cell-mediated 
immune responses for viral clearance in acute HBV infec-
tion. Patients with chronic HBV infection fail to develop 
adequate HBV-specific immune responses [1]. Standard 
treatment regimens with pegylated interferon (IFN)-α 
and nucleoside/nucleotide analogs are used for therapy of 
chronic hepatitis B but are only partially successful. Sev-
eral recent studies indicated the possibility of stimulating 
specific immune responses against HBV in chronically 
infected patients. The recent approaches were summarized 
in previous reviews of our group and others and in the pre-
sent issue [2–5]. A number of therapeutic vaccination tri-
als using conventional HBV vaccines failed to demonstrate 
the effectiveness in terms of the induction of HBV-specific 
immune responses and suppression of HBV replication 
in chronic HBV carriers [4, 5]. New approaches based on 
DNA vaccines or anti-HBs antibody-HBs immune com-
plex are now being tested in clinical trials [6–8]. As a prin-
ciple recognized on the basis of available information, a 
combined strategy including antiviral treatment and immu-
nomodulation will be needed to stimulate the full range of 
immune responses to achieve effective control over HBV 
infection. Important aspects of the human HBV infection 
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have been studied with a genetically closely related virus 
of Hepadnaviridae, woodchuck hepatitis virus (WHV), 
which infects a North American rodent, the woodchuck. 
In the woodchuck model, combinations of antiviral treat-
ment and therapeutic vaccinations led to the induction of 
specific T cell and B cell responses to WHV antigens and 
sustained suppression of WHV replication in some indi-
vidual animals [2, 4, 9, 10]. Stimulation of innate immune 
responses may further improve the immunotherapeutic 
effect of combination strategies against the hepadnaviral 
infection.

Toll‑like receptor (TLR) system

The significance of the innate immune response as a 
defense against microbial infections and its link to the 
adaptive immune responses has been recognized dur-
ing the past years. Toll-like receptors (TLRs) are a group 
of highly conserved molecules that play a critical role in 
the recognition of pathogen-associated molecular patterns 
(PAMPs) and in the activation of innate immune responses 
to infectious agents [11]. TLRs are structurally character-
ized by an ectodomain composed of leucine-rich repeats 
for binding and recognition of PAMPs and a cytoplas-
mic domain homologous to the cytoplasmic region of the 
interleukin (IL)-1 receptor, known as the TIR domain, for 
downstream signaling [12]. TLR ligands are natural mac-
romolecular components derived from pathogens and may 
be composed of lipids, lipopeptides, proteins, and nucleic 
acids. Some synthetic small molecules could mimic TLR 
ligands and activate TLR-mediated cellular signaling. A 
subgroup within the TLR family including TLR3, TLR7, 
TLR8, and TLR9 is localized in endosomes and recognizes 
nucleic acids such as viral DNA or RNA. The other sub-
group of surface-expressed TLR1, TLR2, TLR4, TLR5, 
and TLR6 recognizes extracellular bacterial and fungal 
cell wall components, as well as some viral proteins [13, 
14]. Binding of TLR agonists to their receptors initiates the 
activation of complex networks of intracellular signal trans-
duction pathways to coordinate the inflammatory response. 
Conformational changes and dimerization of TLRs occur 
upon binding with ligands. The important components of 
these signaling networks are the adaptor proteins and sev-
eral protein kinases including ERK, JNK, p38 MAP kinase, 
and PI-3  k kinase, and the transcription factors IRF3/5/7, 
nuclear factor kappa B (NF-κB), and AP-1. The activa-
tion of these transcription factors leads to the induction of 
type I IFNs, pro-inflammatory cytokines, or co-stimulatory 
molecules, which are involved in antiviral responses [15, 
16]. The crucial adaptor proteins including myeloid dif-
ferentiation primary-response protein 88 (MyD88), used 
by nearly all TLRs except TLR3, TIR domain-containing 
adaptor protein (TIRAP), TIR domain-containing adaptor 

protein inducing interferon (IFN)-β (TRIF), and TRIF-
related adaptor molecule (TRAM) are recruited [17]. TLR4 
is unique among TLRs being able to activate two distinct 
signaling pathways, TIRAP/MyD88 and TRAM/TRIF [17]. 
The MyD88-dependent pathway leads to the activation of 
downstream signal transduction involving IL-1R-associated 
kinases (IRAKs), tumor necrosis factor receptor (TNFR)-
associated factor 6 (TRAF6), transforming growth fac-
tor (TGF)-β-activated kinase (TAK1), and the inhibitor 
of nuclear factor-κB (IκB) kinase complex. Through the 
NF-κB and activating protein 1 (AP1), the MyD88-depend-
ent TLR activation results in the production of pro-inflam-
matory cytokines IL-6, IL-10, IL-12, and TNF-α. In con-
trast, the TRIF-dependent pathway leads to the activation 
of IFN regulatory factors (IRFs) and production of type I 
IFNs [15, 17]. Exceptionally, plasmacytoid dendritic cells 
produce type I IFN after TLR7 and TLR9 activation via the 
MyD88-IRF7-dependent pathway [18]. Figure 1 schemati-
cally depicts human TLR signaling pathways.

Recognition of HBV by host cells

There is accumulating evidence that the innate branch of 
the host immune system plays an important role in the 
control of HBV infection [19–21]. The previous studies 
in chimpanzees and in patients showed that HBV infec-
tion does not lead to a measurable response involving 
type I IFNs. Wieland et al. [22] investigated the transcrip-
tome of the liver in three chimpanzees during the course 
of acute HBV infection. Their analysis focused on two 
diverse groups of cellular genes: Those in the early phase 
are associated with the innate immune response, and those 
in the late phase are associated with the adaptive immune 
response that terminates infection. They demonstrated that 
HBV does not induce any genes during entry and expan-
sion, leading the authors to suggest that HBV is a “stealth 
virus” in the early phase of infection. By contrast, a large 
number of IFN-γ-regulated genes are expressed in the 
liver during viral clearance. The upregulation of IFN-γ-
regulated genes in the liver results from the adaptive T cell 
response as specific T cells infiltrating the liver are major 
producers of IFN-γ [22]. Thus, HBV infection strongly 
differs from other viral infections like HCV infection in 
the early phase, as HCV induces a strong IFN-α response 
in chimpanzees [23]. Dunn et  al. [24] measured type I 
IFN production in patients with acute HBV infection and 
found only a low level of type I IFN not higher than those 
found in healthy controls. Similarly, IL-15 and IFN-λ1 
were not induced during peak viraemia. In contrast, IL-10 
is induced at the early stages of acute HBV. The lack of 
early IFN response in vivo during acute HBV infection 
does not necessarily exclude the triggering of host IFN 
responses by HBV. HBV infection may be initiated only 
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with few viral particles and may not induce a host response 
at the initial phase of infection that is measurable by gene 
array technology or cytokine detection. In addition, HBV 
may inhibit host IFN responses by specific mechanisms as 
described below. Experimental data are available, indicat-
ing that HBV interacts with the host innate immune system 
but is able to inhibit host responses. It has been shown that 
HBV interacts with hepatic non-parenchymal cells (NPCs) 
and induces the production of IL-6 [25], though it is not 
clear how hepatic NPCs sense HBV. Within 3 h, these cells 
release inflammatory cytokines including IL-1β, IL-6, IL-8, 
and TNF-α without inducing an IFN response. IL-6 is able 
in turn to inhibit the expression of hepatocyte nuclear fac-
tor (HNF) 1α and HNF 4α, two transcription factors essen-
tial for HBV gene expression and replication. However, 
relatively high doses of HBV particles are usually used in 
such experiments to induce measurable responses of host 
cells. Future in vivo experiments are required to compare 
and verify these findings.

TLR3 and HBV

TLR3 activation results in the production of type I IFNs in 
different cell types. IFN-β has been identified as a major 
antiviral factor produced by NPCs in response to TLR3 
[26]. Wieland et al. [27] showed that TLR3 ligand poly I:C 
induces intrahepatic IFN-β production and inhibits HBV 
replication by non-cytolytic mechanisms that either desta-
bilize pregenomic (pg)RNA-containing capsids or pre-
vent their assembly. Isogawa et  al. [28] tested the ability 
of different TLR ligands to inhibit HBV replication in the 
HBV transgenic mouse model. Consistently, a single-dose 
injection of TLR3, TLR4, TLR5, TLR7, and TLR9 ligands 
suppressed HBV replication in the liver in an IFN-α/β-
dependent manner. In a doxycycline (dox)-inducible HBV 
replication system, IFN-β pretreatment prevents the produc-
tion of replication-competent pgRNA-containing capsids 
but does not change the turnover rate of preformed HBV 
RNA-containing capsids [29]. Apparently, the formation of 
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replication-competent HBV capsids is one of the major tar-
gets of IFN-mediated antiviral actions. A great number of 
cellular IFN-stimulated genes (ISGs) are activated by IFNs 
and may inhibit the different steps of the HBV life cycle 
[30]. A recent publication suggests that HBV covalently 
closed circular (ccc) DNA could be degraded by the action 
of APOBEC3A and 3B cytidine deaminases [31]. These 
findings partly explain the therapeutic effect of IFN-α in 
patients with chronic HBV infection. IFN-α is widely used 
to treat chronic HBV infection and can lead to sustained 
decrease of HBsAg and virus clearance in about 30 % of 
chronically HBV-infected patients. In addition, type I IFNs 
may modulate specific immune responses to HBV, result-
ing in HBe seroconversion or complete control of HBV 
infection.

TLR3 activation of hepatic NPCs could lead to IFN-β 
production and HBV inhibition in in vitro [26, 32, 33]. 
Upon poly I:C stimulation, hepatic NPCs such as Kupffer 
cells (KC) and liver sinusoid endothelial cells (LSEC) 
release antiviral cytokines which are able to inhibit HBV 
replication in a co-culture model utilizing HBV-Met cells 
that contains an integrated HBV genome [34]. Block-
ing with specific antibodies to type I and II IFNs identi-
fied IFN-β as the major anti-HBV factor produced by 
poly I:C-treated NPCs [26]. While HBV DNA replicative 
intermediates were efficiently suppressed, viral mRNAs as 
well as secretion of HBsAg and HBeAg remained largely 
unchanged. Importantly, screening of different TLR ligands 
demonstrated that hepatic NPCs show a significant produc-
tion of IFN-β only in response to TLR3 stimulation (and a 
lower extent to TLR4 stimulation, see below). Therefore, 
TLR3-mediated response and IFN-β production in the liver 
may contribute to the control of pathogens including HBV 
in a unique way.

Several studies suggest that HBV is able to inhibit pat-
tern recognition receptor (PRR) and IFN signaling. HBV 
surface and “e” antigen (HBsAg, HBeAg) and HBV par-
ticles could inhibit the activation of NPCs by TLR3 
ligands [35]. Co-culture of hepatic NPCs with HBV-Met 
cell supernatants, HBsAg, HBeAg as well as HBV viri-
ons results in abrogation of TLR-induced antiviral activ-
ity, correlating with decreased activation of IRF3, NF-κB, 
and ERK1/2 in NPCs. Our most recent data suggest that 
HBsAg may trigger IL10 production on hepatic cells and 
thereby attenuates the TLR3-mediated activation of NPCs 
[33]. This is consistent with the recent publication that 
HBsAg induces TNF-α and IL-10 production by mono-
cytes which leads to downregulation of TLR9 expression 
on pDCs, thereby inhibiting IFN-α production by pDCs 
[36]. At high amounts of HBV, even TLR-induced expres-
sion of TNF-α and IL-6 in NPCs was suppressed. In addi-
tion, many studies provide evidence that HBV polymerase 
may counteract the innate responses at two or more steps: 

(1) HBV polymerase is able to inhibit the IRF3 activation 
by interacting with RNA helicase DDX3 in hepatoma cells 
[37, 38]; (2) HBV polymerase is able to block IFN sign-
aling by inhibition of PKC-δ-mediated phosphorylation of 
stat 1 and importin-dependent translocation of stat 1/stat 2/
IRF9 complex [39, 40]. HBx protein was reported to pro-
mote the decay of mitochondrial antiviral signaling protein 
(MAVS), the adaptor of RIG-I, and MDA5 receptors [41, 
42]. However, the relevance of these findings for the human 
HBV infection remains to be defined.

TLR3-mediated functions are impaired in patients with 
chronic HBV infection and may recover partially under 
successful antiviral treatment [43]. In the woodchuck 
model, PBMCs from animals with chronic WHV infection 
show reduced responses to poly I:C stimulation [44]. Taken 
together, the interaction of HBV or the molecular compo-
nents of HBV with the innate immune system is complex, 
leading both to activation and inhibition of host innate 
responses. Figure 2 depicts the interaction of TLR3 signal-
ing pathway with HBV in a schematic way.

TLR2/4 and HBV

Unlike to TLR3, TLR4 activation by lipopolysaccharide 
(LPS) leads to low IFN-β production only in KCs but not 
in LSECs and hepatocytes [26]. However, TLR4-acti-
vated KCs release other yet undefined antiviral factors, 
inhibiting HBV replication in HBV-Met cells. In contrast 
to TLR3 ligands, Zhang et  al. [45] demonstrated that 
activation of cellular pathways by TLR4 ligands leads 
to inhibition of hepadnaviral replication. In the model of 
WHV-infected primary hepatocytes (PWHs), LPS stimu-
lation led to a pronounced reduction of WHV replication 
intermediates without a significant IFN induction, while 
poly I:C transfection resulted in the IFN production and a 
highly increased expression of antiviral genes in PWHs, 
but only slight inhibitory effect on WHV replication. 
LPS was able to activate NF-κB, MAPK, and PI-3 k/Akt 
pathways in PWHs. The inhibitors of MAPK-ERK and 
PI-3 k/Akt pathways, but not those of IFN signaling path-
ways, block the antiviral effect of LPS, indicating that 
IFN-independent pathways which activated by LPS are 
able to downregulate hepadnaviral replication in hepato-
cytes [45].

TLR2 and TLR4 share the cellular MyD88-dependent 
signaling pathway in mammalian cells (Fig.  3). Conse-
quently, TLR2 and TLR4 mediate the activation of the 
same signaling pathways downstream of MyD88, includ-
ing NF-κB, MAPK, and PI-3  k/Akt pathways. Similarly, 
TLR2 is able to inhibit HBV or WHV replication in 
human hepatoma cells or PWHs [46, 47]. Again, the anti-
viral action of TLR2 is dependent on the presence of adap-
tor molecules like TAK1, IRAK1/4, and TRAF6 and the 
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downstream MAPK and PI-3 k/Akt pathways [47]. Silenc-
ing of the expression of adaptor molecules or blocking the 
MAPK and PI-3  k/Akt pathways with chemical inhibi-
tors significantly enhanced HBV replication. In the HBV 
transgenic mouse model, the injection of a single dose of 
TLR2 ligands reduced HBV replication in the liver but 
not as effective as IFN-inducing ligands [28]. It was not 
examined whether TLR2 ligands also activate MAPK and 
PI-3 k/Akt pathways in vivo and thereby exert the antiviral 
action.

TLR2 activation and TLR4 activation lead to the pro-
duction of pro-inflammatory cytokines IL6 and TNF-α in 
hepatic NPCs and hepatocytes [32, 45, 47, 48]. Though 
the antiviral effect of TLR2 and TLR4 ligands does not 
directly depend on the production of pro-inflammatory 
cytokines, IL6 and TNF-α have been shown to inhibit 
HBV replication in primary hepatocytes [25, 49]. Xu et al. 
[49] explored the Tupaia model to investigate the effect of 
TNF-α on HBV infection. Stimulation of HBV-infected 
primary Tupaia hepatocytes with recombinant Tupaia 
TNF-α led to viral suppression, while covalently closed 
circular DNA and viral RNA were still detectable, leading 
to the conclusion that TNF-α may also contribute to con-
trol HBV infection.

Obviously, HBV developed measures to counteract the 
antiviral functions mediated by TLR2. Using hepatocytes 
and KCs isolated from liver biopsies of patients with CHB, 
Visvanathan et al. [50] showed significantly decreased TLR2 
expression on hepatocytes, KCs, and peripheral monocytes 
in patients with HBeAg-positive CHB in comparison with 
HBeAg-negative CHB and controls. The level of TLR4 
expression did not significantly differ between these groups. 
Hepatic cell lines harboring a recombinant baculovirus 
encoding HBV significantly reduced TNF-α expression as 
well as phospho-p38 kinase expression in the presence of 
HBeAg. In the absence of HBeAg, HBV replication was 
associated with upregulation of the TLR2 pathway resulting 
in increased TNF-α expression [50]. HBeAg was found to 
co-localize with Toll/IL-1 receptor (TIR)-containing pro-
teins TRAM, Mal, and TLR2, interact with TIR proteins 
Mal and TRAM, and disrupt the homotypic TIR–TIR inter-
action. Consequently, HBeAg suppressed TIR-mediated 
activation of the inflammatory transcription factors, NF-κB, 
and interferon-β promoter activity [51]. Consistently, 
TLR2 expression was found to be significantly suppressed 
in PBMCs from chronically HBV-infected patients and in 
woodchuck liver tissue and PBMCs if chronically infected 
with WHV [47, 52]. Previously, Wu et al. [39] demonstrated 
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that HBV blocks the MyD88 expression, the central adaptor 
molecule in TLR-mediated innate immune responses, by an 
antagonistic activity of the terminal protein (TP) domain of 
the HBV polymerase. It could be shown that HBV polymer-
ase is able to block the nuclear translocation of stat 1 thus 
representing a general inhibitor of IFN signaling [40] and 
IFN-inducible MyD88 expression.

Activation of innate immunity is a prerequisite for 
proper adaptive immune responses. As an example, TLR2 
is expressed widely such on antigen-presenting cells 
(APC), endothelial and epithelial cells as well as on T-lym-
phocytes on which it acts as a costimulatory molecule. Wu 
et al. [32] found previously that TLR2 ligands could trig-
ger the expression of costimulatory molecules on hepatic 
NPCs. LSECs are unique organ-resident antigen-presenting 
cells capable of antigen cross-presentation and reported 
to prime naïve CD8+ T cells to memory cells at non-
inflammatory conditions [53]. Under certain conditions, 
LSECs could also directly promote T cell immunity [54]. 
Recently, we examined functional maturation of LSECs by 
TLR ligand stimulation, demonstrating that pretreatment 
of LSECs with TLR1/2 ligand but not TLR3 and TLR4 

ligands reverts their suppressive properties to induce spe-
cific T cell immunity [55]. IL-12 was identified to be one 
essential mediator for LSEC-mediated CD8+ T cell immu-
nity, which was produced at a low level but sustainably 
after TLR2 stimulation. Our findings suggest that TLR2 
activation has a great impact on T cell immunity in the liver 
and may be used to stimulate specific immune responses to 
persistent infection of HBV and HCV.

On the other hand, Wang et  al. [56] could show that 
HBsAg inhibits TLR2-mediated stimulation of human 
PBMCs and IL12 production. In the presence of HBsAg, 
both Pam3CSK4-triggered IL-12p40 mRNA expression 
and IL-12 production in phorbol 12-myristate 13-acetate 
(PMA)-differentiated THP-1 macrophages are reduced in 
a dose-dependent manner, while the production of IL-1β, 
IL-6, IL-8, IL-10, and TNF-α is not affected. The presence 
of HBsAg inhibits the TLR2-mediated activation of NF-κB 
and MAPK signaling, by selective impairment of JNK-1/2 
and c-Jun phosphorylation. Thus, HBsAg likely interferes 
with the initiation of adaptive immune responses by selec-
tive inhibition of TLR2-stimulated IL-12 production in 
monocytes.
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Therapeutic approaches

The findings mentioned above suggest that TLR ligands 
may be used for therapeutic approaches against chronic 
viral infection. However, only few trials using TLR ligands 
for therapies against viral infections have been carried 
out until now [57]. CpG oligonucleotides (ODN), ligands 
of TLR9, have been considered as promising candidates. 
A large number of new reagents that are potentially suit-
able as immunomodulators and therapeutics the sequence 
could be generated by modifications of CpG ODN [58, 
59]. However, a candidate CpG ODN has been tested in 
clinical trials and the woodchuck model for treatment 
of chronic hepatitis C and B but failed to show suffi-
cient therapeutic effect if applied alone. TLR3 and TLR4 
ligands are not tested in clinical trials yet. Recently, TLR7 
ligand GS-9620 has been examined for its antiviral effect 
in the woodchuck and chimpanzee models. Interestingly, 
a 4-week treatment with GS-9620 resulted in a sustained, 
marked reduction of serum WHV DNA and WHV sur-
face antigen (WHsAg) levels and in the induction of anti-
WHs antibody response, as well as a markedly decreased 
incidence of hepatocellular carcinoma in chronic WHV-
infected woodchucks [60]. In chimpanzees, GS-9620 
induced an increase of serum IFN-α in a dose-dependent 
manner and triggered the ISG expression in PBMCs and 
the liver. A reduction of HBV viral load and serum HBsAg 
was observed in three chronically HBV-infected chimpan-
zees treated with GS-9620 [61]. TLR7/8 ligands are prom-
ising drug candidates if their toxicity could be reduced to a 
tolerable range.

A potential use of TLR ligands as adjuvants for thera-
peutic vaccines has been considered for long time. The 
rational design of specific TLR agonists may increase 
potency and tolerability of new adjuvants and provides the 
opportunity to meet the stringent safety criteria for new 
vaccine formulation [62]. Two improved adult HBV vac-
cines Fendrix and Supervax using TLR4 agonists as adju-
vant are now on the market [63, 64]. Monophosphoryl lipid 
A (MPLA), a chemically modified derivative of the lipid A 
moiety of LPS, is considerably less toxic but has similar 
immunostimulatory activity [65]. MPLA-formulated hepa-
titis B vaccines elicit protective anti-HBs antibody titers 
with only two injections instead of three [64]. A class B 
CpG ODN called 1018 ISS in combination with recombi-
nant HBsAg has been tested in a Phase III clinical trial for 
persons older than 40 years of age. This vaccine formula-
tion increases seroprotection rates to 100 %, compared with 
a rate of only 64 % in the alum-adjuvanted rHBsAg group 
[66]. Such a vaccine formulation may be used for patients 
with impaired immune system, as it is more effective in the 
hypo-responsive population than conventional HBV vac-
cines [67].

Perspectives

Based on the current knowledge, TLR-mediated innate 
responses may not control HBV infection alone. Though 
stimulation with TLR ligands reduces HBV replication 
in hepatocytes, the TLR-mediated antiviral action against 
HBV is far less efficient than those achieved by nucleoside 
analogs. The innate immune system is known to respond 
fast and aimed to slow down viral spread in primary 
infections; thus, the link from innate to adaptive immune 
responses may be more important for the control of viral 
infection. The innate immune system plays a pivotal role 
for the regulation of adaptive immunity [68]. Recently, it 
was shown that poly I:C treatment leads to HBV clear-
ance in hydrodynamic injection mouse model [69]. In this 
model, HBV clearance required IFN-α and IFN-γ, indicat-
ing a complex mode of poly I:C-triggered action. CXCR3 
was also essential for HBV clearance after poly I:C injec-
tion, apparently responsible for the recruitment of T cells. 
Other studies conducted by several groups have shown 
that TLR2 is expressed on activated and memory CD4+ 
and CD8+ T cells and serves as co-stimulatory mol-
ecule to enhance their proliferation, survival, and func-
tions [70–73]. TLR2 agonists stimulate activated T cells 
thus promoting their proliferation and differentiation in 
vitro and in vivo. Consistently, TLR2 ligand Pam3CSK4 
application in vivo with transferred tumor antigen (Ag)-
specific CD8+ T cells results in enhanced therapeutic 
efficacy of these CD8+ T cells in tumor models [74, 75]. 
Moreover, covalent linkage of TLR2 ligand Pam3CSK4 
or Pam2CSK4 with peptides representing CD8+ T cell 
or B cell epitopes efficiently primed respective spe-
cific CD8+ T cell or B cell immune responses in vivo 
[76–79]. It was shown that TLR2 engagement on CD8+ 
T cells increased T-bet transcription in a MyD88-Akt-
mTOR- and protein kinase C-dependent manner [71]. 
The molecular mechanisms underlying TLR2-mediated 
T cell proliferation and functional differentiation in HBV 
infection need in-depth analysis. Thus, future research 
should not only investigate the direct antiviral effect of 
TLR-mediated action but also analyze and optimize the 
connection of innate and adaptive immune responses. 
In the specific case of TLR2, it is desirable to identify 
specific markers expressed on CD8+ T cells after TLR2 
stimulation. Such markers may facilitate future analy-
sis of CD8+ T cells in vitro and vivo and understanding 
the inhibitory action of HBV on TLR2 co-stimulation of 
CD8+ T cells. These approaches could also be extended 
to studies about other TLRs.
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