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Abstract The circulation of H9N2 viruses throughout the

world, along with their expanded host range, poses a

potential health risk to the public, but the host responses to

H9N2 virus in mammals were little known. To obtain

insight into the host immune responses to the avian H9N2

virus, the expressions of both cytokines and chemokines in

the lungs of infected mice were examined by real-time

polymerase chain reaction and enzyme-linked immuno-

sorbent assay. We found that interferon gamma (IFN-c)

was the dominant antiviral component, and IFN-c-induced

protein 10 kDa, interleukin 6, chemokine (C–C motif)

ligand 5 and macrophage inflammatory protein-1 alpha all

played a role in pro-inflammatory responses to H9N2

viruses. In conclusion, this research can make us further

understand the infection characteristics of H9N2 virus in

mammalian host by providing the data on mice lung

immune responses to the avian H9N2 virus.
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Introduction

H9N2 avian influenza virus (AIV) has been circulating

worldwide in many avian species and resulted in great

economic losses [1–3]. More importantly, human cases of

avian H9N2 virus infection have been reported in Hong

Kong and mainland China since the late 1990s [4–6], and

seroprevalence investigations of H9N2 in poultry workers

were also the solid evidence on human cases of H9N2

infection [7–9]. The above-mentioned researches have

intrigued a great concern of the public.

H9N2 infection in mammals mainly depends on the

ability of the virus to bind the human-like a2,6-linked

sialic acid (SA-a2,6) receptors, and the HA receptor-

binding site is critical for virus host range [10–12]. Some

isolates of the H9N2 influenza viruses circulating in

poultry can infect humans due to the ability to binding the

SA-a 2,6 receptors [10, 13]. The expanded receptor spec-

ificity of H9N2 AIVs has raised concerns about their

pathogenicity in humans.

H9N2 influenza viruses of chicken origin cause only

mild symptoms in humans, but they have the pandemic

potential for the high level of genetic plasticity [14–16].

For example, sequencing analyses of the novel influenza A

(H7N9) virus isolated in China showed that 6 out of 8
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fragments were from H9N2 [17]. Facing the threat of

H9N2 AIV, understanding the mammalian host immune

responses to the virus is of importance to cope with the

possible pandemic. However, up to date, little information

about mammal immune responses to the H9N2 virus of

chicken origin was reported.

To fill the literature gap, therefore, the expression of six

cytokines [interferon beta (IFN) b, interferon gamma (IFN-

c), tumor necrosis factor (TNF) a, interleukin (IL) 1b, IL-

6, IL-10] and five chemokines [IFN-c-induced protein

10 kDa (IP-10), chemokine (CC motif) ligand 5 (CCL-5),

monocyte chemoattractant protein-1 (MCP-1), macrophage

inflammatory protein-1 alpha (MIP-1a), IL-8] were eval-

uated in the lungs of H9N2-infected mice with the aim to

make us further understand the infection characteristics of

H9N2 AIV in mammalian host.

Materials and methods

Ethics statement

All animal experiments were reviewed and approved by the

Institutional Animal Care and Use Committee of Shandong

Agricultural University and performed in accordance with

the ‘‘Guidelines for Experimental Animals’’ of the Ministry

of Science and Technology (Beijing, China). Animal suf-

fering was minimized as much as possible.

Virus

The H9N2 virus, A/chicken/Shandong/w3/11/H9N2

(SDw3), belonging to the BJ94-like lineage was isolated

from diseased chicken in Shandong. The virus was pas-

saged in 10-day-old specific pathogen-free (SPF) chicken

embryos. And the 50 % tissue-culture-infective dose

(TCID50) were calculated by the method of Reed and

Muench [18].

Mice experiments

Twenty-eight SPF female BALB/c mice (18.0–20.0 g,

6–8 weeks) from Experimental Animal Center of Shan-

dong Province were randomly divided into the infected

group and the control group. After being lightly anesthe-

tized with CO2, the mice were inoculated intranasally with

106 TCID50 of SDw3 in fifty microliters of phosphate-

buffered saline (PBS) or PBS alone.

At 0.5, 2 and 6 days post-inoculation (dpi), lungs,

hearts, livers, spleens, kidneys and brains of mice (3/group)

in the infected group and the control were, respectively,

collected for detecting SDw3 virus titers. Simultaneously,

the mice lungs were used for cytokines and chemokines

detection by real-time polymerase chain reaction (PCR) or

enzyme-linked immunosorbent assay (ELISA) [19]. Addi-

tionally, the mouse lungs collected at 5 dpi were fixed in

10 % phosphate-buffered formalin, embedded in paraffin,

then cut into 5-mm-thick sections and stained with hema-

toxylin and eosin (H&E) [20]. During the raising period,

the weight loss and clinical signs of the mice were moni-

tored and recorded. After the experiment, the mice were

killed due to ethical reasons.

RNA extraction, cDNA preparation and real-time PCR

The RNA of the lung samples was extracted using an

RNeasy Mini Kit (Qiagen, Valencia, USA). The quantity

and quality of the isolated RNA were determined by UV

260/280 using a biophotometer (Eppendorf, Hamburg,

Germany). A total of 500 ng RNA was used to prepare

Table 1 Primer sequences used for real-time PCR

Sequence (50 ? 30) Length(bp)a Accessionb

IFN-c FP CGGCACAGTCATTGAAAGCCTA 199 NM_008337.3

RP GTTGCTGATGGCCTGATTGTC

IL-6 FP CCACTTCACAAGTCGGAGGCTTA 112 NM_031168.1

RP GCAAGTGCATCATCGTTGTTCATA

IP-10 FP GTCCGCTGCAACTGCATCCATA 135 NM_021274.2

RP CTGCTCATCATTCTTTTTCATCGTG

CCL-5 FP CTGCTGCTTTGCCTACCTCTCCC 156 NM_013653.3

RP TATTCTTGAACCCACTTCTTCTCTG

IL-8 FP CCGTCCCTGTGACACTCAAGA 178 NM_011339.2

RP TGGAGCATCAGGATCCAAACAA

FP forward primer, RP reverse primer
a Amplicon length in base pairs
b GenBank accession number of cDNA and corresponding gene, available at http://www.ncbi.nlm.nih.gov

110 Med Microbiol Immunol (2014) 203:109–114

123

http://www.ncbi.nlm.nih.gov


cDNA by the reverse transcription reaction with a Prime-

Script RT reagent Kit (TaKaRa, Dalian, China).

Real-time PCR was performed using SYBR Premix Ex

Taq kit (TaKaRa, Dalian, China) and a standard 7500 Real-

Time PCR System (Applied Biosystems, Foster City, USA)

to obtain the relative expression quantity of message RNAs

(mRNAs) of six cytokines and five chemokines (b-action

was used as housekeeping genes) [21, 22].

Except that the primers (IFN-b, TNF-a, IL-1b, IL-10,

MCP-1, MIP-1a and b-action) were cited according to the

published references [23, 24], the other primers (Table 1)

designed using Premier 5.0 software (Applied Biosystems,

Foster City, USA).

Enzyme-linked immunosorbent assay

The protein levels of cytokines and chemokines in lung

homogenates were measured using the mouse Quantikine

Kits (RayBiotech Inc., Norcross, GA, USA; R&D Systems,

Minneapolis, MN, USA). Briefly, the entire lung of each

mouse was homogenized individually in 500 ll Cell/tissue

lysis buffer (RayBiotech Inc., Norcross, GA). After cen-

trifugation at 10,000g for 15 min, the supernatants were

collected for analyzing cytokines and chemokines simul-

taneously according to the kit instructions. The plates were

read on a spectrophotometer at wavelength 450 nm by a

microplate reader (Bio-Rad, Richmond, CA, USA).

Finally, the cytokine or chemokine levels were recorded as

ng/ml homogenate.

Statistical analysis

Statistical analysis was performed using the Statistical

Product and Services Solutions, version 10.0 (SPSS, Cary,

NC, USA). ANOVA analysis was performed by comparing

infected data to uninfected data. A p value \0.05 was

considered statistically significant.

Fig. 1 Virulence of SDw3 in

mice. Mice were inoculated

intranasally with 106 TCID50 of

SDw3 or PBS. a Body weight

were monitored and recorded

daily. b Virus titers in lungs of

SDw3-infected mice. The lungs

of SDw3-infected mice (n = 3

per time point) were collected at

0.5, 2 and 6 dpi for virus

titration. Virus titers were given

in units of log10 TCID50 per g.

Bars represent mean ± standard

deviation (SD) of three mice.

c Histopathology of mock (left)

and SDw3-infected (right) mice.

Lungs were collected at 5 dpi

and fixed in 10 % formalin,

embedded in paraffin and

sectioned (magnification 9100)

Fig. 2 Cytokine and chemokine mRNA response of mouse lung to

H9N2. Cytokine and chemokine mRNA expressions in lungs of mice

(n = 3 per time point) were measured by real-time PCR and were

presented as the mean fold change (±SD) compared with values in

mock mice at the days after inoculation. Statistical analysis was

performed by comparing with the data of mock mice. Asterisk

p \ 0.05 between mock and SDw3-infected mice
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Results

Pathogenicity of SDw3 in mice

Upon being injected with SDw3, the mice showed mild signs

of illness, but they recovered naturally at 6 dpi. The body

weight of infected mice dropped lightly during the first

3 days, but they almost regained the original body weight at

6 dpi (Fig. 1a). The virus titer was detectable only in the mice

lungs, with a peak at 2 dpi (Fig. 1b). H&E staining of the

infected mice lungs (5 dpi) showed that SDw3 caused mild

and limited interstitial pneumonia; the interstitial tissue was

lightly thickened and filled with immune cells and inflam-

matory compared with the mock lungs (Fig. 1c).

Cytokine/chemokine mRNA expression

After infection, there was a two- to 20-fold mRNA

induction of IFN-c, IL-6, IP-10, CCL-5 and MIP-1a; the

concentrations of CCL-5 and IFN-c were, respectively,

increased up to over 15-fold at 2 dpi and 20-fold at 6 dpi

(Fig. 2). The data showed the peak induction for most of

the mRNAs (IL-6, IP-10, CCL-5 and MIP-1a) occurred at

2 dpi, except for IFN-c which was most increased at 6 dpi.

Fig. 3 H9N2 stimulates cytokine and chemokine release in mouse

lung. Mice were inoculated intranasally with 106 TCID50 of SDw3 or

PBS. The lungs of SDw3-infected mice (n = 3 per time point) were

harvested and homogenized in 500 ll of Lysis Buffer. The protein of

cytokines and chemokines were measured by ELISA. Baseline

protein levels of cytokines and chemokines from PBS-inoculated

mice (n = 5) were shown as a dashed line in each graph. The data

was presented as mean ±SD for three independent experiments.

Asterisk p \ 0.05 between mock and SDw3-infected mice
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By contrast, the other mRNAs were not up-regulated sig-

nificantly (data not shown).

Cytokine/chemokine protein profiles

Protein expressions of the five corresponding cytokines and

chemokines (IFN-c, IL-6, IP-10, CCL-5, and MIP-1a)

were confirmed by ELISA, and their protein levels were all

above the control at 0.5 dpi (Fig. 3). Protein expressions of

IFN-c, CCL-5 and MIP-1a peaked at 2 dpi, whereas IL-6 at

6 dpi.

Discussion

SDw3, the dominant viral isolate in China, belongs to the

BJ94-like lineage [25, 26]. The pathogenicity result of this

study showed that the virus was replicable and pathogenic

in mice without prior adaptation, which is consistent with

the previous experiments [27, 28]. This was the main

reason for us to further understand the immune responses

of mice challenged by the virus. During the viral infection,

body weight and clinical signs of mice changed lightly

mainly due to the mild pathogenicity of the SDw3.

Cytokines paly an important role in clearance of virus.

For example, IFN-c mediates the production of nitric

oxide, subsequently resulting in the recruitment of more

neutrophils and macrophages [29, 30]; IL-6 is a multi-

functional cytokine that not only regulates immune and

inflammatory responses involved in the activation, growth

and differentiation of T-cells, but also contributes to T cell-

mediated inflammatory reactions [31]. The analyses of

cytokine in this study showed that IFN-c and IL-6 were

both up-regulated in H9N2-infected mice lungs. Compared

with cytokine changes in H9N2-infected chicken lungs,

TNF-a, IFN-a, -b and IFN-c were all up-regulated [32].

The differences of the breed and the immune system may

be the major contributors. During the influenza virus

infection, the production of chemokines, including MCP-1,

MIP-1, MIP-1a, CCL-5I, IP-10 and CCL-5, was all or

partly up-regulated [33, 34]. This response is crucial in pro-

inflammatory responses to influenza viruses. Similarly,

MIP-1a, CCL5 and IP-10 were all up-regulated in this

study, which indicated that protective responses occurred

in H9N2-infected mice lungs.

Time point selection of detecting cytokines and che-

mokines mRNA/protein expressions and observing histo-

pathology changes was based on previous references [19,

20]. Although this selection was not perfect, it can truly

reflect main change trend of cytokines and chemokines in

mice lungs challenged by H9N2 influenza virus. Addi-

tionally, during the experiment, production changes of

mRNA and protein at the same time point were not

consistent, which can largely be attributable to the time

difference between transcription and translation.

In conclusion, after infection of H9N2, IFN-c was the

dominant antiviral component, and IP-10, IL-6, CCL-5 and

MIP-1a all played an important role in pro-inflammatory

responses to H9N2 viruses. It is useful for us to understand

the infection characteristics of H9N2 virus in mammalian

host.
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