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Abstract Brucella strains produce abortion and infertility

in their natural hosts and a zoonotic disease in humans

known as undulant fever. These bacteria do not produce

classical virulence factors, and their capacity to success-

fully survive and replicate within a variety of host cells

underlies their pathogenicity. Extensive replication of the

brucellae in placental trophoblasts is associated with

reproductive tract pathology in natural hosts, and pro-

longed persistence in macrophages leads to the chronic

infections that are a hallmark of brucellosis in both natural

hosts and humans. This review describes how Brucella

strains have efficiently adapted to their intracellular life-

style in the host.
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Introduction

The Brucella spp. are Gram-negative bacteria that cause

economically important diseases in food animals world-

wide [44]. Brucella melitensis, B. abortus and B. suis

strains cause abortion and infertility in their natural hosts—

goats and sheep, cattle and swine, respectively. Humans

can also acquire a severe, debilitating febrile illness known

as brucellosis, or ‘‘undulant fever,’’ as the result of contact

with infected animals or their products [133]. Naturally

occurring human brucellosis is strictly a zoonotic infection.

In areas of the world where Brucella infections in food

animals have been controlled by successful eradication

programs, human infections are predominately an occu-

pational hazard for animal handlers, veterinarians, slaugh-

terhouse workers and others who work with potentially

infected animals [130]. In contrast, human brucellosis

remains a significant public health concern in areas of the

world where Brucella infections are endemic in food ani-

mals. Indeed, brucellosis has been described as being the

leading zoonosis worldwide [133].

Brucella ovis is a natural pathogen of sheep where it

primarily causes epididymitis and infertility in rams and

occasionally abortion in ewes [23]. B. canis infection leads

to abortion and infertility in dogs [187]. Although B. ovis

and B. canis are important veterinary pathogens, human

infection with B. canis is rare [44], and human infection

with B. ovis has not been reported.

Brucella pinnipedialis and B. ceti strains are being iso-

lated from marine mammals with increasing frequency

[48], but the role of these bacterial strains in disease in

these hosts or how these strains are disseminated between

marine mammals is presently unresolved [83]. Marine

mammal strains of Brucella have also been isolated from

human disease [171] indicating that these strains are

potential zoonotic pathogens.

Brucella strains are highly infectious via the aerosol

route [69]. Human brucellosis is also debilitating, long-

lasting and difficult to treat with antibiotics, and there are

no safe and effective vaccines available to prevent human

infection [196]. This combination of characteristics has led

to the inclusion of B. melitensis, B. suis and B. abortus

strains on lists of etiologic agents considered to pose risks

for use as bioweapons [134]. Accordingly, the possession

and handling of Brucella strains in both clinical and
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research laboratories are subject to strict regulations in

many countries.

The brucellae are members of the a-proteobacteria

[126]. Other members of this group of bacteria include

those in the genera Bartonella, Agrobacterium, Rhizobium,

Sinorhizobium and Mesorhizobium. All of these bacteria

inhabit eukaryotic cells, and comparative genomic studies

indicate that they evolved from a common ancestor [25].

There are remarkable parallels between the mechanisms

and gene products employed by these bacteria to establish

successful interactions with their plant and animal hosts

[16, 110]. Recognition of these parallels has greatly

improved our understanding of the host–pathogen interac-

tions that take place during Brucella infections.

Brucella strains are intracellular pathogens in vivo

Brucella strains live in close association with their mam-

malian hosts. They are not found free living in the envi-

ronment. Although many texts refer to these bacteria as

being facultative intracellular parasites, it has been pro-

posed that they are more appropriately termed ‘‘faculta-

tively extracellular intracellular parasites’’ [127]. This is

based on the fact that although the Brucella spp. are rela-

tively easy to cultivate on artificial media, they maintain

predominately an intracellular existence within their

mammalian hosts. Within these hosts, the brucellae occupy

both professional and non-professional phagocytes, and

their interactions with these host cells dictate the outcomes

of infection [101, 125, 156].

Interactions of Brucella strains with professional

phagocytes

Macrophages

It is well documented that the capacity of Brucella strains

to survive and replicate for prolonged periods within host

macrophages underlies their ability to produce chronic, and

sometimes lifelong, infections [101, 156]. This intracellular

niche provides a safe haven for the brucellae in terms of

protecting these bacteria from antibodies and complement

during dissemination in the host. Localization of persis-

tently infected macrophages in organs of the reticuloen-

dothelial system such as the spleen and liver also provides

foci for the maintenance of chronic infection [60, 128]. An

interesting feature of the interactions of Brucella strains

with macrophages is that experimental evidence indicates

that these bacteria have the ability to prevent apoptosis of

the macrophages within which they reside [79]. This

property conceivably allows the brucellae to extend the

longevity of their safe haven.

Dendritic cells

The link between persistent infection of macrophages and

the virulence of Brucella strains has been recognized for

decades. Recent work, however, suggests that another type

of professional phagocyte may also play a key role in the

pathobiology of Brucella infections. Specifically, in con-

trast to several other intracellular pathogens, the brucellae

survive and replicate in human and murine dendritic cells

[21, 159]. Strikingly, the intracellular replication of viru-

lent Brucella strains interferes with the maturation of these

host cells [22, 159]. Considering the importance of den-

dritic cells in the development of host immune responses

[12], it is easy to see how the capacity of the brucellae to

inhibit the maturation of these antigen-processing cells

allows these bacteria to circumvent host immune respon-

ses. As is the case with macrophages, it is also possible that

dendritic cells serve as safe havens to prevent exposure of

the brucellae to components of the immune response and

act as vehicles for the dissemination of these bacteria in the

host.

Interactions of Brucella strains with non-professional

phagocytes

Placental trophoblasts

During pregnancy in natural hosts, Brucella strains can

infect and replicate within placental trophoblasts [123,

160]. These host cells are epithelial in nature, and although

they are considered to be non-professional phagocytes,

some placental trophoblasts acquire the capacity to engulf

and degrade erythrocytes from the maternal circulation;

hence, they are known as erythrophagocytic trophoblasts

[86]. This activity provides an important source of iron for

the developing fetus. Large numbers of brucellae can be

isolated from the placenta of infected ruminants (e.g.,

1013 CFU/g of tissue in fetal cotyledons) [2], and this

extensive intracellular proliferation of the brucellae can

disrupt the integrity of the placenta leading to abortion or

the birth of weak and infected offspring, two of the hall-

mark clinical presentations associated with Brucella

infections in their natural hosts [5, 6, 23, 60, 187]. It seems

likely that the physical and hormonal characteristics of the

placenta that facilitate immune suppression and prevent

maternal rejection of the developing fetus play an impor-

tant role in allowing the brucellae to replicate to high

numbers in the gravid reproductive tract of their natural

hosts. The deposition of heavily infected placental tissues

into the environment is important for transmission of

Brucella infections between natural hosts [5, 6, 23, 46,

187]. In contrast to the situation in natural hosts, abortion is
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not a predominant clinical presentation associated with

human brucellosis, but it does occur and is an issue of

medical concern in regions where this disease is endemic

[196].

Ruminant placental trophoblasts produce erythritol

during the third trimester of pregnancy [160]. This sugar

alcohol is a favored carbon and energy source for many

Brucella strains [174], and it has been postulated that the

presence of this compound contributes to the rapid and

extensive replication of the brucellae in the ruminant

reproductive tract [169]. This proposed link between

erythritol utilization and virulence of Brucella strains in

ruminants, however, has yet to be verified experimentally.

Epithelial cells

The brucellae gain entrance into the host at mucosal bar-

riers, and thus the interactions of these bacteria with host

epithelial cells at these locations represent an important

point of initial contact between the pathogen and host.

Brucella strains have been shown to invade a variety of

epithelial cells in culture [64, 166], but the efficiency with

which these bacteria ‘‘invade’’ epithelial cells is low

compared to bacterial pathogens that are considered to be

truly ‘‘invasive’’ [128]. Consequently, the extent of the

contribution that epithelial cell invasion makes to the ini-

tiation of Brucella infections is unclear, and some inves-

tigators have proposed that M cells located at mucosal

surfaces serve as the major site of entry for Brucella strains

into the host [128]. It is important to note, however, that the

human epithelial cell line HeLa and the African green

monkey kidney fibroblastic cell line Vero have both been

used widely and effectively as models for studying the

interactions of Brucella strains with mammalian cells [52,

128, 139].

The brucellae proactively alter their intracellular

trafficking in host cells

When unopsonized B. melitensis, B. abortus and B. suis

strains are ingested by cultured macrophages and epithe-

lial cells, the Brucella-containing vacuoles (BCVs) enter

into an intracellular trafficking pathway that results in the

development of specialized membrane-bound compart-

ments [8, 32, 96, 129, 139, 150] known as replicative

phagosomes [96], replicative vacuoles [128] or brucello-

somes [101] (Fig. 1). Interactions between the O-chain of

the smooth LPS of these Brucella strains and lipid rafts

on the surface of macrophages have been shown to be

important for mediating entry into host cells in a manner

that leads to the development of the replicative phago-

some [141]. During the initial stages of intracellular

trafficking of the BCVs, these compartments undergo

transient interactions with lysosomes [176], which results

in their acidification [8, 140]. These vacuoles then begin

to interact extensively with the endoplasmic reticulum

[32], and eventually their intracellular pH rises to a level

that allows intracellular replication of the brucellae.

During development of the replicative phagosome in

epithelial cells, the BCVs acquire properties resembling

autophagosomes [139], but this does not appear to be the

case during the development of the BCVs in macrophages

[32]. Studies employing the human monocytic cell line

THP-1 and B. abortus strains opsonized with hyperim-

mune IgG have also shown that when the brucellae enter

host macrophages in this manner, the resulting BCVs also

undergo transient association with the lysosomal com-

partment and become acidified, but these BCVs do not

interact extensively with the ER [20]. An obvious

potential benefit of this altered intracellular trafficking is

that limiting the fusion of the BCVs with lysosomes

minimizes the exposure of these bacteria to the bacteri-

cidal proteins that reside in these intracellular compart-

ments. A potential nutritional benefit to the brucellae of

the fusion of the BCVs with the ER in host cells will be

discussed in a later section.
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Fig. 1 Gene products that influence the intracellular trafficking of

Brucella strains in host cells

Med Microbiol Immunol (2009) 198:221–238 223

123



The Type IV secretion system (T4SS) of Brucella

strains encoded by the virB operon plays an essential role

in the development of the replicative vacuole within which

these bacteria reside in host cells [32, 40, 50, 96] (Fig. 1).

The T4SS of Legionella pneumophila secretes ‘‘effector’’

proteins into host cells that alter the intracellular trafficking

of this bacterium [167], and genetic and biochemical

studies support a similar function for the Brucella T4SS.

Specifically, the vacuoles containing B. melitensis, B.

abortus and B. suis virB mutants fuse extensively with

lysosomes but do not interact with the ER in cultured

macrophages, dendritic cells and HeLa cells

(32,40,50,159]. Recently, de Jong et al. [49] identified two

putative effector proteins (designated VceA and VceC)

secreted by the T4SS of B. abortus 2308. These investi-

gators showed that VceC is also secreted by B. suis 1330.

The biological functions of VceA and VceC have yet to be

defined, but the importance of the Brucella T4SS for vir-

ulence is clearly evident from the attenuation that virB

mutants exhibit compared to their parental strains in cul-

tured macrophages [67, 131, 146], HeLa cells [67, 97, 131,

168], human and murine dendritic cells [21, 159] and

experimentally infected mice [84, 92, 146, 168] and goats

[93, 198]. It is also notable that two of the major envi-

ronmental stresses encountered by the brucellae during

their intracellular residence in host macrophages, exposure

to acidic pH and nutritional deprivation, serve as important

stimuli for induction of expression of the virB operon in B.

suis [24].

BvfA is a Brucella protein discovered in a genetic

screen designed to identify substrates of the T4SS [106]. B.

suis bvfA mutants are highly attenuated in cultured murine

and human macrophages, HeLa cells and mice. Although

the bvfA gene in B. suis 1330 exhibits a similar regulatory

pattern in cultured macrophages as the virB genes, whether

or not BvfA is a substrate for the T4SS has not been

definitively resolved, and the function of this protein is

unknown.

Like their phylogenetic relatives Agrobacterium tum-

efaciens and Sinorhizobium meliloti, Brucella strains pro-

duce periplasmic cyclic b-1,2-glucans (CbG) [87], and

these glucose polymers are required for the successful

interactions of all three of these bacteria with their

eukaryotic hosts [26, 57, 144]. In the case of the brucellae,

experimental evidence suggests that CbG disrupts the

integrity of lipid rafts in the membrane of the BCVs during

intracellular trafficking, preventing extensive interactions

of these vacuoles with lysosomes [10] (Fig. 1). It is unclear

how these CbG molecules, which reside in the periplasm of

Brucella strains, make their way to the membrane of the

BCV. A plausible proposition that has been put forth is that

CbG may be released from intact bacterial cells as com-

ponents of outer membrane vesicles [10].

The capacity of the brucellae to both avoid

and interfere with components of the host immune

response contributes to their intracellular persistence

The Brucella LPS is a weak inducer of the host inflam-

matory response compared to LPS molecules from many

other Gram-negative bacterial pathogens (Fig. 2). Mice

infected with virulent B. abortus 2308, for example, do not

show signs of sepsis. This is in contrast to mice infected

with a virulent strain of Salmonella typhimurium [14],

which typically exhibit malaise, wasting and eventually

death. Unlike mice infected with Salmonella, those infec-

ted with B. abortus do not exhibit an acute phase response,

do not recruit neutrophils to the site of inoculation and do

not strongly induce production of the proinflammatory

cytokines IL-1b, IL-6 or TNF-a. Brucella cells are also

relatively inefficient at activating complement. These

experimental findings support previous work showing that

the Brucella LPS has greatly reduced ‘‘endotoxin’’ activity

compared to similar molecules from other Gram-negative

pathogens [125, 148]. They are also in agreement with the

fact that although human brucellosis is a febrile illness,

Brucella infections do not elicit the same sepsis response

observed in patients with systemic infections caused by

Gram-negative bacteria possessing a highly endotoxic LPS

such as the enterics and the Pseudomonas spp. [14].

The endotoxin component of the Brucella LPS, the lipid

A, has several biochemical features (e.g., diaminoglucose

and long chain [C28] fatty acids) [88] that distinguish it

from the ‘‘classic’’ lipid A found in the other Gram-negative

bacteria that induces strong inflammatory responses in

infected hosts [104]. Moreover, there is genetic evidence

supporting the proposition that the Brucella lipid A plays a

major role in the capacity of these bacteria to avoid the

induction of a full-scale inflammatory response in the host

(Fig. 2). Specifically, a Brucella bacA mutant, which has a

lipid A that is deficient in its long chain (e.g., C28) fatty acid

content, [63] produces a stronger inflammatory response in

experimentally infected mice than does its parental strain

[136] and is attenuated. Brucella bvrRS mutants that also

have lipid As with reduced long chain fatty acid content

compared to their parent strains [117] are likewise highly

attenuated in experimentally infected mice [172].

In addition to their ability to avoid induction of an

optimal inflammatory response in the host, Brucella strains

are also able to actively interfere with the host acquired

immune response (Fig. 2). The perosamine O-chain of the

LPS of Brucella strains is poorly degraded by host mac-

rophages [65] and forms complexes with components of

the MHCII machinery of these phagocytes, which inter-

feres with their antigen-processing capacity [66] (Fig. 2).

Brucella strains also produce a protein designated TcpB

[39, 145] or Btp1 [159] that contains a Toll/interleukin-1
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receptor (TIR) domain. TIR domain–containing proteins

serve as important components of the host cell-signaling

pathways that link the Toll-like receptors to NF-jB and are

important for the induction of innate immunity [132].

When expressed in eukaryotic cells, the Brucella TcpB

blocks TLR2- and TLR4-mediated induction of NF-jB

expression ([39, 145, 159]; Sengupta et al., manuscript

submitted) through its capacity to elicit the targeted deg-

radation of the TLR signaling adapter MAL (also known as

TIRAP) (Sengupta et al., manuscript submitted). Although

Brucella tcpB mutants are not attenuated in cultured mur-

ine macrophages, HeLa cells or immunocompetent mice

([145, 159]; Sengupta et al. manuscript submitted), these

strains do exhibit delayed virulence in the immunocom-

promised IRF-1-/- mouse model [145]. Studies employing

a murine intestinal loop model indicate that TcpB plays a

role in the capacity of Brucella strains to interfere with

dendritic cell maturation and function [159] (Fig. 2).

PrpA is another protein produced by Brucella strains

that interferes with host immune responses [173]. This

protein is a proline racemase that acts as a T-cell inde-

pendent B lymphocyte mitogen that stimulates the pro-

duction of the anti-inflammatory cytokine IL-10 (Fig. 2).

B. abortus prpA mutants exhibit significant attenuation in

experimentally infected mice at 12 weeks post infection

and beyond. It has been proposed that PrpA induces a

transient immune suppression that helps the brucellae

maintain chronic infections.

Physiologic adaptation of the brucellae

to their intracellular niche

Even though Brucella strains are able to actively alter the

intracellular trafficking of the host cell vacuoles within

which they reside and avoid the induction of a full-scale
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inflammatory response, these bacteria still encounter

formidable environmental stresses during their interac-

tions with macrophages. These stresses include exposure

to reactive oxygen (ROS) and nitrogen species (RNS),

exposure to acidic pH, nutritional deprivation and at least

transient exposure to the lytic peptides contained in

lysosomes (Fig. 3). Correspondingly, the brucellae are

well equipped from both a physiologic and metabolic

standpoint to withstand these environmental stresses [101,

156]. This trait undoubtedly plays an important role in

the success with which Brucella strains maintain pro-

longed residence in these host phagocytes. The intracel-

lular ‘‘stresses’’ encountered by the brucellae within non-

professional phagocytes such as epithelial cells are less

severe than those encountered in professional phagocytes

[128].

Resistance to oxidative damage

Brucella strains generate ROS such as O2
- and H2O2

endogenously as a consequence of their aerobic respira-

tory-type metabolism [149]. Exogenous production of

these ROS has also been shown to be important for the

brucellacidal activity of macrophages [90]. Because O2
- is

a charged molecule, it does not readily cross bacterial

membranes. Consequently, bacteria have compartmental-

ized defenses against this ROS. Periplasmic superoxide

dismutases such as the Cu/Zn SOD, for instance, are

important for protecting bacteria from O2
- of exogenous

origin [115]. Cytoplasmic SODs such as the Mn SOD

(SodA) or Fe SOD (SodB), on the other hand, protect

bacterial cells from endogenous O2
- generated by aerobic

metabolism. Brucella strains produce both SodC and SodA
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Fig. 3 Gene products that play

important roles in allowing

Brucella strains to resist the
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replication in the host

226 Med Microbiol Immunol (2009) 198:221–238

123



[175]. Studies have shown that SodC plays an important

role in protecting B. abortus 2308 from the respiratory

burst of host macrophages [74] and is required for main-

tenance of chronic infection in the mouse model [74, 181].

Genetic analysis of Brucella sodA mutants indicates that

SodA plays a major role in protecting these bacteria from

the endogenous O2
- that is generated by aerobic metabo-

lism (Baumgartner and Martin, unpublished). The impor-

tance of SodA to Brucella strains during their residence in

the host is presently under investigation.

Two major antioxidants with the capacity to degrade

H2O2 have been described in Brucella strains, the periplas-

mic monofunctional catalase KatE [165] and the peroxire-

doxin AhpC [155]. Genetic studies have shown that KatE

detoxifies supraphysiologic levels of H2O2 [73, 95, 165] in

these bacteria, while AhpC appears to be the major scavenger

of the endogenous H2O2 that is generated by aerobic

metabolism (Steele, manuscript in preparation). B. abortus

ahpC and katE mutants exhibit wild-type virulence in

experimentally infected mice (Steele, manuscript in prepa-

ration; [162]) and a B. melitensis katE mutant produces

abortion and fetal pathology in pregnant goats [73]. A B.

abortus ahpC katE double mutant, in contrast, displays

severe attenuation in both the C57BL6 and BALB/c mouse

models (Steele, manuscript in preparation), and this attenu-

ation is not diminished in C57BL6 knockout mice lacking a

functional NADP oxidase or inducible nitric oxide synthase.

These experimental findings indicate that, unlike SodC,

neither AhpC nor KatE plays a direct role in protecting

Brucella strains from the oxidative or nitrosative bursts of

host phagocytes. Rather, the combination of these two anti-

oxidants appears to provide the brucellae with an efficient

means of protecting themselves from potentially lethal levels

of endogenous H2O2 that are generated as a consequence of

their respiratory metabolism during residence in the host.

In addition to their ability to directly detoxify ROS, the

brucellae also appear to have developed mechanisms for

indirectly avoiding oxidative damage. Cytochrome bd

ubiquinol oxidases and the cbb3-type cytochrome c oxi-

dases have high affinity for O2, and the O2 ‘‘scavenging’’

capacity of these terminal cytochrome oxidases has been

linked to the prevention of ROS toxicity in other bacteria

[54, 143]. Cytochrome bd ubiquinol oxidase and the cbb3-

type cytochrome c oxidase are both required for wild-type

virulence of Brucella strains in cell cultures and experi-

mentally infected mice [59, 91], and increased sensitivity

to ROS has been experimentally linked to the attenuation

of a B. abortus cydB mutant [59].

DNA is a target of ROS-mediated damage in all living

cells, and experimental evidence indicates that DNA repair

pathways such as base excision repair and recombination

repair play important roles in protecting Brucella strains

from ROS toxicity in vitro [85, 158]. To date, however,

recA mutants are the only Brucella strains with defects in

DNA repair that have been shown to be attenuated in

experimentally infected animals [182].

Resistance to nitrosative damage

Nitric oxide (NO) produced by the inducible nitric oxide

synthase (iNOS) of murine macrophages has been shown to

play a role in the capacity of these phagocytes to control

the intracellular replication of the brucellae [78, 90]. Bru-

cella strains produce a nitric oxide reductase (Nor), and

genetic studies suggest that in addition to its metabolic role

in denitrification, Nor may also play an important role in

the detoxification of NO by Brucella strains during their

replication in host macrophages [82, 113]. Genetic studies

have also uncovered a link between a D-alanyl-D-alanine

carboxypeptidase (encoded by the dacF gene), expression

of norB, and the resistance of B. abortus 544 to NO in vitro

and in cultured macrophages [94], but the nature of this

link is not readily apparent.

Peroxynitrite (ONOO-) is produced as the product of the

reaction of O2
- with NO. This ROS-RNI hybrid has potent

microbicidal activity, and it is considered to be an important

component of the antibacterial arsenal of host macrophages

[62]. In addition to their ability to detoxify H2O2 and

organic peroxides, the AhpC proteins from Salmonella,

Mycobacterium and Helicobacter have also been shown to

have peroxynitrite reductase activity in vitro [28]. Genetic

studies suggest that AhpC protects Mycobacterium strains

from exposure to ONOO- in vitro and is required for their

virulence in cultured macrophages [121] and guinea pigs

[192]. A B. abortus ahpC mutant exhibits increased sensi-

tivity to ONOO- generated by the compound SIN-1 in in

vitro assays (K. Steele, unpublished), but whether or not

AhpC protects this strain from exposure to ONOO- in host

macrophages remains to be determined experimentally.

Resistance to acidic pH

It is well documented that the intracellular compartment

within which Brucella strains reside in cultured macro-

phages and epithelial cells is acidified during the early

stages of its development [53, 140]. In fact, if this acidi-

fication is blocked by the addition of bafilomycin or neu-

tralized by the addition of NH4Cl during the early stages of

development of the Brucella-containing vacuole in these

cells, the brucellae will not initiate intracellular replication

in either cell type. As noted previously, this low pH

apparently serves as an important environmental stimulus

for the induction of the virB genes which encode the

components of the Type IV secretion system [24].
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Several gene products have been linked to acid resis-

tance in Brucella strains. HdeA is a periplasmic chaperone

that functions at low pH and plays an important role in acid

resistance in E. coli [72] and Shigella flexneri [188]. A B.

abortus hdeA mutant displays a decreased resistance to

acidic pH (e.g., pH 4) compared to its parental strain [185],

but this mutant is not attenuated in the mouse model.

Asp24 is a putative ‘‘EF hands’’-type Ca2?-binding protein

(T. Ficht, personal communication) originally identified in

a screen for gene products produced by B. abortus 2308 in

response to exposure to acid pH [112]. Notably, Brucella

asp24 mutants are attenuated in mice [92] and goats [93]

and have been proposed for use as vaccine candidates.

Specifically, how Asp24 protects Brucella strains from acid

stress has not been described. Increased sensitivity to acid

pH is a phenotype that has also been reported for Brucella

cydB [59] and hfq mutants [152]. In the case of the latter

strains, there is an as yet undefined regulatory link between

the RNA chaperone Hfq and hdeA in B. abortus 2308

[185]. The basis for the acid-sensitive phenotype of B.

abortus cydB mutants is unclear.

Most Brucella strains produce a functional urease that

protects these bacteria from extremely low pH (pH 2)

under laboratory conditions when urea is present in the

growth medium [13, 163]. Results from experimental

infections in mice suggest that urease may play an

important role in protecting Brucella strains from the acidic

conditions encountered during passage through the gas-

trointestinal tract after oral ingestion in the host. These

same studies, however, indicate that urease does not play a

role in protecting Brucella strains from the acidic condi-

tions encountered within host cells [13, 163].

Bacterial glutamate decarboxylases (GadA or GadB)

and the associated c-amino-butyric acid (GABA) exporters

(GadC) represent important components of acid resistance

because GadC is a proton symporter [31]. Brucella strains

possess gadC, but the gadB genes appear to be pseudo-

genes, and mutational analysis indicates that neither GadB

nor GadC contributes to the acid resistance of B. abortus

2308 in vitro or the virulence in this strain in mice [27].

Resistance to antimicrobial peptides

Brucella strains have an inherently higher level of resis-

tance to many of the bactericidal cationic peptides found in

mammalian hosts compared to other Gram-negative bac-

terial pathogens [120]. Experimental evidence indicates

that this heightened resistance is linked to the acylation

status of the lipid A moiety of the Brucella LPS [117].

Although this trait would be expected to be particularly

beneficial to the brucellae in the extracellular environment

in the host and during their interactions with neutrophils,

this increased resistance to antimicrobial peptides may also

provide these bacteria with protection from the lytic pep-

tides contained in lysosomes during the transient interac-

tions of the Brucella-containing vacuole with these

organelles in host cells [176].

Resistance to nutrient deprivation

Studies employing both defined mutants as well as those

generated by transposon mutagenesis have demonstrated

that Brucella strains experience a significant degree of

nutritional deprivation during their intracellular replication

in host cells. One of the major limiting nutrients in this

environment is elemental O2 that can be used as a terminal

electron acceptor to fuel the respiratory metabolism of

these bacteria. Brucella mutants that lack the cbb3-type

cytochrome c oxidase (CcoNOQP), the cytochrome bd

ubiquinol oxidase (CydCDAB) or components of the

denitrification pathway (NarGHIJK/NirKV/NorBCDEFQ/

NosDFLRXYZ) exhibit defective intracellular survival and

replication in cultured macrophages [59, 82, 100, 113] and

HeLa cells [97] and are attenuated in experimentally

infected mice [59, 82, 91]. The CcoNOQP and CydCDAB

complexes allow these bacteria to respire efficiently at low

O2 concentrations, while the components of the denitrifi-

cation pathway allow the bacteria to use NO3
- as an

alternative terminal electron acceptor instead of O2. A

recent comparative study of isogenic B. suis ccoN and cydB

mutants in the mouse model [91] and an evaluation of B.

melitensis cydAB mutants in pregnant goats [93] indicate

that the cbb3-type cytochrome c oxidase may play a more

important role than the cytochrome bd ubiquinol oxidase in

allowing Brucella strains to adjust to the environmental

conditions encountered in the host, but this relationship

merits further examination.

Brucella strains have a blocked Embden–Meyerhof

pathway, and they rely on the pentose phosphate pathway

and TCA cycle for the efficient use of carbohydrates as

carbon and energy sources [61]. Several studies have

shown that intact carbohydrate transport and metabolism

pathways are essential for the successful intracellular rep-

lication of Brucella strains [67, 84, 97, 100, 103, 108, 194].

As noted in an earlier section, the capacity of B. abortus

and B. melitensis strains to use erythritol as a preferred

carbon source has been postulated to play an important role

in their virulence in ruminant placental trophoblasts.

Interestingly, experimental studies also suggest that some

of the erythritol metabolism genes are required for the

wild-type virulence of B. suis 1330 in cultured human and

murine macrophages and experimentally infected mice [29,

100]. A derivative of B. abortus 2308 with Tn5 inserted

into the eryB gene, in contrast, exhibits wild-type virulence
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in the mouse model [164]. The role that the eryB and eryC

genes play in the intracellular survival and replication of B.

suis 1330 in murine and human macrophages is unclear

[29] since erythritol is not considered to be a major con-

stituent of murine and human tissues.

Multiple investigators have shown that intact purine

biosynthesis pathways are essential for efficient replication

of Brucella strains in cultured murine [1, 194] and human

[56, 100] macrophages, HeLa cells [97] as well as the wild-

type virulence of these strains in mice [1, 45] and goats

[38]. The biosynthesis of pyrimidines and several classes of

amino acids also appear to be required for the successful

adaptation of the brucellae to their intracellular niche [67,

68, 97, 100, 108, 109].

In addition to the macronutrients listed earlier, a number

of micronutrients that are essential for the intracellular

replication of Brucella strains have also been identified.

One class of micronutrient that appears to be particularly

important for these strains is the divalent cations, which

serve as cofactors for a wide array of cellular proteins.

With the notable exceptions of the Lactobacillus spp. [190]

and Borrelia burgdorferi [142], all of the other bacteria

that have been examined require iron, and the brucellae are

no exception. The activity of two Brucella iron acquisition

systems has been described in the literature, and a survey

of several publicly available Brucella genome sequences

suggests that several more exist [157]. B. abortus 2308

produces two siderophores, 2,3-dihydroxybenzoic acid

(2,3-DHBA) [114] and brucebactin [77], in response to iron

limitation in vitro. Genetic evidence indicates that bru-

cebactin is derived from 2,3-DHBA, but the structure of

brucebactin has not been determined. Although the genes

required for the biosynthesis and transport of 2,3-DHBA

and brucebactin are strongly expressed in B. abortus 2308

during intracellular replication in cultured murine macro-

phages [103], neither siderophore is required for the viru-

lence of this strain in cultured murine or human

macrophages or in experimentally infected mice ([17, 77,

135]; Bellaire, unpublished). In contrast, B. abortus dhbC

mutants (which can produce neither 2,3-DHBA nor bru-

cebactin) are highly attenuated in pregnant cattle [18]. In

vitro studies have established a link between siderophore

production and the capacity of B. abortus 2308 to effi-

ciently utilize erythritol as a carbon and energy source

during growth under iron limiting conditions [19]. To what

extent this link contributes to the attenuation of B. abortus

dhbC mutants in ruminants, however, remains to be

determined.

Brucella strains are also capable of transporting the

intact heme molecule [4] and using it as an iron source

[137]. A B. abortus mutant lacking the outer membrane

heme transporter BhuA cannot maintain chronic spleen

infection in experimentally infected mice [137], which

suggests that heme represents a major iron source for the

brucellae during their intracellular replication in host

macrophages. The degradation of the hemoglobin con-

tained in senescent erythrocytes by macrophages plays a

central role in the recycling of iron in mammals [47]. Heme

is a toxic compound, however, and unless it is directly used

by these phagocytes, it is transported to their endoplasmic

reticulum for degradation by heme oxygenase [179]. Thus,

the possibility exists that one of the benefits to the brucellae

of residence in an intracellular compartment that has

extensive interaction with the endoplasmic reticulum is that

it allows these bacteria access to a critical source of iron.

The efficient transport of Mg2?, Zn2? and Mn2? has

also been shown to be critical for the success of Brucella

strains as intracellular pathogens [7, 98, 105, 195].

Although the brucellae possess a single high affinity Mn2?

transporter, MntH, transport of this divalent cation appears

to be very important for these bacteria in the mammalian

host as mntH mutants exhibit extreme attenuation in mice

that lack Nramp1 [7]. This mammalian divalent cation

transporter plays a critical role in the metal withholding

response in host macrophages that is an important com-

ponent of the host innate immune response [33], and bac-

terial Mn2? transport mutants often do not exhibit

attenuation in mice unless these animals possess a func-

tional Nramp1 [197]. The precise basis for the importance

of Mn2? as a micronutrient for Brucella strains is

unknown, but experimental evidence suggests that MntH-

mediated Mn transport plays an important role in facili-

tating optimal production of the Mn SOD in B. abortus

2308. Mn2? transport may also be important for wild-type

activity of Rsh, the mediator of the stringent response in

this bacterium [7].

Production of flagella contributes to virulence

via an as yet undefined mechanism

Although Brucella strains are uniformly described as being

non-motile, genome sequence data suggests that they have

the genetic capacity to produce flagella. Moreover, under

certain growth conditions B. melitensis 16M produces a

polar organelle that resembles a flagellum [70]. Intrigu-

ingly, B. melitensis flgI, fliF, fliC, flhA, motB and flgE

mutants which do not produce this flagellum are not

attenuated in cultured bovine macrophages or HeLa cells,

but do exhibit attenuation in experimentally infected mice

[70]. A transcriptional regulator, FtcR, that appears to lie

downstream of VjbR in the regulatory pathway of the fla-

gellar biosynthesis genes in B. melitensis 16M has been

identified [107], and isogenic ftcR mutants constructed in

this strain are also attenuated in mice. The basis for the

attenuation of Brucella mutants that are defective in
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flagellar biosynthesis has not been resolved, but one pos-

sibility is that the polar organelle produced by the Brucella

‘‘flagellar’’ genes is a secretion apparatus rather than one

linked to motility. The components of bacterial Type III

secretion systems share many similarities with those

involved in the transport and assembly of flagella [75].

Phosphatidylcholine is a major component of the OM

of Brucella strains

Unlike many bacteria, Brucella strains and other a-prote-

obacteria have outer membranes enriched in phosphati-

dylcholine (PC), a phospholipid that is typically associated

with eukaryotic cell membranes [170]. The presence of PC

in the outer membrane appears to be required for the suc-

cessful interactions of Bradyrhizobium japonicum [124]

and Agrobacterium tumefaciens [191] with their plant

hosts, and likewise Brucella abortus mutants lacking PC in

their outer membranes are attenuated in the mouse model

[41, 42]. The precise role that PC plays in the virulence of

Brucella strains is undefined; but studies suggest that this

phospholipid may be important for maintaining the integ-

rity and permeability characteristics of the outer membrane

and in particular may be involved in resistance to com-

plement and other antimicrobial peptides [42]. Because PC

is a major component of eukaryotic membranes and the

degradation of PC by eukaryotic cells produces two

important eukaryotic cell-signaling molecules (diacyl-

glycerol and phosphatidic acid); it has also been postulated

that the presence of this phospholipid in the Brucella outer

membranes plays a role in immune evasion via molecular

mimicry [41, 42]. Furthermore, studies with Legionella

pneumophila [43] raise the possibility that the presence of

PC in the outer membrane is important for the proper

assembly or function of the components of the T4SS or

flagella on the surface of Brucella strains.

The mystery behind the virulence of naturally

occurring rough strains of Brucella

It is well established that the LPS O-chain is a major vir-

ulence determinant of B. abortus, B. melitensis and B. suis

strains, and O-chain-deficient mutants derived from these

strains (so-called ‘‘rough’’ mutants) are uniformly attenu-

ated in experimental hosts [3, 37, 58, 76, 122, 153, 183,

193]. B. canis and B. ovis strains, in contrast, naturally lack

the LPS O-chain, yet they produce disease in their natural

hosts. Compared to the naturally occurring smooth strains,

little work has been done on the interactions of B. canis and

B. ovis strains with host cells. What can be derived from

these studies is that, in general, naturally occurring rough

Brucella strains appear to be taken up into host cells with

greater efficiency than smooth strains [52, 64, 151], but

these strains do not replicate as well in host cells as their

smooth counterparts [52, 64, 119]. This may be due to the

fact that trafficking studies indicate that BCVs containing

B. canis and B. ovis strains fuse more extensively with

lysosomes in host cells than BCVs containing smooth

Brucella strains [141, 151]. Laboratory-derived rough B.

abortus mutants exhibit cytotoxicity in cultured macro-

phages [138], and it has been postulated that the sponta-

neous occurrence of these cytotoxic mutants may facilitate

cell-to-cell spread of naturally occurring smooth strains in

vivo. It is notable in this regard, however, that B. canis and

B. ovis strains are not cytotoxic for cultured macrophages

[138]. It is clear that a lot more needs to be learned about

the interactions of B. canis and B. ovis with host cells and

how these interactions influence the progression of canine

and ovine brucellosis.

Programmatic changes in gene expression required

for intracellular survival by the brucellae

BvrRS

A genetic screen for Brucella mutants with decreased

resistance to the antimicrobial cationic peptide polymyxin

B led to the discovery of the two-component regulator

BvrRS in B. abortus [172]. The outer membrane properties

of Brucella bvrRS mutants are considerably altered com-

pared to their parental strains [117], and these mutants are

highly attenuated and exhibit altered intracellular traffick-

ing patterns in cultured macrophages and HeLa cells [172].

These strains also exhibit significant attenuation in exper-

imentally infected mice [172]. BvrRS controls the

expression of the genes encoding the outer membrane

proteins Omp3a and Omp3b [80, 102] as well as yet

undefined genes whose products play a role in proper

acylation of the lipid A component of the LPS (Fig. 2)

[117]. As noted earlier, these latter genes appear to play a

major role in the high level of resistance that Brucella

strains display to killing by cationic antimicrobial peptides.

Altered expression of the omp3a and omp3b genes, in

contrast, does not appear to be linked to this phenotypic

trait or the attenuation of Brucella bvrRS mutants in mice

[118]. Proteomic analysis suggests that numerous other

Brucella genes are also subject to either direct or indirect

regulation by BvrRS [102], but the individual contributions

of these genes to virulence remains to be determined.

From a phylogenetic standpoint, it is notable that the

Brucella BvrRS system is homologous to the Agrobacte-

rium ChvIG and Sinorhizobium ChvI/ExoS two-component

regulators. These regulators control expression of genes
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whose products make the modifications of the cell envelope

required for the wild-type interactions of Agrobacterium

[34] and Sinorhizobium [36] strains with their plant hosts.

The environmental stimuli recognized by the Brucella BvrS

have not been reported, but studies indicate that ChvG

senses acidic pH in Agrobacterium tumefaciens [111]. If the

same is true for the Brucella BvrS, it is easy to envision the

potential benefit of such a regulatory link for the brucellae

in successful adaptation to their intracellular niche.

VjbR and BlxR

Cell-to-cell communication via the process known as

‘‘quorum sensing’’ has been shown to be important for the

successful adaptation of many bacteria to changing envi-

ronmental conditions [189]. This process is also critical for

the virulence of many bacterial pathogens [30] and the

successful establishment of symbiotic relationships [161].

Brucella strains produce an acyl-homoserine lactone

(AHL)-type signaling molecule (C12-HSL) [180]. LuxR-

type transcriptional regulators respond to AHL in bacterial

quorum sensing systems [189], and two of these tran-

scriptional regulators have been identified in Brucella.

VjbR [51] controls expression of the virB operon, flagellar

biosynthesis genes and genes encoding several outer

membrane proteins [184], and vjbR mutants exhibit atten-

uation in cultured macrophages, HeLa cells and experi-

mentally infected mice [9, 51]. Another LuxR-type

regulator, designated BlxR [147], has also been shown to

play a role in the regulation of the virB and flagellar bio-

synthesis genes, but comparative studies in mice indicate

that the loss of VjbR has a much more dramatic effect on

the virulence of B. melitensis 16M than does loss of BlxR.

As the authors of this study point out, these findings sug-

gest that although VjbR and BlxR are both LuxR homo-

logs, they do not perform functionally redundant roles in B.

melitensis 16M [147].

Rsh

Bacteria can undergo a global change in gene expression

known as the stringent response when they are faced with

severe nutrient deprivation [89]. In response to nutrient

deprivation, bacteria produce the alarmone guanosine 30,50-
bispyrophosphate (ppGpp) via the activity of the ppGpp

synthetases RelA or SpoT. This alarmone, in turn, binds to

RNA polymerase and changes the efficiency with which it

recognizes promoter sequences, leading to reduced

expression of genes encoding components of the transla-

tional machinery and increased expression of amino acid

biosynthetic genes and other genes required for adjusting

the cells metabolism to a maintenance mode [116]. Bru-

cella strains produce a single ppGpp synthetase (designated

Rsh for RelA/SpoT homolog), and studies have shown that

Brucella rsh mutants quickly lose viability when subjected

to nutrient deprivation in vitro and are attenuated in cul-

tured macrophages, HeLa cells and experimentally infected

mice [55, 99]. These experimental findings suggest that the

stringent response plays a key role in the successful

adaptation of the brucellae to the nutritional deprivation

they encounter during intracellular residence in the host.

Notably, nutritional deprivation appears to be an important

environmental stimulus for induction of the genes encoding

the virB genes [24], and the presence of Rsh is required

optimal expression of these genes in B. melitensis 16M

[55].

Hfq and sRNAs

Small regulatory RNAs (sRNAs) play an important role in

regulating the expression of a wide variety of bacterial

genes [177]. They perform this function predominantly by

interacting with mRNAs and facilitating or interfering with

the translation of these transcripts and/or accelerating or

delaying their degradation by cellular RNases. Many of

these sRNAs have limited complimentarity with their

mRNA targets and require the participation of the RNA

chaperone Hfq for efficient interaction with these tran-

scripts [186]. A B. abortus hfq mutant exhibits increased

sensitivity to multiple environmental stresses compared to

the parental 2308 strain and is attenuated in cultured

murine and human macrophages and experimentally

infected mice [20, 152]. A B. melitensis hfq mutant is also

attenuated in pregnant goats [154] and mice and non-

human primates (M. J. Nikolich, personal communication).

These experimental findings suggest that sRNAs play an

important role in controlling the expression of genes

required for successful adaptation of the brucellae to their

intracellular niche in the host. Genetic and proteomic

studies have linked Hfq to the wild-type expression of

sodC [71, 74] and several other genes known to be required

for the virulence in B. abortus 2308 ([155]; Gaines and

Caswell, unpublished). The nature of the regulatory links

between Hfq and these genes and the identity of the sRNAs

involved is presently under investigation.

NolR, MucR and the LOV domain histidine kinase

The a-proteobacteria employ similar strategies to establish

and maintain sustained interactions with their eukaryotic

hosts, and as noted earlier for BvrRS, homologous regula-

tory systems appear to be responsible for proper expression

of the bacterial genes required for these interactions. A

couple of other examples of these shared regulatory net-

works have recently been discovered. NolR is a transcrip-

tional regulator that controls the expression of nodulation
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genes in Sinorhizobium meliloti [35]. A targeted mutational

analysis of genes predicted to encode transcriptional regu-

lators in B. melitensis 16M has shown that a NolR homolog is

required for wild-type expression of the virB genes and the

virulence of this strain in cultured murine macrophages,

HeLa cells and mice [81]. The transcriptional regulator

MucR provides a regulatory link between exopolysaccharide

synthesis and motility in S. meliloti [11], and insertion of the

mariner transposon Himar1 into a mucR homolog in B.

melitensis 16M severely attenuates this strain in macro-

phages and mice [194].

A histidine kinase carrying an LOV (light, oxygen or

voltage) domain has recently been identified in Brucella

strains [178]. Biochemical studies indicate that this protein

is responsive to light, and genetic studies have shown that

B. abortus strains lacking this protein or carrying a mutated

version of the protein that is not light-responsive are

attenuated in the murine J774 macrophage-like cell line.

Because of their close association with the host, it is

unclear when exposure to blue light would be a relevant

environmental stimulus. One proposition that has been put

forth is that this exposure may take place when the bru-

cellae are expelled into the environment in the infected

placenta, and this exposure may stimulate the expression of

Brucella genes important for colonizing a newly infected

host [178].

Summary

The capacity of Brucella strains to successfully survive and

replicate in host cells is critical to their virulence. The

brucellae employ several strategies to establish and main-

tain persistent intracellular residence in host cells. These

bacteria are able to avoid a full blown inflammatory

response during the initial stages of infection. Once the

brucellae enter into host cells they proactively influence the

intracellular trafficking of the membrane-bound compart-

ments within which they reside so that these vacuoles avoid

becoming ‘‘phagolysosomes.’’ After the brucellae reach the

vacuolar compartments within which they maintain their

intracellular residence, they are well equipped from a

physiologic standpoint to withstand the environmental

stresses they encounter. These bacteria also appear to

exploit some of the environmental stresses they encounter

(e.g., acidic pH and nutrient deprivation) as stimuli for the

induction of genes required for alteration of their intra-

cellular trafficking. Finally, the intracellular brucellae alter

the biological functions of the professional phagocytes

within which they reside in such a manner that these cells

lose their antigen-processing capacity and in the case of

macrophages, become resistant to apoptosis.

Many of the cell components and strategies that the

brucellae employ to successfully adapt to their intracellular

lifestyle and produce chronic infections in the host appear

to be same as those employed by other a-proteobacteria to

establish and maintain prolonged infections of their plant

and animal hosts [16]. Recent comparative studies with the

closely related bacterium Ochrobactrum anthropi also

provide insight into evolutionary pathways that the bru-

cellae have followed to improve their adaptation to the

specific challenges associated with their prolonged resi-

dence in mammalian cells [15]. Continued efforts to better

understand how these remarkable intracellular pathogens

have adapted to their intracellular niche will undoubtedly

provide us with critical information that is needed for the

rational design of better vaccines and chemotherapy for use

against brucellosis in both natural hosts and in humans.
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140. Porte F, Liautard JP, Köhler S (1999) Early acidification of

phagosomes containing Brucella suis is essential for intracel-

lular survival in murine macrophages. Infect Immun 67:4041–

4047

141. Porte F, Naroeni A, Ouahrani-Bettache S, Liautard JP (2003)

Role of the Brucella suis lipopolysaccharide O antigen in

phagosomal genesis and in inhibition of phagosome-lysosome

fusion in murine macrophages. Infect Immun 71:1481–1490

142. Posey JE, Gherardini FC (2000) Lack of a role for iron in the

Lyme disease pathogen. Science 288:1651–1653
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162. Sangari FJ, Agüero J (1996) Molecular basis of Brucella path-

ogenicity: an update. Microbiologia 12:207–218

163. Sangari FJ, Seoane A, Rodrı́guez MC, Agüero J, Garcı́a Lobo
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