
&p.1:Abstract Molecular components of basal lamina, such
as laminin, stimulate the differentiation of skeletal mus-
cle cells in culture, while interstitial matrix components
such as fibronectin are inhibitory. However, the role of
extracellular matrix (ECM) molecules in muscle cell dif-
ferentiation in the embryo is less well understood. As a
first step toward understanding the role of the ECM in
embryonic myogenesis, the localization of basal lamina
molecules in the mouse limb bud before and during mus-
cle cell differentiation was determined by immunofluo-
rescence. Laminin, collagen type IV and nidogen (entac-
tin) were concentrated in myogenic regions of the limb
bud both before and during differentiation of skeletal
muscle cells. Punctate immunofluorescence for basal
lamina molecules was concentrated in dorsal and ventral
premuscle and muscle masses, when compared with oth-
er regions of limb mesenchyme. In contrast, immunoflu-
orescence for fibronectin, an interstitial extracellular ma-
trix molecule, was decreased in premuscle and muscle
masses. These results suggest that basal lamina compo-
nents play an important stimulatory role in early stages
of skeletal muscle differentiation in the developing
mouse limb bud.
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Introduction

Little is known about the role of extracellular matrix
(ECM) in the differentiation of skeletal muscle cells.
However, ECM molecules have significant effects on
myoblasts in culture, and major changes take place in the
ECM of developing muscle during its differentiation in the

embryo. When myoblasts are cultured on a substrate of
laminin-1 – a major adhesive glycoprotein of basal lami-
nae, cell adhesion, migration, division and differentiation
are stimulated (Foster et al. 1987; Öcalan et al. 1988).
However, interstitial ECM components such as fibronectin
and hyaluronic acid inhibit myogenesis (Podleski et al.
1979; Kujawa et al. 1986). A gradual transition occurs in
the ECM surrounding muscle cells early in myogenesis,
from a matrix rich in interstitial molecules to one enriched
in basal lamina components. For example, during the early
phase of muscle differentiation in the chick embryo hind-
limb, interstitial components such as hyaluronic acid and
fibronectin decrease (Toole 1972; Chiquet et al. 1981;
Tomasek et al. 1982), while the basal lamina components
laminin and agrin increase (Godfrey et al. 1988).

To understand the role of basal lamina molecules in
muscle cell differentiation in the embryo, it would be ad-
vantageous to be able to study the regulation of genes en-
coding them. The mouse embryo has unique advantages
for studying the role of ECM molecules in myogenesis, in-
cluding the availability of cloned cDNAs coding for ECM
molecules and the possibility of altering their expression
using transgenic technology. The transition in the composi-
tion of the ECM in early muscle masses has been demon-
strated in chick but not mouse limb bud. The purpose of
this study was to define by immunofluorescence the distri-
bution of ECM components during the development of
muscle in the limb bud of the mouse. This knowledge
should provide a basis for future studies of the expression
and regulation of genes encoding these molecules, and
should aid in understanding the environmental cues that
contribute to muscle cell differentiation in the embryo.

Materials and methods

Antibodies

We used the following antibodies: laminin 1:150 rabbit anti-mouse
EHS laminin-1 (Dr. C. Little, Medical University of South Carolina;
Little et al. 1989); collagen type IV1:150 rabbit anti-mouse (Dr. C.
Little; Little et al. 1989), nidogen1:400 rabbit anti-mouse (Dr. R.
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Timpl, Max-Planck-Institut, Martinsreid, Germany; Paulsson et al.
1986); fibronectin 1:250 goat anti-human (Sigma); myoD1 1:400
rabbit anti-mouse (Dr. H. Weintraub, University of Washington);
myosinmouse monoclonal anti-chicken antibody MF-20 (Bader et
al. 1982; Developmental Studies Hybridoma Bank).

Immunofluorescence

We used our previous method (Godfrey et al. 1988) to visualize an-
tibodies bound to cryostat sections of mouse embryo hindlimbs.
Briefly, sections were fixed 5 min in 2% paraformaldehyde,
blocked 1 h in PBS-BSA (5 mg/ml), indubated 1 h with primary
antibody diluted in PBS-BSA, rinsed, incubated 1 h with secondary
antibody labeled with FITC (rabbit anti-mouse, 1:100, rabbit anti-
goat, 1:150, or rabbit anti-mouse, 1:100), rinsed, and mounted.

Results

Premuscle masses contain punctate deposits of basal
lamina components

To determine the distribution of basal lamina compo-
nents in premuscle masses, immunofluorescence staining
with antibodies against ECM components was performed
using sections of hindlimbs at embryonic day 10 (E10)
and E11.5. Results are shown in Fig. 1. At E10 (panels
on left), laminin (Fig. 1A), collagen type IV (Fig. 1B),
and nidogen (Fig. 1C) were not obviously concentrated
in dorsal and ventral areas of mesenchyme. However,
these basal lamina components appeared to be somewhat
more concentrated in ventral and dorsal (not shown) re-
gions of mesenchyme at E11.5 (to the left of arrows in
Fig. 1B, D and F). This concentration was less apparent
for collagen type IV (Fig. 1D) than for the other basal
lamina components, and took the form of punctate im-
munofluorescence in the regions of limb mesenchyme
that give rise to muscle one day later in development. Fi-
bronectin, however, appeared to be less concentrated in
the premuscle regions than elsewhere in the limb at
E11.5 (left of arrows in Fig. 1H), whereas it was uni-
formly distributed in mesenchyme at E10 (Fig. 1G).
Thus, a higher concentration of basal lamina components
was seen in premuscle regions of developing mouse em-
bryo hindlimb, just as we had previously observed dur-
ing chick embryo limb development.

Basal lamina components
are concentrated in muscle masses

Muscle cells in the mouse embryo hindlimb begin to dif-
ferentiate in dorsal and ventral muscle masses at E12. At
this stage, laminin, a basal lamina glycoprotein, was

found concentrated in a punctate distribution in muscle
masses (Fig. 2A). The muscle-specific transcription fac-
tor myoD1 first appeared in cells of dorsal and ventral
muscle masses at this stage (Fig. 2B), showing that mol-
ecules that direct myogenic differentiation were ex-
pressed. At a slightly later stage, E12.5, the concentra-
tion of basal lamina components in the muscle masses
was more apparent. Basal lamina components concen-
trated in the muscle masses included collagen type IV
(Fig. 3A, F), laminin (Fig. 3E), and nidogen (Fig. 3G).
Myogenic differentiation was more advanced, as shown
by the appearance of myoD1 (Fig. 3C), myosin (Fig. 3D)
and desmin (not shown). In contrast to the basal lamina
components, the interstitial ECM molecule fibronectin
was less concentrated in muscle masses than in sur-
rounding regions of mesenchyme (Fig. 3B, H). Thus,
when myogenic differentiation begins in the muscle
masses of the mouse embryo limb bud, these regions
contain a higher concentration of basal lamina compo-
nents and a lower concentration of interstitial ECM com-
ponents than the surrounding mesenchyme.
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Fig. 1A–H Premuscle masses (arrows, right panels) contain
punctate immunofluorescence for basal lamina molecules. Mouse
embryos were cut in cross-section at the level of the hindlimb bud.
Panels on left are from E10 embryos; those at right are from
E11.5. In all micrographs, ventral is down, proximal to the left,
and distal to the right (arrowheadsblood vessels). A, B Laminin.
C, D Collagen type IV. E, F Nidogen (entactin). G, H Fibronectin.
Bar 50 µm&/fig.c:

Fig. 2A, B Laminin is concentrated in limb premuscle masses
early in myogenesis (E12). Cross-sections of embryo (longitudinal
sections of hindlimb bud) were stained with antibodies against
laminin (A) and myo D1 protein (B), which first appears in limb at
this stage. Dorsal (at top) and ventral premuscle masses indicated
by arrows in A. Bar 100 µm&/fig.c:
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Discussion

We found that basal lamina components were concentrat-
ed in both premuscle and muscle masses of the mouse
embryo hindlimb bud, while the interstitial matrix com-
ponent fibronectin was reduced in these regions com-
pared to surrounding mesenchyme. These results parallel
those seen in chick embryo limb development (Godfrey
et al. 1988; Solursh and Jensen 1988), and suggest that
basal lamina molecules play a stimulatory role in skeletal
muscle cell differentiation in the limb bud, as they do in
culture.

The mesenchyme of the limb bud has a dual origin.
Cells which give rise to connective tissue and cartilage
are derived from the somatopleure, while skeletal muscle
is derived from cells which originate in the dermomyo-
tome of the somites (Christ et al. 1974, 1977, 1983; Che-
vallier et al. 1977). These myogenic precursor cells mi-
grate into the somatopleure just prior to limb bud forma-
tion (Jacob et al. 1978, 1979). In the epithelial somite,
these cells are in contact with the somitic basal lamina
(Christ and Ordahl 1995). During migration into the so-
matopleure and the limb bud, muscle precursor cells en-
counter a complex ECM, which includes punctate depos-
its of laminin and other basal lamina molecules (Godfrey
et al. 1988). However, these cell-ECM interactions do
not cause terminal differentiation into myoblasts. Per-
haps the myogenic precursor cells are not competent to
respond to differentiation signals from the matrix during
these early stages. Alternatively, the somitic basal lamina
and the ECM through which they migrate contain mole-
cules such as fibronectin, which may inhibit myogenic
differentiation of these cells (Podleski et al. 1979).

Interaction of muscle cell precursors with the ECM,
and the composition of the ECM with which they inter-
act, are important determinants of myogenic differentia-
tion. The interstitial ECM components, hyaluronate and
fibronectin, inhibit fusion and differentiation of myo-
blasts in culture (Toole 1972; Podleski et al. 1979). How-
ever, hyaluronate stimulates migration of myogenic pre-
cursor cells in the limb bud (Krenn et al. 1991). The low-
er concentration of fibronectin in muscle masses in the
limb bud probably reflects less fibronectin synthesis by
myogenic cells than by other limb mesenchyme cells
(Tomasek et al. 1982). Basal lamina components, partic-
ularly laminin, stimulate myogenesis in culture. Lami-
nin-1 stimulates the adhesion, spreading, motility, and
proliferation of rat and mouse myoblasts (Foster et al.
1987; Öcalan et al. 1988). The predominant form of lam-
inin in fetal and adult mouse skeletal muscle is merosin
or laminin-2 (Leivo and Engvall 1988; Schuler and Soro-
kin 1995; Vachon et al. 1996). Both laminin-1 and mero-
sin stimulate proliferation and differentiation of skeletal

muscle cells, but merosin stabilizes myotubes while lam-
inin-1 does not (Vachon et al. 1996). The antibodies used
in this study were made against laminin-1, but since me-
rosin (laminin-2) shares 2 of its 3 polypeptide chains
with laminin-1, we cannot determine whether the lami-
nin immunoreactivity we observed in premuscle and ear-
ly muscle masses was due to one or both isoforms. How-
ever, we hypothesize that basal lamina molecules, in-
cluding laminin isoforms, stimulate terminal differentia-
tion of muscle cells in limb muscle masses in the em-
bryo, as they do in culture.

The increase of basal lamina components in premus-
cle masses may be one of the first steps in the myogenic
differentiation program. In fact, it precedes the appear-
ance of the myoD1 protein. Expression of the myoD1
gene, which encodes a DNA-binding protein that acti-
vates muscle-specific genes, is an early step in the myo-
genic program (Sassoon et al. 1989). In the mouse em-
bryo limb, a related gene, myf-5, is expressed earlier, at
E10.5 (Ott et al. 1991), about the time that increased ex-
pression of basal lamina molecules is first seen in pre-
muscle regions. While it is unclear whether the change in
the expression of basal lamina components precedes or
follows the expression of myf-5, a causal connection is
possible. In this regard, it would be interesting to exam-
ine the distribution of ECM components in the limbs of
transgenic mice in which expression of myoD1 and/or
myf-5 has been eliminated (Braun et al. 1992; Rudnicki
et al. 1992). The change in extracellular matrix composi-
tion of differentiating muscle masses may be both a
cause and an effect of activation of genes specifying
myogenic differentiation.
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