
&p.1:Abstract Most craniofacial membrane bones are de-
rived from neural crest (NC) cells. Interaction between
NC cells and epithelium, and cellular condensation, are
two major events that lead NC cells to become osteo-
blasts that deposit membrane bone. Unlike endochondral
bone, membrane bone formation is not preceded by car-
tilage formation in normal development. However, chon-
drogenic potential in membrane bone is evidenced by
several cartilage-associated phenomena in vivo. Further-
more, in vitro, periosteal cells of some membrane bones
express cartilage phenotype gene products and even dif-
ferentiate into chondrocytes. Hence, membrane bone pe-
riosteal cells can undergo chondrogenic differentiation.
The precursor of chondrogenic cells in membrane bone
is not clear: chondrocytes were proposed to arise from
unipotential chondroprogenitor cells, bi- or multipoten-
tial progenitor cells, or differentiated osteogenic cells.
There is experimental support for each, but studies on
clonal and cell cultures provided more support for a
common precursor of both chondro- and osteogenic
cells. Moreover, in periostea, chondrogenesis probably
arises from a differentiated cell type. Membrane bone
formation in periostea may include a transient cell stage
that is able to undergo both osteo- and chondrogenesis.
Osteogenesis would be the normal pathway, but chondro-
genesis can be evoked in certain microenvironments. It is
not known whether microenvironmental factors trigger
chondrogenesis through a universal molecular mecha-
nism, nor is the molecule that triggers chondrogenesis
known. Expression of neural cell adhesion molecule
(NCAM) is down-regulated during commitment of pe-
riostal cells for secondary chondrogenesis, suggesting a
possible regulatory role for NCAM in the alternative dif-
ferentiation pathways of periosteal cells.
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Introduction

Higher vertebrate skeletons are formed by either endo-
chondral or intramembranous bones. Endochondral
bones include most of the axial and appendicular skele-
ton as well as some bones at the base of the skull. They
form through endochondral ossification in which mesen-
chymal cells first develop into a cartilaginous template
through precartilaginous condensation. The cartilage hy-
pertrophies, is destroyed by vascular invasion and re-
placed by trabecular bone and bone marrow. Periosteum
replaces the perichondrium adjacent to hypertrophic car-
tilage and osteogenesis is initiated to form lamina bone
in the diaphyses of long bones (Scott-Savage and Hall
1980). Intramembranous bones, also called membrane
bones, are flat and mostly seen in the cranial vault and
facial region. They develop directly from mesenchyme
without an intermediate cartilaginous phase in normal
development.

The outer layer of the periosteum is fibrous, contain-
ing fibroblasts and abundant collagen fibers. It provides
attachment for bone to tendons, ligaments and muscles.
Its inner cambial layer contains cells at different stages
of osteogenesis (Scott-Savage and Hall 1980). Osteogen-
ic differentiation in a periosteum is a multi-step process
during which cells progressively increase expression of
osteogenic markers, and decrease proliferation (Stein et
al. 1990, 1996). In periostea, osteogenesis starts from os-
teoprogenitor cells which differentiate sequentially into
preosteoblasts, osteoblasts, and osteocytes.

Osteoprogenitor cellsare fibroblast-like and undergo
proliferation and renewal. However, they do not express
osteogenic markers, making their identification difficult
(Aubin et al. 1993). Preosteoblastsexpress alkaline
phosphatase (APase) and some other osteogenic markers
and undergo mitosis, but do not secrete bony matrix
(Nijweide et al. 1988; Bruder and Caplan 1990; Aubin et
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al. 1993). Osteoblastsare cuboidal cells lining the bone
matrix front. They actively secrete bony matrix with type
I collagen as a major organic component. Osteoblasts ex-
hibit strong APase activity, and express other osteogenic
markers such as osteocalcin, osteopontin, osteonectin
and bone sialoprotein (Rodan and Noda 1991; Aubin et
al. 1993). Osteoblasts differentiate into osteocytes em-
bedded in bony matrix. Hence, the periosteum is highly
heterogeneous and contains cells in all transitional stages
of osteogenic differentiation, as well as fibroblasts.

Because osteogenic markers are expressed in osteo-
genic cells sequentially, individual osteogenic cells may
have different combinations of markers (Guenther et al.
1989; Liu et al. 1994). Moreover, so called osteogenic
markers are not absolutely specific to osteogenic cells,
but are present in other cell types. All the osteogenic
markers listed above have been reported in hypertrophic
chondrocytes (Rodan and Noda 1991; Roach 1992).
Thus, different stages of osteogenic cells are difficult to
distinguish, especially early in differentiation.

Although cell differentiation in periostea has been ex-
tensively studied, many questions remain. One is the
chondrogenic capacity of membrane bone periostea. It is
well known that in endochondral bone, such as the tibia
and ribs, chondrocytes can arise from periostea. For in-
stance, tibia periosteal cells can differentiate into both
cartilage and bone in high-density culture (Nakahara et
al. 1990a, 1991, 1992; Nakata et al. 1992), or in diffusion
chambers (Nakahara et al. 1990b, 1992). It is suggested
that periostea contain stem cells for both osteogenesis and
chondrogenesis (Caplan 1990), which could explain
chondrogenesis in endochondral bone periostea, since
mesenchyme has undergone precartilaginous condensa-
tion, a prerequisite for commitment of chondrogenic
cells. In contrast, membrane bones arise directly from
mesenchyme that never undergoes precartilaginous con-
densation or cartilage formation in normal development.
For these reasons, several authors have claimed that
membrane bones do not have chondrogenic potential (see
review by Beresford 1981). However, chondrogenic ca-
pacity does exist in membrane bone. In fact, chondrogen-
ic differentiation is important for growth, fracture repair,
and articular cartilage formation in membrane bone. Dur-
ing the past several years, research on chondrogenic phe-
notypes in membrane bone has made remarkable progress
and provided us with a better understanding of membrane
bone. In this paper, we review recent progress in chondro-
genic differentiation from membrane bone and discuss
the precursor(s) of chondrogenic cells, relationships be-
tween osteogenic and chondrogenic cell lineages, and
regulation of chondrogenesis in membrane bone.

Embryonic origin and commitment
of membrane bone cells

Most of the craniofacial skeleton is of neural crest (NC)
cell origin (Le Lièvre and Le Douarin 1975; Noden
1975, 1978; Le Lièvre 1978; Couly et al. 1993; Le Dou-

arin et al. 1993). The NC is a group of cells located at
the boundary between neural plate and epidermis in neu-
rula stage embryos. NC cells give rise to diverse cell
types, including neurons and glia of ganglia, adrenal me-
dulla cells, pigment cells, bone and cartilage cells,
odontoblasts, smooth muscle and loose connective tissue
cells (Bronner-Fraser 1993; Le Douarin et al. 1993).

All facial membrane bones, including the mandible,
the quadratojugal (QJ) and their secondary cartilage, are
derived from NC (Noden 1975, 1978, 1988; Le Lièvre
1978; Couly et al. 1993; Le Douarin et al. 1993; Köntges
and Lumsden 1996). NC also contributes to the skull.
The frontal and parietal bones of the skull, previously
believed to be of both NC and mesodermal origin (No-
den 1975, 1978, 1988; Le Lièvre 1978), were recently
found to arise entirely from NC cells (Couly et al. 1993;
Le Douarin et al. 1993).

NC cells from different regions along the anterior-pos-
terior axis of the neural tube migrate along characteristic
pathways and reach specific sites, where they differenti-
ate into distinct cell types. For instance, to form the man-
dibular skeleton of the embryonic chick, the presumptive
mandible NC cells detach from epithelium of the mesen-
cephalon at HH (Hamburger and Hamilton 1951) stage
8.5 (28 h of incubation) and reach the mandibular arch at
HH stage 15 (52 h of incubation). They accumulate in the
mandibular arch and differentiate into either Meckel’s
cartilage at HH stage 25–26, or into membrane bones at
stage 31 (Tyler and Hall 1977; Hall 1978). In order to
generate a skeletal element, NC cells undergo two major
events: tissue interaction (Bee and Thorogood 1980; Hall
1991, 1992; Le Douarin et al. 1993) and skeletal conden-
sation (Hall and Miyake 1992, 1995).

Interaction of NC with epithelium is crucial for com-
mitment to a skeletal cell fate (Langille 1994). Isolated
premigratory NC cells from early chick embryos do not
differentiate into bone or cartilage in organ culture, but
form bone or cartilage when combined with epithelium
(Bee and Thorogood 1980; Hall 1991, 1992). The mecha-
nism of tissue interaction is not fully understood. Growth
factors may instruct NC cells to generate diverse fates
(Hall and Ekanayake 1991; Hall 1992). For instance, a
TGF-β superfamily protein, bone morphogenetic protein-
2 (BMP-2), induces neurogenesis from NC cells in vitro,
while TGF-β1, another member of the same superfamily,
promotes smooth muscle differentiation (Shah et al.
1996). During skeletogenesis, a number of molecules
have been suggested as putative signalling molecules sent
from epithelium to mesenchyme during tissue interaction.
These include epithelial growth factor (EGF; Hall 1992),
BMP-2 and -4 (Bennett et al. 1995; Ekanayake and Hall
1997), transforming growth factor-α (TGF-α; Huang et
al. 1996), ET-1 protein (Richman and Mitchell 1996), and
serotonin (Moiseiwitsch and Lauder 1997).

After NC cells arrive at the presumptive sites of a
skeletal element, they form a cellular condensation, ei-
ther by undergoing increased mitotic activity (Fyfe and
Hall 1983; Hall and Miyake 1992) or by cellular aggre-
gation (Thorogood and Hinchliffe 1975; Ede 1983).
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Condensation is both a basic cellular process and a unit
of skeletal morphogenesis through which the overall pat-
tern of a particular element is established (Hall and Mi-
yake 1992, 1995). Timing, location and pattern of a con-
densation are intrinsically controlled by transcription
factors encoded by Hox genes (Erlebacher et al. 1995).
Inactivation or ectopic expression of those specific Hox
genes results in the loss, ectopic addition, or change in
morphology of a particular skeletal element (Erlebacher
et al. 1995; Richman and Mitchell 1996).

There are two kinds of skeletal condensations. Pre-
cartilaginouscondensations develop into primary carti-
lage. Membrane bonecondensations develop into mem-
brane bones (Hall and Miyake 1992, 1995; Dunlop and
Hall 1995). Membrane bone condensation occurs in mes-
enchyme, followed by the appearance of an ossification
center. In chick mandibles, membrane bone condensation
can be visualized with peanut agglutinin lectin at HH
stage 26 (5.75 days; Dunlop and Hall 1995). In the chick
quadratojugal, condensation occurs by day 7 (Murray
1963). Condensation is critical for overall patterning of a
membrane bone, but osteogenic cell differentiation does
not depend on condensation. In mandibles, mesenchymal
cells express APase – i.e., they become preosteoblasts –
prior to condensation (Dunlop and Hall 1995). Hence, in
mandibular membrane bone, preosteoblasts and not un-
differentiated mesenchymal cells undergo cellular con-
densation. Following condensation, cells further differ-
entiate into osteoblasts, which produce bony matrix and
can be identified histologically as an ossification center.
Finally a membrane bone is formed with a bony core
surrounded by a periosteum.

Evidence for chondrogenic potential
of membrane bones

Chondrogenic phenotype expression from membrane
bone in vivo

Cartilage or the cartilaginous phenotype is seen in mem-
brane bone in vivo under certain circumstances, which
include formation of secondary cartilage in some mem-
brane bones, callus cartilage during fracture repairing,
chondroid bone in developing skull, and cartilaginous
tissue in calcium-deficient embryos.

Secondary cartilage formation

In normal embryonic development, cartilage develops in
some membrane bones. Unlike primary cartilages, which
form from mesenchymal condensation, chondrocytes in
secondary cartilage are derived from periosteal cells. Be-
cause this cartilage appears after bone is established, it is
termed secondary cartilage to distinguish it from primary
cartilage. Secondary cartilage is also called accessory,
adventitious, or embryonic cartilage (Murray 1963; Be-
resford 1981). Secondary cartilages are found in mam-

mals, birds, and fish. In mammals, the mandible devel-
ops secondary cartilages in several locations, but the
number of secondary cartilage sites varies among spe-
cies. In mouse and rat mandibles, secondary cartilage is
seen in the condylar, angular, and coronoid processes
(Beresford 1981; Vinkka 1982). In chick, secondary car-
tilage exists in the quadratojugal, surangular, pterygoid,
squamosal, and palatine bones (Murray 1963). Second-
ary cartilages in chick quadratojugal (Fig. 1) and mam-
malian mandibular condyle have been extensively stud-
ied and characterized.

Since secondary cartilage develops from the periostea
of membrane bones, its cell differentiation differs from
primary cartilage. Beforecommitting to secondary chon-
drogenesis, the periosteum where secondary cartilage
will develop is morphologically identical to other regions
of the periosteum and is undergoing intramembranous
bone formation. However, when commitment to chon-
drogenesis occurs, the periosteum ceases bone formation
and young chondroblasts arise from the periosteum,
which is now a perichondrium (Hall 1979; Fang and Hall
1995). As chondrogenesis continues, hyaline cartilage
appears between the perichondrium and membrane bone.
In chicks, the switch from osteo- to chondrogenesis is
dependent upon biomechanical stimulation generated by
embryonic movement. Secondary chondrogenesis fails to
occur if embryos are paralyzed before cartilage forma-
tion is triggered (Murray and Smiles 1965; Hall 1972,
1979, 1986; Fang and Hall 1995). Therefore, secondary
cartilage formation is a response of membrane bone pe-
riostea to the local mechanical environment. In general,
secondary cartilage functions as: (1) a growth center of
bone, (2) an articular cartilage.

The chick quadratojugal is a membrane bone in the
upper jaw with a slender shaft and a posterior hook (Fig.
1A). The QJ hook articulates with the quadrate (Fig. 1).
During normal development before day 10, the QJ hook
contains a bony core and surrounding periosteum. At day
11, triggered by biomechanical forces between the QJ
and quadrate, the periosteum of the QJ hook on the pos-
terior and anterior sides (not laterally, where force is not
exerted) becomes committed to chondrogenesis (Hall
1972, 1979; Thorogood 1979; Fang and Hall 1995). The
periosteum ceases bone formation, its cells gradually be-
come more rounded, and then produce alcian-blue-posi-
tive extracellular matrix (ECM). Chondroblasts become
distinguishable in embryos after day 12 (Fig. 1; Fang and
Hall 1995). In embryos between days 12 and 14, second-
ary cartilage grows rapidly and some chondrocytes be-
come hypertrophic. From day 15 to 17, blood vessels in-
vade the hook and secondary cartilage is destroyed by
osteoclasts. Meanwhile, new bony tissue forms via endo-
chondral bone formation in the hook. Most secondary
cartilage is replaced by bone via endochondral ossifica-
tion similar to the situation in long bones. However,
some secondary cartilage seems to be transformed di-
rectly into bone (Hall 1972). Consequently, secondary
cartilage formation followed by endochondral bone for-
mation greatly enlarges the QJ hook. Chondrogenesis in
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the QJ ceases around day 15 but resumes after day 17 as
a second phase of secondary chondrogenesis. The carti-
lage from the second phase is distributed along the artic-
ular surface of the hook (Fang and Hall 1995) to be-
comes the fibrous articular cartilage in the QJ-quadrate
joint.

In mouse mandibular condyle, secondary cartilage aris-
es from the periosteum in embryos at day 16 in utero, con-
tributing to elongation of the condylar process through en-
dochondral bone formation and to the articular cartilage in
the squamosomandibular joint (Livne and Silbermann
1990). In the condyle of a neonatal mouse or in other
mammals, several distinct cell layers exist. From the arti-
cular surface inwards they are: (1) fibrous cells, (2) pro-
genitor cells, (3) chondroblasts, (4) chondrocytes, and (5)
hypertrophic chondrocytes. The progenitor cell layer is
mesenchyme-like and undergoes active cell proliferation
(Livne et al. 1990; Livne and Silbermann 1990), which is
enhanced by mechanical stimulation (Kantomaa et al.
1994). From progenitor cells to hypertrophic chondrocytes
is a dynamic process of secondary chondrogenesis, during
which cells gradually enlarge and become hypertrophic
(Landesberg et al. 1995). The hypertrophic chondrocytes
undergo resorption and endochondral ossification. Sec-

ondary cartilage formation in the condyle gradually ceases
as the animal matures. A thin layer of secondary cartilage
remains in the adult condyle as fibrous articular cartilage
(Livne and Silbermann 1990).

Unlike avian secondary cartilage, cartilage formation
in rodent mandibular processes can be initiated without
biomechanical stimuli (Glasstone 1971; Herring and La-
kars 1981; Vinkka-Puhakka and Thesleff 1993). Howev-
er, maintenanceof secondary cartilage in rodents re-
quires mechanical stimulation. When fetal condyles are
grown in organ culture, removed from mechanical stimu-
li, already-formed secondary cartilage gradually disap-
pears and the progenitor cell layer, which previously
gave rise to chondroblasts, switches to osteogenesis
(Strauss et al. 1990; Ben-Ami et al. 1993). Finally the
secondary cartilage is replaced by bone in cultured con-
dyles. The contractile forces generated by masticatory
muscles seem to be a major biomechanical stimulus ex-
erted on the condyle (Takahashi 1991; Takahashi et al.
1995). Hyperactivity of the lateral pterygoid muscle
leads to the disappearance of secondary cartilage in con-
dyles of young rats. Instead, intramembranous bone for-
mation takes place from the progenitor layer of the peri-
osteum (Takahashi 1991; Takahashi et al. 1995).

Cartilage formation during fracture healing

In certain circumstances, chondrogenesis is evoked in
membrane bone where cartilage development is normally
not seen. One such situation is during fracture healing. It
is well known that repairing fractured long bones in-
volves the formation of cartilage that bridges the gap at
the fracture site (McKibbin 1978). The cartilage is then
replaced by bony tissue through endochondral ossifica-
tion. Several investigators have reported the absence of
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Fig. 1A, B Secondary cartilage in the avian quadratojugal. A An
illustration of the chick head showing the position of the quadrato-
jugal and its articulation with the quadrate. Arrow indicates the
joint of the quadratojugal hook and the quadrate. B Histological
section of the quadratojugal and quadrate joint in a 13-day chick
embryo. Secondary cartilage (sc) forms at anterior and posterior
sides of the quadratojugal (QJ) hook. The QJ hook articulates with
the quadrate (QT), which appears as a primary cartilage at this de-
velopmental stage. Osteogenesis continues in the QJ shaft (arrow-
heads) and at the tip of the hook (asterisk). Section was stained
with HBQ (Hall and Brunt’s quadruple stain). Cartilage is blue
and bone red. Bar 100 µm&/fig.c:



cartilage during membrane bone fracture healing (Rich-
any et al. 1963; Radden and Fullmer 1969; Alberius and
Johnell 1991), but cartilage was observed by many other
researchers in repair of mammal and bird membrane
bones (Girgis and Pritchard 1958; Craft et al. 1974; Hall
and Jacobson 1975; Granström and Nilsson 1987; Pre-
cious and Hall 1994). It seems that whether chondrogen-
esis occurs in membrane bone fracture healing is depen-
dent on environmental conditions at fracture sites. Favor-
able conditions may include poor vascular supply or low
oxygen tension (Girgis and Pretchard 1958; Henricson et
al. 1987; Alberius and Johnell 1991). Interestingly, in the
fracture site where chondrogenesis was not found, some
cartilaginous macromolecules were detected (Alberius
and Johnel 1991).

Callus cartilage cells in membrane bone repair may
arise from periosteal cells. If the periosteum is removed
before fracture occurs, cartilage nodules fail to form in
the blastema, suggesting the periosteal origin of these
chondrocytes (Hall and Jacobson 1975). Periosteal cells
at the fracture site divide to form the blastema and differ-
entiate into chondroblasts and chondrocytes to form car-
tilage nodules. They become hypertrophic and are re-
placed by bone through endochondral ossification later.

Condroid bone

Another cartilaginous phenotype is chondroid bone in
some developing membrane bones. Chondroid bone re-
fers to tissues which have characteristics of both bone
and cartilage. The earliest description of such tissue was
by Schaffer in 1888, but its definition is sometimes con-
fusing because of the variety of histological features and
terminology used (Beresford 1981; Taylor et al. 1994).
Typically, chondroid bone was described as intermediate
between bone and cartilage (Hall 1978).

Chondroid bone was observed in some developing
membrane bones, such as cranial, lower facial and man-
dibular bones (Goret-Nicaise and Dhem 1982; Goret-
Nicaise 1984; Goret-Nicaise et al. 1988; Lengelé et al.
1990, 1996). This tissue has cartilaginous cells that are
larger than osteogenic cells and which express some
chondrogenic markers such as type II collagen (Goret-
Nicaise 1984), but its ECM appears bone-like with meth-
ylene blue staining (Lengelé et al. 1990, 1996) and con-
tains type I collagen.

Chondroid bone often appears when membrane bones
are undergoing fast growth (Lengelé et al. 1990). It does
not become a genuine cartilage and is absent from adults.
It remains unclear whether chondroid bone transforms to
a bony tissue, is replaced by membrane bone, or persists.
Goret-Nicaise (1984) claimed that chondroid bone is not
transformed into bone and believed that it was replaced
by membrane bone. However, replacement must involve
resorption of chondroid bone, followed by osteogenesis.
Evidence for resorption remains to be seen.

Since intramembranous bone is not preceded by carti-
lage, chondroid bone apparently does not represent a tis-

sue transforming from cartilage to bone. Lengelé et al.
(1996) considered it a distinct tissue type and an initial
modality of skeletogenesis in membrane bones. Hence,
chondroid bone may represent a special differentiation
status during membrane bone development in which cells
express both cartilaginous and bony characteristics. The
significance of condroid bone is not well understood. The
presence of this tissue in many fast growth sites of the fe-
tal skull, and its later disappearance, indicate an adapta-
tion to the rapid growth of membrane bone.

Cartilage formation in calcium-deficient embryos

Using long-term culture of shell-less chick embryos to
deplete the calcium supply, Tuan and colleagues demon-
strated that calcium deficiency resulted in chondrogenic
phenotypic expression in intramembranous bones (Tuan
and Lynch 1983; Jacenko and Tuan 1986, 1995; Jacenko
et al. 1995). Chick calvaria are typical intramembranous
bones, but in calcium-deficient embryos they produce
cartilaginous ECM characterized by type II collagen and
positive alcian blue staining (Jacenko and Tuan 1986,
1995; Jacenko et al. 1995). Furthermore, genuine carti-
lage was found in calvaria of organ cultures in low calci-
um medium (Jacenko and Tuan 1995) and in undermin-
eralized regions of calvaria of both normal and calcium-
deficient embryos. These results demonstrate that calvar-
ial bones do have chondrogenic potential that is inhibited
in normal embryos but can be induced. Furthermore,
since cartilage was found in organ cultures of calvaria af-
ter its periosteum was removed, it seems that chondro-
genic potential exists in the cells in the center of the
membrane bone.

Expression of chondrogenic markers
in developing intramembranous bones

Absence of cartilage formation is a significant character-
istic of intramembranous bone formation. However, gene
products of the chondrogenic phenotype have been de-
tected during the development of intramembranous bones
in vivo. McDonald and Tuan (1989) reported that, in
chick calvaria of normal embryos, type II collagen
mRNA α1(II) was detected by in situ hybridization. Ting
et al. (1993) investigated expression of several skeletal
matrix genes during intramembranous bone formation in
rat alveolar bone. They found that two cartilage genes,
α1(II) of type II collagen and α1(IX) of type IX collagen,
appeared during intramembranous bone development. At
the protein level, Jacenko and Tuan (1986) found above-
background levels of type II collagen immunostaining in
the calvarium. Hence, membrane bone formation actually
involves expression of some genes associated with the
cartilaginous phenotype. There are two kinds of procolla-
gen II mRNA from differential splicing during transcrip-
tion (Sandell et al. 1991). They differ in either including
(type IIA) or excluding (type IIB) exon 2 of α1(II) gene.
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Type IIA is seen in prechondrocytes as well as in some
non-cartilage cells during development, such as in mesen-
chymal cells, notochord, and spinal ganglion, while type
IIB is found only in mature chondrocytes (Sandell et al.
1991; Sandell 1994; Hughes et al. 1995). It remains to be
demonstrated whether both types, or only type IIA, are
expressed in membrane bone. Similarly, type IX collagen
has two kinds of mRNA. Membrane bone expresses only
the truncated form of α1(IX), which lacks exon 1–7,
while hyaline cartilage expresses the entire α1(IX) (Ting
et al. 1993). The significance of type II and IX expression
in membrane bone is not clear. Since α1(IX) is expressed
only in preosteoblasts, Ting et al. (1993) considered
expression of type II and IX collagen as an early pheno-
typic feature of osteoblast differentiation and postulated
that a switch in two kinds of α1(IX) mRNA transcription
may be associated with the phenotypic switch between
osteogenesis and chondrogenesis.

Chondrogenic phenotype of membrane bone
periosteal cells cultured in vitro

The above in vivo data provide evidence of chondrogenic
potential in membrane bones, but chondrogenesis occurs
only in certain circumstances. Can calls isolated from
membrane bone undergo chondrogenic differentiation?
In vitro cell culture not only provides insights into osteo-
and chondrogenic cell differentiation that would illumi-
nate their in vivo counterparts, but also allows manipula-
tion of cells by various cellular and molecular tech-
niques.

Expression of cartilage phenotypic genes
in cultured calvarial cells

Periosteal cells sequentially digested from calvaria pro-
vide an extensively studied model for skeletal cellular
and molecular biology (Wong and Cohn 1974; Aubin et
al. 1993). The periosteal cells are a mixture of heteroge-
neous cell types that include fibroblasts, osteoprogenitor
cells, preosteoblasts, osteoblasts, and young and mature
osteocytes. When plated in monolayer culture, periosteal
cells form mineralized bone nodules (Nefussi et al. 1985;
Bellows et al. 1986; Bhargava et al. 1988). Each bone
nodule is believed to arise from a single osteoprogenitor
cell (Bellows and Aubin 1989). However, studies on col-
lagen synthesis in chick calvarial periosteal cells show
that, at the beginning of culture, the predominant colla-
gens are osteogenic (type I and V collagens). After 14
days, type II and X collagens are expressed at high levels
(Berry and Shuttleworth 1989). Since type II collagen is
a marker for cartilage, and type X is a collagen associat-
ed with hypertrophic chondrocytes (Gibson and Flint
1985; Schmid and Linsenmayer 1985a, b), it seems that
calvarial cells can express some chondrogenic markers in
monolayer culture. However, further expression of the
chondrogenic phenotype seems to be limited by the more

predominant osteogenic pathway in cultured calvarial
cells and, therefore, they do not further differentiate to
chondrocytes.

Chondrogenesis from membrane bone periosteal cells
in vitro

Calvarial cells do not differentiate into morphologically
recognizable chondrocytes in monolayer culture. The on-
ly exception seems to be the calvarial cells from rat pari-
etal bone and sutural areas. Those cells can form carti-
lage nodules in vitro in the presence of dexamethasone
(Bellows et al. 1989). However, as rat parietal bone and
sutural areas contain cartilage tissue, progenitor cells for
chondrocytes may arise from the cartilage (Bellows et al.
1989).

To achieve chondrogenesis from membrane bone in
vitro, various culture conditions and cell subpopulations
of periosteal cells have been tested. The favorite culture
condition for chondrogenesis is to suspend periosteal
cells in agarose or other gels. In this condition, periosteal
cells from membrane bones, such as calvaria (Villanueva
et al. 1989; Jacenko et al. 1995) and quadratojugal (J.
Fang, B.K. Hall, unpublished observation) can differenti-
ate into chondrocytes. Agarose culture forces cells into a
round shape that is a permissive condition for chondro-
genic phenotype expression (Benya and Shaffer 1982).

Since periosteal cells are heterogeneous, it was postu-
lated that certain subpopulations may have higher chon-
drogenic potential. By separating cell subpopulations of
calvarial cells, Wong and Tuan (1992, 1995) achieved
chondrocytes in monolayer culture. In their studies, cal-
varial cells were fractionated by Percoll gradient iso-
pycnic centrifugation into six fractions and plated in
monolayer culture. One subpopulation, fraction F, is po-
lygonal in shape at the beginning of culture and becomes
rounded with a highly refractile ECM by day 12, a typi-
cal chondrocyte morphology. Type II collagen immuno-
staining and alcian blue staining confirm that they are
chondrogenic (Wong and Tuan 1992, 1995). Thus, this
subpopulation of calvarial cells exhibits high chondro-
genic potential and fully expresses the chondrogenic
phenotype in monolayer culture. Other fractions are fi-
broblast-like in culture and do not show chondrogenic
capacity. Furthermore, fraction F can enhance chondro-
genesis of limb mesenchymal cells while other cell frac-
tions inhibit it (Wong and Tuan 1995). Thus, it is pro-
posed that chondrogenesis is inhibited by other cell sub-
populations in calvaria in vivo and in unfractionated cal-
varial cells in vitro (Wong and Tuan 1995). Their work
demonstrates the chondrogenic capacity of calvarial peri-
osteal cells and provides a possible regulatory mecha-
nism for chondro- and osteogenic differentiation.

Overt chondrogenesis was not previously obtained in
unfractionated calvarial cells in monolayer culture, but
recently it was achieved in cell culture of QJ periosteal
cells (Fang and Hall 1996b). The shaft of the quadratoju-
gal is membrane bone. Secondary cartilage only appears
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in the QJ hook. However, if the intact shaft is cultured
submerged, chondrocytes differentiate from periosteal
cells (Thorogood 1979), indicating the chondrogenic ca-
pacity of QJ periosteum. Recently, we demonstrated that
enzymatically released QJ periosteal cells have high
chondrogenic potential (Fang and Hall 1996b). QJ peri-
osteal cells were released from the QJ shafts with colla-
genase and trypsin and plated at various densities. Chon-
drocyte colonies appeared in day 7–8 cultures in low
density. These cells are typical chondrocytes in morphol-
ogy (rounded shape and refractile ECM) and express
chondrogenic markers such as type II collagen and sul-
fated proteoglycan (Fig. 2). Thus, chondrocytes can be
achieved from membrane bone periosteal cells in prima-
ry monolayer culture.

Conclusions

Evidence from in vivo and in vitro studies demonstrates
that membrane bone periosteal cells undergo both osteo-
genic and chondrogenic differentiation. In most circum-
stances, osteogenesis is the predominating pathway, and
chondrogenesis is inhibited. However, chondrogenesis
can be evoked under certain conditions and cartilage for-

mation seems to be an adaptive response of membrane
bone to local microenvironmental stimulation, such as
articular movement for secondary cartilage formation,
bone fracture for callus cartilage, or rapid growth for
chondroid bone development. Cartilage is the only skele-
tal tissue that has active cell division, while osteoblasts
deposit bony ECM but do not divide in vivo (Nijweide et
al. 1988; McCulloch et al. 1990). Accordingly, in the
sites where chondrogenic phenotypes appear – secondary
cartilage, chondroid bone, and fracture healing – rapid
skeletal growth is always required. Based on this, the
significance of chondrogenesis in membrane bones may
be that chondrogenic differentiation achieves a larger
volume of skeletal tissue within a shorter period than
does osteogenesis. This would explain why only small
bones, especially flat bones, can form through intramem-
branous bone formation, while most of the skeleton, es-
pecially long bones, goes through endochondral bone
formation. Intramembranous bone formation retains
chondrogenic potential to meet certain circumstances
when rapid increase of bone volume is demanded.

Progenitor cells and their differentiation

To understand chondrogenesis in membrane bones, it is
necessary to explore the origin of the chondrogenic cells.
One may wonder whether the blood stream provides pro-
genitor cells from marrow stroma since membrane bones
are vascularized and bone marrow stroma contains chon-
droprogentor cells (Berry and Grant 1992). However,
secondary cartilage in the QJ and mandible is derived
from neural crest, not from mesoderm, which gives rise
to bone marrow stroma. Furthermore, that chondrogene-
sis occurs in cultured QJ periosteal cells (Fang and Hall

355

Fig. 2A, B Chondrogenic phenotype in cultured quadratojugal pe-
riosteal cells. The periosteal cells were enzymatically released
from the QJ shafts and plated in low density monolayer culture
(1×104 cells/ml). The cells were cultured for 14 days in Ham’s F-
12 and BGJb (3:1) medium, containing 10% fetal bovine serum
and 150 µg/ml ascorbic acid. A Immunohistochemical staining of
type II collagen; type II collagen was localized in the cytoplasm
and extracellular matrix (ECM) of chondrocytes. B Alcian blue
staining, showing positive staining in ECM of chondrocytes. Bar
40 µm&/fig.c:



1996b) and in intact periosteum (Thorogood 1979) also
indicates a local origin of cartilage cells in periostea.
Hence, for periostea, bone marrow is unlikely to provide
chondroprogenitor cells via the blood stream.

Cells of osteogenic and chondrogenic lineages arise
from mesenchymal stem cells (Marks and Popoff 1988),
but it is unclear whether membrane bone periostea con-
tain such undifferentiated stem cells. Periosteal cells in
intramembranous bones have undergone determination
and commitment to osteogenesis but not to chondrogene-
sis, so what is the precursor for the cartilage cells in pe-
riostea? Chondrogenic cells may arise from: (1) a re-
stricted chondroprogenitor cell population, (2) bipoten-
tial or multipotential stem cells, or (3) osteogenic cells
(Fig. 3). These three possibilities are discussed and re-
viewed below.

Restricted progenitor cells (Fig. 3A)

One possibility is that progenitor cells from neural crest
may become committed to two restricted cell subpopula-
tions in periostea: osteoprogenitor and chondroprogeni-
tor cells. These two subpopulations coexist in the germi-
nal layer of a periosteum, each with a restricted pathway
of differentiation. During intramembranous bone forma-
tion, only osteoprogenitor cells proliferate and differenti-
ate to form bone. Chondroprogenitor cells are inhibited.
However, in certain circumstances, as in secondary carti-
lage formation or bone fracture healing, differentiation
of chondroprogenitor cells is evoked to lead to chondro-
genesis. Thus, chondrogenesis from membrane bone can
be explained as activation of chondroprogenitor cells and
inhibition of osteoprogenitor cells. This hypothesis is fa-
vored by some investigators (Ben-Ami et al. 1993) and
supported by some experiments. For instance, rat calvar-
ia cells form only osteocyte or chondrocyte colonies, in-
dicating a unipotential property of the progenitor cells
(Bellows et al. 1989).

If both osteogenic and chondrogenic cell lineages are
separated at their stem cell stage, each progenitor cell
should give rise to only one cell type in clonal culture
(Fig. 3A). However, clonal culture confirmed the multi-
potential nature of periosteal cells, contradicting the uni-
potential hypothesis (Fig. 3B, and below). Furthermore,
if osteo- and chondroprogenitor cells are separate before
expression of phenotypic markers, differentiated cells
should only yield one phenotype: osteogenic or chondro-
genic. This is challenged by observation that chondro-
genic cells formed in membrane bones are often associ-
ated with the osteogenic phenotype (see below) and by
chondroid bone.

Bi- or multipotential progenitor cells (Fig. 3B)

Another possibility is that progenitor cells are bipotential
for both differentiation pathways, or multipotential for
osteo- and chondrogenesis plus other fates. In this case,

initiation of chondrogenesis involves alteration of the
differentiation pathway from osteogenic to chondrogen-
ic. Multipotential capacity has been demonstrated in
many systems, including differentiation of muscle, fat,
cartilage, and bone cells in clonal culture of loose con-
nective tissue cells (Young et al. 1993). In membrane
bone, bi- or multipotentiality of progenitor has been pro-
posed, based on observation at the tissue level that peri-
osteum gives rise to both bone and secondary cartilage
(Hall 1979). While there is enough evidence to say that
the progenitor layers are bipotential, it is not adequate to
state that a singleprogenitor cell is bipotential for both
bone and cartilage tissues. In fact, the same data support
the hypothesis that periosteum contains two subpopula-
tions, each restricted to one differentiation pathway.

Strong evidence supporting existence of a common
precursor of both osteo- and chondrogenic lines in perios-
tea comes from clonal cultures. Grigoriadis et al. (1988)
reported a clonal cell line from rat calvarial periosteal
cells. This cell line can give rise to cartilage, bone, muscle
and fat in culture medium in the presence of dexametha-
sone. Their studies demonstrated the existence of multi-
potential progenitors in periostea. In QJ periosteal cells,
both chondrogenic and osteogenic cells were found in the
same colony in low density and clonal cultures, suggest-
ing a common precursor for both lineages (Fang and Hall
1996a, b). Therefore, it seems that osteogenic and chon-
drogenic cells share the same precursor in periostea.
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Fig. 3A–C Three possible origins of chondrogenic cells in mem-
brane bone. See text for details. The terms “differentiating osteo-
genic cells” or “differentiating chondrogenic cells” cover all stages
of differentiation between progenitor cells and osteo- or chondro-
blasts



Osteogenic cells (Fig. 3C)

If a common precursor provides both osteo- and chon-
drogenic cells in membrane bone, are chondrogenic cells
committed from the mesenchymal stem cell stage or
from the later differentiated osteogenic cells? If stem
cells directly undergo either osteo- or chondrogenesis,
the two lineages separate before phenotypic expression
and therefore a mixed phenotype should not be present
during their differentiation. If chondrogenic cells arise
from an osteogenic lineage, chondrogenesis must involve
transdifferentiation, or dedifferentiation, following by re-
differentiation. Transdifferentiation involves a direct
phenotype modifiction and indicates the existence of a
transient stage between osteo- and chondrogenic cell dif-
ferentiation. Indeed, the following results from morpho-
logical, biochemical, and molecular biological studies
suggest the existence of such transient cell type(s) and a
close relationship between osteogenic and chondrogenic
cells.

First, chondrogenic cells from membrane bones often
express dual characteristics of bone and cartilage. For in-
stance, chondrocytes in secondary cartilage express not
only cartilage markers such as type II collagen and sul-
fated proteoglycan, but also osteogenic markers such as
type I collagen and APase (Silbermann et al. 1987; Si-
lbermann and von der Mark 1990; Mizoguchi et al.
1992a, b; Landesberg et al. 1995). In contrast, bony
markers are not expressed in chondrogenic cells in pri-
mary cartilage. Chondroid bone (Beresford 1981; Leng-
elé et al. 1996) shows dual characteristics not only in
gene expression but also in histological staining. At the
mRNA level, chondrogenic genes are even detected in
normal intramembranous bones (Ting et al. 1993; Mc-
Donald and Tuan 1989), indicating that dual characteris-
tics exist widely in membrane bones in vivo. These dual
characteristics can be interpreted as evidence for a tran-
sient stage during intramembranous bone formation
(Tuan and Lynch 1983; Ting et al. 1993; Jacenko et al.
1995; Lengelé et al. 1996).

Second, two clonal cell lines, SM1/9 and SM25/3,
isolated from the mandibular condyle, confirmed the ex-
istence of such transient cell types (Bhalerao et al. 1995).
these two cell lines have characteristics that are interme-
diate between bony and cartilaginous cells. They show
some osteogenic characteristics such as APase, but also
produce cartilage ECM components such as sulfated
proteoglycans and type II collagen. They are not mesen-
chymal stem cells since they express many phenotypic
markers, but they cannot be categorized as osteogenic
cells, or as chondrocytes according to their phenotypic
markers.

Third, studies on low-density and clonal cultures of
QJ periosteal cells suggest that secondary chondrocytes
may be phenotypically modified from osteogenic cells
(Fang and Hall 1996a, b). Chondrocytes often appear
from polygonal cells colonies, but not from fibroblast-
like cell colonies. Polygonal cells can express APase and
type I collagen, but not type II collagen. Therefore these

cells are typical osteoblast-like in culture. Chondrogene-
sis from those APase-positive polygonal cells suggests
that these osteogenic cells have the potential to undergo
chondrogenesis. Interestingly, the chondrocytes generat-
ed from periosteal cells express some osteogenic markers
(APase and type I collagen) from the beginning of chon-
drogenesis, indicating their close relationship with the
osteogenic lineage (Fang and Hall 1996a, b).

That chondrocytes may arise from a differentiated cell
type is supported by other experiments. With fraction-
ation to separate subpopulations of calvarial cells, Wong
and Tuan (1995) found that a polygonal, but not fibro-
blast-like, cell subpopulation has chondrogenic capacity
in vitro. The properties of this subpopulation are more
like those of osteoblasts than fibroblast-like stem cells.
They have a polygonal morphology and slow prolifera-
tion rate. The low proliferation rate indicates a relatively
differentiated status since cell differentiation of perios-
teal cells is inversely related to proliferation in cultured
periosteal cells (Owen et al. 1990; Stein et al. 1990,
1996).

Normal cell differentiation in membrane bone may
therefore include a transient stage, with cells expressing
osteogenic markers, such as APase, and so belonging to
the osteogenic lineage. However, they also have some
chondrogenic characteristics. In the normal process of
membrane bone formation, they only express some
chondrogenic markers at trace levels that shut down
quickly during further differentiation. However, in some
circumstances, as when switching to secondary cartilage
formation or fracture healing, chondrogenic gene expres-
sion is enhanced, and the cells undergo chondrogenesis.
Alternatively, these cells may switch partially to chon-
drogenesis and form an intermediate tissue between bone
and cartilage as in chondroid bone.

Hence, it is likely that the transient stage cells in os-
teogenic lineages can provide precursors to chondrogen-
esis in membrane bone periostea. However, in some situ-
ations, contributions of stem cells to chondrogenesis can-
not be completely ruled out. There is evidence that the
bony core of calvaria has chondrogenic potential in or-
gan culture after its periosteum has been removed
(Jacenko and Tuan 1995), although contamination of pe-
riosteal cells is still possible in the organ cultures. Fur-
ther research is needed.

Triggering chondrogenesis

As addressed above, local environmental factors trigger
chondrogenic differentiation in membrane bones. The
triggering signals are quite diverse, including biome-
chanical forces in secondary cartilage, fracture stimula-
tion in callus cartilage, and low calcium concentration in
calcium-deficient embryos. How those factors act upon a
periosteum and provide an initial signal which ultimately
alters the cell differentiation pathway from osteogenic to
chondrogenic is poorly understood. In order for chondro-
genesis to occur, those environmental factors have to be
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converted into an internal molecular signal. Then a cas-
cade of change in gene expression must occur to lead to
chondrogenic differentiation, in which only a few genes
may play a key role.

Various factors play regulatory roles in the develop-
ment, growth and remodeling of skeletal tissues. These
include growth factors and their receptors, hormones and
receptors, transcription factors, oncogene products, cell
adhesion molecules, vitamins, and inorganic components
such as calcium and oxygen concentrations. Among
these, transcription factors such as homebox gene prod-
ucts contain information to pattern skeletal elements (El-
rebacher et al. 1995) and play an important role in con-
densation and pattern formation (Richman and Mitchell
1996). They may be regulated by a signal from the epi-
thelium during epithelium-mesenchyme interaction
(Takahashi et al. 1991). Hormones, such as growth hor-
mone and glucocorticoids, have systematic effects on all
of the skeleton. Growth factors are important for para-
crine and autocrine systems. They regulate proliferation,
differentiation, and metabolism of skeletal cells by bind-
ing to receptors on the plasma membrane. For instance,
TGF-β and basic fibroblast growth factor (bFGF) elicit
chondrogenesis in otic capsule mesenchyme in vitro
(Frenz et al. 1994). TGF-β1 enhances chondrogenesis in
tibial periosteal cells in vitro (Iwasaki et al. 1993) and in
rat parietal bone periosteum in vivo (Taniguchi et al.
1993). Several BMPs have been suggested to play impor-
tant roles in osteogenic and chondrogenic differentiation
(Langille 1994; Bennett et al. 1995; Ekanayake and Hall
1997). Other growth factors, such as EGF, acidic fibro-
blast growth factor (aFGF), and insulin-like growth fac-
tor-1 (IGF-1) also play various roles in osteo- and chon-
drogenesis (Hall and Ekanayake 1991; Erlebacher 1995).
However, so far there is no evidence that any of those
factors is a trigger molecule for chondrogenesis in mem-
brane bone. In calvaria, mechanical loading can stimu-
late release of TGF-β (Klein-Nulend et al. 1995), but this
does not lead to initiation of chondrogenesis.

Cell adhesion molecules (CAMs), a group of cell sur-
face proteins mediating cell-cell adhesion, are potent
regulators of cell differentiation. CAMs can function as
morphoregulators in embryogenesis (Edelman and
Crossin 1991; Edelman 1992, 1993). For chondrogene-
sis, neural cell adhesion molecule (NCAM) and N-cad-
herin play an important role in precartilaginous conden-
sation in mesenchyme (Widelitz et al. 1993; Oberlender
and Tuan 1994; Tavella et al. 1994). In secondary carti-
lage formation, NCAM is particularly interesting.
NCAM is expressed when the periosteum undergoes os-
teogenesis. However, NCAM expression is shut down
when periostea switch to secondary cartilage formation.
The timing of NCAM down-regulation is coincidentwith
the commitment to secondary chondrogenesis, and earli-
er than morphological initiation of catilage formation
(Fang and Hall 1995). In paralyzed embryos in which
secondary cartilage does not form, down-regulation of
NCAM does not occur and the periosteum remains os-
teogenic. Hence, NCAM is a molecule whose down-reg-

ulation is correlated with embryonic movement and sec-
ondary cartilage formation.

Down-regulation of NCAM in the switch from osteo-
genesis to chondrogenesis suggests that it plays a role in
secondary chondrogenesis. Structurally, NCAM contains
several domains, such as those that bind to type I colla-
gen (Probstmeier et al. 1992) and heparin sulfate proteo-
glycan (Kallapur and Akeson 1992), which provide in-
teractions between cells and ECM. These interactions
may further influence signal transduction pathways and
therefore regulate cell differentiation (Schuch et al.
1989; Fagotto and Gumbiner 1996; Sastry and Horwitz
1996). An example of such regulation is that NCAM
stimulates neurite extension through the aFGF receptor
(Williams et al. 1994; Fagotto and Gumbiner 1996).

In addition, NCAM expression is regulated by growth
factors and homeobox genes. In vitro, NCAM expression
is modulated by TGF-β in 3T3 fibroblasts (Roubin et al.
1993) and by nerve growth factor and IGF-2 in chicken
skeletal muscles (Lyles et al. 1993). Moreover, some other
members of the TGF-β superfamily play significant roles
in regulation of NCAM expression. For example, BMP-2,
-4, and -7 up-regulate NCAM expression in neuroblasto-
ma-glioma hybrid cell lines in vitro (Perides et al. 1992,
1994). Since BMPs play important roles in the regulation
of cartilage and bone formation, it would be very interest-
ing if BMPs were shown to regulate osteogenesis and
chondrogenesis through influencing NCAM expression.

Recent evidence shows that the NCAM gene is a
downstream target of Hox genes. The upstream region of
the NCAM gene contains a promotor and a regulatory ele-
ment (Hirsch et al. 1990, 1991). The regulatory element
contains homeodomain binding sites of Hoxgenes. Activi-
ty of the NCAMpromoter can be greatly elevated by Hox
2.5, and eliminated by Hox 2.4 (Jones et al. 1992). More-
over, two other Hox genes, cuxand phox2, bind with the
regulatory element of the NCAM upstream region. Cux
strongly inhibits the NCAM promoter but this inhibition
can be prevented by phox2 (Valarché et al. 1993). In situ
hybridization shows that phox2 expression is restricted to
the areas where NCAM is expressed, while cux is ex-
pressed in many NCAM-negative areas (Valarché et al.
1993).

Therefore, NCAM is a possible regulator of osteo- and
chondrogenic differentiation. It is not known whether en-
vironmental factors influence NCAM expression directly
or through other genes. Further investigation is needed.
NCAM may play different roles between early (conden-
sation) and late differentiation stages of skeletal develop-
ment. NCAM is required in bone and cartilage condensa-
tion in mesenchyme (Widelitz et al. 1993; Hall and Mi-
yake 1995). However, after condensation, NCAM expres-
sion remained in osteogenesis but not in chondrogenesis.
Hence, differential expression of NCAM after cellular
condensation may provide a mechanism controlling alter-
native osteo- and chondrogenic differentiation pathways.
Further investigation is required to explore the exact role
of NCAM on chondrogenesis from membrane bones
since NCAM may be downstream in the cascade.
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