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Abstract
Introduction Aphasia is a speech-language impairment commonly caused by damage to the left hemisphere. The neural 
mechanisms that underpin different types of aphasia and their symptoms are still not fully understood. This study aims to 
identify differences in resting-state functional connectivity between anomic and Broca’s aphasia measured through resting-
state functional magnetic resonance imaging (rs-fMRI).
Methods We used the network-based statistic (NBS) method, as well as voxel- and connectome-based lesion symptom 
mapping (V-, CLSM), to identify distinct neural correlates of the anomic and Broca’s groups. To control for lesion effect, 
we included lesion volume as a covariate in both the NBS method and LSM.
Results NBS identified a subnetwork located in the dorsal language stream bilaterally, including supramarginal gyrus, 
primary sensory, motor, and auditory cortices, and insula. The connections in the subnetwork were weaker in the Broca’s 
group than the anomic group. The properties of the subnetwork were examined through complex network measures, which 
indicated that regions in right inferior frontal sulcus, right paracentral lobule, and bilateral superior temporal gyrus exhibit 
intensive interaction. Left superior temporal gyrus, right postcentral gyrus, and left supramarginal gyrus play an important 
role in information flow and overall communication efficiency. Disruption of this network underlies the constellation of 
symptoms associated with Broca’s aphasia. Whole-brain CLSM did not detect any significant connections, suggesting an 
advantage of NBS when thousands of connections are considered. However, CLSM identified connections that differentiated 
Broca’s from anomic aphasia when analysis was restricted to a hypothesized network of interest.
Discussion We identified novel signatures of resting-state brain network differences between groups of individuals with 
anomic and Broca’s aphasia. We identified a subnetwork of connections that statistically differentiated the resting-state brain 
networks of the two groups, in comparison with standard CLSM results that yielded isolated connections. Network-level 
analyses are useful tools for the investigation of the neural correlates of language deficits post-stroke.
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Introduction

Aphasia is a speech-language disorder that commonly 
develops after a left-hemisphere stroke and can affect a 
person’s ability to read, understand, and speak a language. 

According to the National Aphasia Association, aphasia cur-
rently affects over 2 million Americans. There are several 
types of aphasia based on individual behavioral symptoms. 
Classification of aphasia types remains controversial, and 
can depend on differences between raters or the specific 
diagnostic tests used (Wertz et al. 1984). Individuals with 
different types of aphasia often exhibit overlapping sets 
of symptoms, while those within the same type can differ 
significantly (Casilio et al. 2019). Nonetheless, patterns of 
symptoms associated with aphasia types can be observed 
when measured by well-validated diagnostic materials 
such as the Western Aphasia Battery (Kertesz 2007). Prior 
research has demonstrated that aphasia types can be used to 
effectively investigate the neurobiology of language, provid-
ing insights on how patterns of brain damage (or residual 

Nicholas Riccardi and Xingpei Zhao—Equal contributions.

 * Yuan Wang 
 wang578@mailbox.sc.edu

1 Department of Psychology, University of South Carolina, 
Columbia, SC, USA

2 Department of Epidemiology and Biostatistics, University 
of South Carolina, Columbia, SC, USA

3 Department of Communication Sciences and Disorders, 
University of South Carolina, Columbia, SC, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-023-02738-4&domain=pdf


 Brain Structure and Function

brain health) can be associated with constellations of symp-
toms (Yourganov et al. 2015a; Robson et al. 2014; Fridriks-
son et al. 2015). Examining the neural correlates of aphasia 
syndromes has been a goal of neuroscience for over a cen-
tury (Broca 1861), and remains a topic of high scientific 
and clinical importance (Fridriksson et al. 2018; Desai and 
Riccardi 2021).

Two common types of post-stroke aphasia that are pri-
marily characterized by speech production problems, as 
opposed to comprehension problems, are anomic and Bro-
ca’s aphasia. Anomic aphasia is a fluent type of aphasia 
characterized by problems with word retrieval. Individuals 
with anomic aphasia may block upon failing word retrieval, 
or use circumlocution, but their speech fluency, repetition, 
comprehension, and grammatical speech are relatively pre-
served (Dronkers and Baldo 2009). On the other hand, Bro-
ca’s aphasia is a non-fluent type of aphasia that may exhibit 
agrammatic speech output and poor repetition (Hickok 
2009). Their comprehension of spoken and written language 
often remains intact or has relatively mild impairments. As 
difficulty with word retrieval is related to damage throughout 
much of the peri-Sylvian region (Dronkers and Baldo 2009), 
word finding difficulties can be observed in both anomic 
and Broca’s aphasia (Whitaker 2007). However, the severity 
level and performance patterns are different in the two types 
of aphasia. For instance, it has been reported to be more dif-
ficult for individuals with anomic aphasia to retrieve nouns 
and for individuals with Broca’s aphasia to retrieve verbs 
(Miceli et al. 1988; Zingeser and Berndt 1990). Behaviorally 
and diagnostically, the primary difference between speak-
ers with Broca’s aphasia and anomic aphasia is the typi-
cally reduced speech fluency and repetition performance in 
Broca’s aphasia (Kertesz 2007). In addition, Broca’s aphasia 
often co-occurs with expressive agrammatism, in the form 
of reduced sentence complexity and problems with morpho-
syntactic markers, such as inflections and function words, in 
production (Friedmann 2009; Goodglass et al. 2001; Hillis 
2007). It must be noted, however, that neither the articula-
tory deficit nor the agrammatism are essential diagnostic 
features of the Broca’s aphasia syndrome.

In terms of neural mechanisms, the left inferior frontal 
regions, especially pars triangularis and pars opercularis tra-
ditionally referred to as ’Broca’s area’ (although see (Trem-
blay and Dick 2016) regarding terminology), have tradition-
ally been associated with syntactic processing in language 
production and comprehension (Caramazza and Berndt 
1978; Keller et al. 2009). The impairment to Broca’s area 
alone, however, does not explain impaired syntactic com-
prehension and production in Broca’s aphasia (Mohr et al. 
1978). Grammatical impairments are associated with dam-
age to a larger area surrounding Broca’s area or other differ-
ent brain area, such as lateral portion of the anterior temporal 
lobe (Dronkers and Baldo 2009) and even posterior temporal 

cortex (Den Ouden et al. 2019). One hypothesis is that the 
impairment in a collection of speech-language functions in 
post-stroke Broca’s aphasia is related to the damage to brain 
regions supplied by the superior division of the left mid-
dle cerebral artery (Dronkers and Baldo 2009; Hillis 2007; 
Dronkers et al. 2004; Zaidel et al. 1995). Besides, grammati-
cal and sentence-level language processing is a higher-lever 
language function and requires a series of complex mecha-
nisms to process multiple information sources (Caplan et al. 
2000; Fiebach and Schubotz 2006; Matchin and Hickok 
2020). As such, dysfunction within intrinsic brain networks 
may explain the agrammatic speech and difficulties in com-
prehension of complex sentences often observed in Broca’s 
aphasia (Zhu et al. 2014; Tomasi and Volkow 2012). On the 
other hand, the object-naming difficulty in anomic aphasia 
cannot typically be attributed to damage in specific brain 
regions (Yourganov et al. 2015b; Fridriksson et al. 2018). 
In sum, the neural mechanisms associated with anomic and 
Broca’s aphasia are not fully understood, especially pertain-
ing to possible interactions between partially damaged or 
spared brain areas at a network-level. Connectome-based 
analyses that examine structural or functional connectivity 
between brain regions are useful methods in this context, 
and other studies have shown that they provide information 
that is complementary to standard lesion overlap methods 
(Blackett et al. 2022; Gleichgerrcht et al. 2017a; Riccardi 
et al. 2022)

Functional magnetic resonance imaging (fMRI) (Ogawa 
et al. 1992; Rogers et al. 2001) is a neuroimaging technique 
for investigating functional brain activity through blood-
oxygen-level-dependent (BOLD) fluctuations in different 
brain regions. Resting-state fMRI (rs-fMRI) is acquired in 
the absence of any tasks (Fox and Raichle 2007). Brain net-
work models based on rs-fMRI describe intrinsic coherent 
functional activity in a resting brain and are considered to 
be permanent, trait-like functional signatures (Hjelmervik 
et al. 2014). Network models can be applied to examine 
inter-relationships of these fluctuations in regions of inter-
est (ROIs). In a brain network built on ROI-segmented fMRI 
data, the ROIs serve as nodes and functional connections 
between the ROIs serve as edges. The strength of functional 
connections is typically measured by correlation between the 
BOLD signals of two regions. Using such a connectome pro-
vides some advantages over standard lesion overlap methods 
(Gleichgerrcht et al. 2017a). First, an rs-FMRI connectome 
uses information from both necrotic and spared tissue, while 
lesion overlap methods can only make inferences from areas 
of necrosis. In an rs-FMRI connectome, damaged areas 
will have low connectivity to other regions, while healthy 
areas will have a wider range of connectivity profiles that 
can reflect intrinsic activity or post-stroke reorganization 
(Wilson and Schneck 2020). This allows for brain-behavior 
inferences about areas outside of the stroke territory, such as 
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the spared contralateral hemisphere (Yourganov et al. 2021; 
Riccardi et al. 2020). Second, due to diaschisis (Carrera and 
Tononi 2014), disrupted connectivity between two areas (A 
and B), can be caused by damage to area C. Connectome 
measures can detect behavioral correlates of connectivity 
between areas A and B, while lesion overlap will attribute 
behavior only to area C. Finally, and relatedly, voxelwise 
lesion-symptom mapping requires a high degree of necrotic 
overlap at the millimeter level to detect effects, while the 
connectome can detect levels of (dis)connectivity between 
areas A and B across multiple participants who may have 
very different patterns of necrosis (Gleichgerrcht et  al. 
2017a).

Studies comparing resting-state networks from stroke-
survivors with aphasia and healthy controls have revealed 
that the peri-Sylvian region, posterior middle temporal gyrus, 
anterior superior temporal gyrus, superior temporal sulcus, 
and Brodmann’s area 47 of the inferior frontal gyrus in the 
left hemisphere are involved in semantic processing and 
language comprehension (Dronkers et al. 2004; Turken and 
Dronkers 2011; Zhu et al. 2014). These studies suggest that 
rs-fMRI is relevant in understanding network-level brain dys-
functions in people with aphasia. Their approaches focused 
on functional connectivity among selected ROIs in the left 
hemisphere. However, according to Yang et al. (2016, 2017), 
intrinsic regional brain dysfunctions in aphasia are associated 
with functional connectivity patterns in regions across the 
brain. Consequently, it is essential to investigate whole-brain 
functional connectivity in aphasia. So far, only a few studies 
have assessed resting-state whole-brain functional connec-
tivity (Yang et al. 2016; Siegel et al. 2016; Guo et al. 2019; 
Yang et al. 2017). Siegel et al. (2016) predicted impairment 
in multiple behavioral domains based on associated resting-
state functional connectivity and lesion location via machine-
learning models. Yang et al. (2017) used multivariate pat-
tern analysis to identify whole-brain functional connectivity 
patterns that distinguish stroke survivors with aphasia and 
healthy controls. To the best of our knowledge, no study has 
directly compared resting-state whole-brain functional con-
nectivity between speakers with anomic versus Broca’s apha-
sia. Such an analysis could provide novel information about 
the neural organization of language by detecting functional 
connections in healthy and necrotic areas that are associated 
with a given constellation of symptoms.

To identify distinct functional connections between two 
groups, a standard approach is to examine differences at each 
connection through mass univariate testing, where a large 
number of hypothesis tests are typically performed. After 
rs-fMRI data are preprocessed with an atlas, the number 
of ROIs can exceed 300. For instance, 384 ROIs are cre-
ated by the atlas of intrinsic connectivity of homotopic areas 
(AICHA) (Joliot et al. 2015), yielding more than 70,000 
connections between the ROIs. With such a large number 

of hypothesis tests, the adjusted p-values after standard 
multiple comparison correction are large and may fail to 
detect significant differences in connections. Thus, the 
mass univariate testing approach may provide insufficient 
power, especially when distinct connections are not inde-
pendent. A multivariate approach may aid with sensitivity 
for detection of non-independent connections. However, 
multivariate lesion-symptom mapping (LSM) may provide 
misleading results if not trained on data from hundreds (or 
even thousands) of participants Sperber et al. (2019); Mah 
et al. (2014), and much prior work has already been done to 
directly compare multivariate to univariate LSM, revealing 
that the two methods often provide equivalent results (Sper-
ber et al. 2019; Karnath et al. 2018; Ivanova et al. 2021). 
In cases where data from hundreds of participants are not 
available to train a reliable multivariate model, univariate 
methods are recommended.

The network-based statistic (NBS) method (Zalesky 
et al. 2010) is a graph-theoretic approach that provides an 
efficient process to identify a subnetwork that distinguishes 
two groups of brain networks. The NBS method offers a 
substantial gain in power when such a subnetwork exists. 
From the comparisons of networks between healthy controls 
and participants with schizophrenia (Zalesky et al. 2010), 
Alzheimer’s Disease (Zhan et al. 2016), internet addiction 
(Wen and Hsieh 2016), and borderline personality disorder 
(Xu et al. 2016), the NBS method has identified one or more 
altered subnetworks related to these neurological or psy-
chiatric disorders. Furthermore, we can assess the network 
properties of the subnetwork by complex network measures 
(Rubinov and Sporns 2010). In this study, we apply the NBS 
method for the first time to rs-fMRI data of individuals with 
anomic and Broca’s aphasia. We aim to identify rs-FMRI 
subnetworks that distinguish anomic and Broca’s aphasia, 
thereby providing information about the neuroanatomical 
correlates of two commonly diagnosed aphasia syndromes. 
We also compare NBS findings with standard voxel- and 
connectivity-based LSM in order to demonstrate some dif-
ferences between the methods.

Methods

Study description

Participants were recruited by the Center for the Study of 
Aphasia Recovery (C-STAR), to investigate language out-
comes post-stroke. Only participants with a single ischemic 
or a hemorrhagic stroke in the left hemisphere were 
included. The participants with lacunar infarcts or with iso-
lated damage in brainstem or cerebellum were excluded. The 
research was approved by the Institutional Review Board 



 Brain Structure and Function

(IRB) at the University of South Carolina and Medical Uni-
versity of South Carolina.

Participants

Aphasia types were classified based on the Western Apha-
sia Battery-Revised (WAB-R) (Kertesz 2007), which was 
administered by licensed speech-language pathologists (for 
full details of data fidelity and quality control, see (Spell 
et al. 2020)). Among the 96 participants included in the 
study sample, 39 were diagnosed with anomic aphasia, and 
57 were diagnosed with Broca’s aphasia. Figure 1 shows a 
lesion overlap map of the participants in the two groups. 
Demographic statistics of the two groups are summarized in 
Table 1. The mean age in the anomic group was 62.73 y.o. 
(s.d. = 11.97 ; range = 41 ) and the mean age in the Broca’s 
group is 59.82 y.o. (s.d. = 10.35 ; range = 39 ). Respectively 
60% and 68% of the participants in the anomic and Broca’s 
group were male. There was no significant difference in age 
and gender between the anomic and Broca’s group (age: 
p-value = 0.42 by two-sample t-test; gender: p = 0.74 by �2

-test). All participants were in the chronic (>6 months) stage 
of stroke, where brain and behavior are more stable than in 
the initial months following stroke (acute stage) (Maas et al. 
2012). For the anomic group, time post-stroke was a mean of 
2.9 y (s.d. = 3.42 ; range = 15 ) and for Broca’s was 4.3 y (s.d. 
= 4.29 ; range = 16.5 ). This difference was not significant 
( p > .1 ). The mean WAB-R score for the anomic group was 
85.74 (s.d. = 6.38 ; range = 22.1 ) and 46.44 (s.d. = 16.93 ; 
range = 59.1 ) for the Broca’s group. As shown in Fig. 2, the 
WAB-R score for the anomic group is significantly higher 
than the Broca’s group (p-value < 0.01 by two-sample t-test), 
since the participants with Broca’s aphasia tend to have a 
lower score in the section of fluency and repetition than the 
participants with anomic aphasia.

Data acquisition and preprocessing

The rs-fMRI data were acquired on a Siemens Prisma 3T 
scanner with a 20-channel head coil located at the Center for 
the Study of Aphasia Recovery at the University of South 
Carolina. The following imaging parameters of images were 
used: a multiband sequence ( × 2) with a 216 × 216 mm field 
of view, a 90 × 90 matrix size, and a 72-degree flip angle, 
50 axial slices (2 mm thick with 20% gap yielding 2.4 mm 
between slice centers), repetition time TR = 1650 ms, TE = 
35 ms, GRAPPA = 2, 44 reference lines, interleaved ascend-
ing slice order. During the scanning process, the participants 
were instructed to stay still with eyes closed. A total of 370 
volumes were acquired.

The rs-fMRI data were corrected for motion using the 
Realign and Unwarp procedure in SPM12 with default set-
tings. Brain extraction was then performed using the SPM12 
script pm_brain_mask with default settings. Slice time cor-
rection was also done using SPM12. The mean fMRI volume 
for each participant was then aligned to the corresponding 
T2-weighted image to compute the spatial transforma-
tion between the data and the lesion mask. The fMRI data 

Fig. 1  Overlap of lesions across patients of anomic and Broca’s apha-
sia. A voxel with overlap = 1 indicates that this voxel is lesioned in 
all patients in that group

Fig. 2  Box plots of WAB-R and major subscores of the 96 participants. Asterisk denotes a significant difference between the groups (two-tailed 
t-test, p < .05)
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were then spatially smoothed with a Gaussian kernel with 
FWHM= 6 mm. To eliminate artifacts driven by lesions, a 
pipeline proposed by Yourganov et al. (2018) was applied 
on the rs-fMRI. The FSL MELODIC package was used to 
decompose the data into independent components (ICs) and 
to compute the Z-scored spatial maps for the ICs. The spatial 
maps were thresholded at p < 0.05 and compared with the 
lesion mask for the participant. The Jaccard index, computed 
as the ratio between the numbers of voxels in the intersection 
and union, was used to quantify the amount of spatial over-
lap between the lesion mask and thresholded IC maps, both 
of which were binary. ICs corresponding to Jaccard index 
> 5% were deemed significantly overlapping with the lesion 
mask and then regressed out of the fMRI data using the 
fsl_regfilt script from the FSL package. By applying the atlas 
of intrinsic connectivity of homotopic areas (AICHA) (Joliot 
et al. 2015), 384 regions of interest (ROIs) were created.

Lesion‑controlled network‑based statistic (NBS) 
analysis

We used the NBS method to identify a subnetwork that 
differentiates the resting-state connectivity patterns of the 
anomic and Broca’s aphasia groups. It builds on edge-level 
mass univariate testing with multiple comparison adjustment 
but refines the approach through breadth-first search.

We first constructed functional connectivity matrices for 
individual participants using Pearson’s correlation between 

BOLD signals in the ROIs as edge weight. The Fisher’s 
z-transformation was applied to the coefficients to enforce 
normality:

where r was a correlation coefficient and z was the corre-
sponding normalized correlation coefficient. After normal-
izing the coefficients, a p × p connectivity matrix, with 
p = 384 being the number of ROIs in the AICHA atlas, was 
constructed for each participant in the two aphasia groups. 
The (i, j)-th entry of such a matrix denotes the weight of 
an edge or connection between the ith and jth ROIs of the 
corresponding network. As the connectivity matrices are 
symmetric, we only included the p(p − 1)∕2 upper or lower 
triangular entries in the analysis.

We implemented the NBS method through the NBS 
Connectome toolbox (Reference Manual v1.2, December 
2012). It began with mass univariate testing, where we 
independently tested the hypothesis of group mean indif-
ference at every connection or edge in the network with a 
two-sample t-test. Each connection was then endowed with 
a single t-value quantifying the evidence in favor of the null 
hypothesis. The second step was thresholding the t-values. 
The connections with a t-value exceeding a chosen thresh-
old were admitted to a set of supra-threshold connections. 
The third step was to identify connected graph components 
or subnetworks among the set of supra-threshold connec-
tions. A connected graph component or subnetwork is a 
set of supra-threshold connections for which a path can be 
found between any two nodes in the subnetwork. All con-
nected graph components or subnetworks were identified 
with the breadth-first search algorithm (Ahuja et al. 1993; 
Hopcroft and Tarjan 1973). The final step was to compute 
a familywise error rate (FWER)-corrected p-value for each 
subnetwork using permutation testing. The basic premise 
of permutation testing is that the correspondence between 
data points and their labels can be randomly rearranged 
under the null hypothesis. An empirical null distribution of 
the test statistic is then generated through the random label 
exchanges. Permutation testing is the current ’gold standard’ 
for statistical inference in lesion-symptom mapping inves-
tigations, as it relies on minimal statistical assumptions and 
provides strong protection against false positives (Baldo 
et al. 2022; Kimberg et al. 2007; Mirman et al. 2018). Simi-
lar to cluster-based corrections in voxelwise investigations, 
the NBS uses permutation control based on the size of the 
identified subnetwork after setting a preliminary threshold 
on connection strength. Indeed, prior work using simulated 
data has demonstrated that the permutation-corrected NBS 
provides increased true positive detection while maintaining 
false positive control (Zalesky et al. 2010; Serin et al. 2021). 

z =
1

2
ln
(
1 + r

1 − r

)
= arctanh(r),

Table 1  Demographic statistics of participants with anomic and Bro-
ca’s aphasia: mean and standard deviation of age and WAB-R score, 
percentages of race/ethnicity and education levels out of all partici-
pants in the study. (*Two-sample t-test was used to test group differ-
ence in age, time post-stroke, and WAB-R score; �2-test and Fisher’s 
exact test were used to test group difference in race/ethnicity, gender 
and education)

Anomic Broca’s p*
n
1
= 39 n

2
= 57

Age 62.73±11.97 59.82±10.35 0.42
Time post-stroke 2.9±3.42 4.3±4.29 0.13
Race/Ethnicity 0.51
 Hispanic 0.00 0.00
 Black 0.13 0.29
 White 0.87 0.68
 Other 0.00 0.03

Education 0.26
 High school 0.07 0.26
 College or associate 0.07 0.09
 Bachelor and above 0.86 0.65

Gender 0.74
 Male 0.60 0.68
 WAB-R 85.74±6.38 46.44±16.93 < 0.01
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Our data was permuted at least 5000 times (with a stability 
check of 1000 permutations in increment). Each permuta-
tion involved randomly permuting the data labels according 
to a permutation vector containing a random permutation 
of the integers from 1 to the total number of participants in 
the two groups combined. The same permutation vector was 
used for every connection to preserve any interdependencies 
between connections.

Since the brain networks of our aphasic participants are 
affected by lesions, we included lesion volume as a covari-
ate in the NBS method to control for stroke severity. So the 
residuals that remained after regressing out lesion volume 
using a general linear model were permuted instead of the 
raw data (Freedman and Lane 1983). For each permuta-
tion, the first three steps described above were carried out 
on the permuted data. The size of the largest component 
was recorded for each permutation, thereby yielding an 
empirical null distribution for the size of the largest com-
ponent size. The one-sided FWER-corrected p-value for a 
component of given size was then estimated as the propor-
tion of permutations for which the largest component was 
of the same size or greater. The first three steps of the NBS 
pipeline are illustrated in Figure 3. We also ran a perfor-
mance evaluation of the general NBS approach, the results 
of which are summarized in the Appendix.

Properties of subnetwork identified through NBS

We used complex network measures to quantify the topo-
logical properties of the subnetwork (Rubinov and Sporns 
2010) (Fig. 4). We focused on the functional segregation 
and centrality measures. Functional segregation is the abil-
ity of processing a certain task to occur within densely 
interconnected ROIs (Rubinov and Sporns 2010). The 
clustering coefficient is a basic measure of functional seg-
regation based on the number of triangles around a given 
ROI, where each triangle is formed by the given ROI and 
two other distinct ROIs, and the three edges connecting 
them. The clustering coefficient of the ROI quantifies how 
well connected this ROI’s neighbors are, which is equiva-
lent to the number of triangles around the ROI divided by 
the number of edges that could possibly exist between the 
ROI and its neighbors. The ROI with a clustering coeffi-
cient that is close or equal to 1 implies that the other ROIs 
in this subnetwork cluster around it. On the other hand, 
central nodes or hubs are the ROIs with central placement 
in the overall subnetwork structure. They play an impor-
tant role in communication and integration in the subnet-
work (van den Heuvel and Sporns 2013). Degree, a simple 
measure of centrality, is defined as the number of edges 
directly linked to a given ROI. The larger the degree is, the 
more central the ROI is. Betweenness is another measure 
of centrality defined at a given ROI as the fraction of all 

Fig. 3  Left: Resting-state connectivity matrices are constructed from 
two groups of rs-fMRI data. Right: Illustration of the network-based 
statistic (NBS) method and how a connected component or subnet-
work differentiating the connectivity patterns of the two groups 
of resting-state functional brain networks is identified through the 

breadth-first search algorithm. A permutation test determines the sta-
tistical significance of the subnetwork by iterating the three steps at 
each permutation and compares the permuted statistics with the sta-
tistic from the original observed data
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shortest paths in the subnetwork, which are paths with 
the smallest numbers of edges between two ROIs in the 
subnetwork, passing through the ROI. An ROI with high 
betweenness is regarded as a bridge connecting the other 
ROIs in the subnetwork.

Comparison with standard lesion symptom 
mapping

For comparison with the NBS results, we used two tradi-
tional mass univariate methods: voxel- and connectivity-
based lesion symptom mapping (VLSM, CSLM). All 
analyses included lesion volume as a covariate, and were 
conducted using NiiStat: https:// www. nitrc. org/ proje cts/ 
niist at/. For both V- and CLSM, Freedman-Lane regres-
sion (Freedman and Lane 1983) was used to contrast the 
damage or connectivity of the two groups while controlling 
for lesion volume. Whole brain VLSM was used to iden-
tify brain damage associated with aphasia type (anomic or 

Broca’s). VLSM shows the statistical likelihood that dam-
age to a given voxel is associated with aphasia type group 
membership, where each voxel in each patient is binarily 
demarcated as either damaged or undamaged (Bates et al. 
2003). We then conducted CLSM (Gleichgerrcht et  al. 
2017b) using resting-state functional connectivity based on 
the AICHA atlas, including all left-to-left, left-to-right, and 
right-to-right connections in the analysis. Only voxels where 
at least 5 patients had damage were considered, based on the 
minimum overlap recommendation of  10% of the patient 
sample (Baldo et al. 2022). All tests were two-tailed, with 
� = 0.05 , and significance was determined via permutation 
testing, where stability of p-value were tested in increments 
of 1000 permutations, ranging from 1,000 permutation to 
10,000 permutations.

For CLSM, we also restricted the analysis to a smaller 
set of ’dorsal stream’ areas, i.e., frontoparietal and supe-
rior temporal areas that are involved in form-to-articulation 
during speech (Fridriksson et al. 2016). These areas would 

Fig. 4  Terminology and exam-
ples of basic network measures, 
clustering coefficient, degree, 
and betweenness

https://www.nitrc.org/projects/niistat/
https://www.nitrc.org/projects/niistat/
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be hypothesized to be especially disrupted in individuals 
with Broca’s aphasia who struggle with many aspects of 
speech production compared to the relatively mild anomic 
cases where the individuals have occasional word-finding 
difficulties. We included the AICHA ROIs corresponding 
to supramarginal gyrus, primary sensory and motor corti-
ces, inferior frontal gyrus (Broca’s area), insula, superior 
temporal gyrus, and rolandic operculum. This allowed us to 
restrict the # of connections while also allowing us to use a 
one-tailed analysis since we specifically hypothesized these 
connections would be associated with Broca’s aphasia. It is 
worth noting that we also tried the alternate analysis, using 
a different set of language regions that might be implicated 
in anomic aphasia more than Broca’s, but this did not reveal 
any significant results. This is likely because anomic aphasia 
as a behavioral syndrome may be caused by deficits at vari-
ous functional levels within the language production system 
(conceptual, lexical, semantic, phonological, for example), 
so that similar surface behavior may result from different 
patterns of neural damage. In addition, in our own sample 
anomic aphasia was ‘less severe’ than Broca’s aphasia, on 
average, which would also make the detection of areas spe-
cifically related to the anomic group more difficult.

Results

Applying the NBS method to rs-fMRI, we identified a sub-
network distinguishing the anomic and Broca’s groups with 
respect to each of the t-statistic thresholds 3.5, 4, and 4.5. As 
the threshold increased, the subnetwork size and the number 
of ROIs contained in the subnetwork decreased (Table 2), 
until a threshold of 5, at which there was no significant 
subnetwork. Subsequent results all pertain to the largest 
subnetwork (threshold 3.5; Fig. 5). All connections in the 
networks from the group with anomic aphasia were stronger 
than the networks from the people with Broca’s aphasia. The 
subnetwork was bilateral and involved ROIs in the insula, 
supramarginal gyrus, and primary motor, sensory, and audi-
tory cortices. In comparison, mass univariate testing with 
multiple comparisons also identified several connections that 
were significantly different between the two aphasia groups. 

By comparing the results in the two methods, we found that 
the majority of significant connections declared by mass 
univariate testing existed in the subnetwork identified by 
the NBS with threshold 4 and above. When the threshold in 
the NBS was less than 4, a large amount of connections in 
the subnetwork were not detected by mass univariate testing.

For topological properties of the subnetwork identified by 
NBS with threshold 3.5, the clustering coefficient, degree, 
and betweenness as described in the previous section were 
computed. Figures 6, 7 and 8 lists the top 20 nodes with 
the highest measurement values. The clustering coefficient 
of the right paracentral lobule and inferior frontal sulcus 
reached the maximum value of 1, and the bilateral supe-
rior temporal gyri, right rolandic operculum, right insula, 
and left supramarginal gyrus also displayed high clustering 
coefficients. Regarding the centrality, the left superior tem-
poral gyrus and rolandic operculum had the largest degree. 
Furthermore, the left superior temporal gyrus, right post-
central gyrus, and left rolandic operculum exhibited a high 
betweenness.

Standard lesion symptom mapping (LSM) results

Whole-brain VLSM, controlling for lesion volume, revealed 
a cluster of voxels with a peak in the left precentral gyrus 
and underlying white matter, where damage was signifi-
cantly associated with Broca’s aphasia group membership 
(peak z = 7.4 , p < .001 ; Fig. 7). The cluster extended toward 
the rolandic operculum and inferior frontal sulcus. On the 
other hand, no connections survived in the whole-brain 
CLSM analysis. Using a smaller set of AICHA ROIs hypoth-
esized to be more involved in Broca’s aphasia than anomic, 
10 connections survived that were significantly weaker in 
the Broca’s group (Figure 8). Significant results remained 
unchanged as we increased the # of permutations from 1,000 
up to 10,000. Critical values only changed slightly depend-
ing on # of permutations.

Discussion

This study identified functional subnetworks distinguish-
ing anomic and Broca’s aphasia. Weaker connectivity of 
this subnetwork was associated Broca’s aphasia when com-
pared to anomic, as classified by the WAB-R. Importantly, 
connectome-based analyses allowed for the identification of 
behaviorally relevant nodes in the undamaged right hemi-
sphere, as well as outside of the typical lesion location in 
the left hemisphere, which cannot be identified when using 
lesion location alone (VLSM; Fig. 7). Identification of these 
distributed nodes and links is important for a few reasons. 
First, it provides information about post-stroke functional 
organization, which has robust behavioral consequences 

Table 2  The subnetwork identified by the NBS method with t-statis-
tic threshold 3.5, 4, and 4.5, controlling for lesion volume

T-statistic thresh-
old

Number of connec-
tions

Number of ROIs p-value

3.5 74 47 0.03
4.0 22 15 0.01
4.5 5 6 0.01
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Fig. 5  Connections in the subnetwork identified by the whole-brain 
NBS method with threshold 3.5, where rs-FMRI connectivity is 
weaker in the Broca’s group. + means the test statistic is in the range 

3.5−4.5, ++ means the test statistic > 4.5. Blue nodes indicate left 
hemisphere, green nodes indicate right

Fig. 6  Top 15 nodes ranked by the complex network measures within the identified subnetwork
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(Siegel et al. 2016; Hartwigsen and Saur 2019; Stockert et al. 
2020). Second, it can identify functionally relevant nodes in 
undamaged tissue that future studies can target with brain 
stimulation in experimental therapies (Schlaug et al. 2011; 
Cotelli et al. 2020; Ding et al. 2022). Third, in unilateral 
stroke, it provides information about contributions related 

to the undamaged hemisphere, which has behavioral conse-
quences and cannot be detected using a lesion-only approach 
(Schneider et al. 2022; Mohr et al. 2014; Heiss 2020)

The subnetwork identified through the NBS method under 
threshold 4 included bilateral insula, supramarginal gyrus, 
and primary motor, sensory, and auditory cortices. Studies 
have shown that precentral gyrus, as well as postcentral, par-
acentral, and supramarginal gyri, contribute to motor plan-
ning and execution (Roux et al. 2020; Schneider 2020; Ma 
et al. 2011). These regions are involved in encoding complex 
patterns of motor actions, selecting appropriate motor plans, 
or controlling a series of movements. In severe Broca’s apha-
sia, damage to this motor planning and execution network 
can leave the patient with no speech output or only stereo-
typed output, but relatively intact comprehension (Naeser 
et al. 1989). However, it should be noted that the WAB-R 
does not directly measure speech-motor characterizations. 
NBS and CLSM highlighted the importance of connectivity 
of bilateral STG, which is vital for auditory processing of 
speech sounds (Luo and Poeppel 2007; Rolls et al. 2023). 
A plausible interpretation is that disruption of this motor 
and auditory network (i.e., the ’dorsal language stream’; 
(Fridriksson et al. 2018, 2016)) impairs various aspects of 
sensory-motor integration and motor planning/execution that 
are vital for speech production (Hickok 2012), resulting in 
the disfluency that is characteristic of Broca’s aphasia.

Another finding is that the identified connections are 
largely bilateral instead of left hemisphere dominant. ROIs 
located in the right paracentral lobule and inferior frontal 
sulcus, as well as bilateral STG, were identified using net-
work measures of functional segregation. While this reflects 
the intrinsic bilaterality of resting state networks (Lee et al. 
2013; Smitha et al. 2017), it also suggests that connectivity 

Fig. 7  Whole-brain VLSM cluster where damaged was significantly 
associated with Broca’s aphasia group membership, controlling for 
lesion volume (peak z = 7.4, p < .001)

Fig. 8  No rs-FMRI connections survived whole-brain CLSM. These 10 connections survived when restricting CLSM to 80 (out of 384) regions 
of interest, indicating where rs-FMRI is weaker in the Broca’s group after controlling for lesion volume
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and clustering around right hemisphere dorsal stream areas 
have behavioral consequences post-stroke. Using measures 
of centrality, the degree of the ROIs in the left STG and 
rolandic operculum shows more connections linking to 
them than to other ROIs in the subnetwork. Additionally, 
the results of betweenness suggest that the left STG and 
rolandic operculum, as well as right postcentral gyrus, play 
a crucial role in information flow and overall communica-
tion efficiency in the subnetwork and comprise the bridge 
connecting to other ROIs.

Taken together, these results revealed a surprising role of 
right hemisphere nodes when distinguishing Broca’s from 
anomic aphasia. Preserved connectivity of a tightly con-
nected, bilateral subnetwork with central nodes in the right 
primary sensory and motor cortices was associated with 
membership in the comparatively milder anomic group. 
While disruption of this network is ultimately caused by 
left hemisphere damage in this group of participants, it 
nonetheless suggests that the quality of right hemisphere 
connectivity is an important feature of post-stroke language 
outcomes. These results are consistent with the view that the 
right hemisphere provides some degree of redundancy to left 
hemisphere language functions. When left hemisphere areas 
and left-to-left connections are damaged, some degree of 
compensation may be provided by right hemisphere inputs 
when left-to-right connections are intact. When left-to-right 
connections are also damaged, more severe impairments 
are observed. This aligns well with other recent studies 
demonstrating the importance of connectivity to the right 
hemisphere following left hemisphere damage (Riccardi 
et al. 2020, 2019; Yourganov et al. 2021), and suggests that 
facilitation of right hemisphere connectivity could be a goal 
for future studies seeking to improve cognitive or behavioral 
outcomes in survivors of stroke (Desowska and Turner 2019; 
Watson et al. 2019).

Finally, complex network measures also revealed the 
importance of the left supramarginal gyrus (SMG) in this 
subnetwork, with the SMG having the fifth highest between-
ness. The left SMG is important for auditory-verbal short-
term memory (Deschamps et al. 2014), phonological pro-
cessing (Oberhuber et al. 2016), and has been proposed 
as an auditory-motor interface that is vital for speech and 
articulation (Hickok et al. 2009). Our findings support the 
idea that the left SMG is a central node in speech production, 
and suggest that disruption of this node contributes to the 
symptoms of Broca’s aphasia.

An interesting negative result is the absence of significant 
connections (or voxels in VLSM) from what is tradition-
ally referred to as “Broca’s area” (e.g., left inferior frontal 
cortex (IFC); (Keller et al. 2009)). Although caution is war-
ranted when interpreting negative results, one possibility 
is that disruption of IFC contributes to the symptoms of 
both anomic and Broca’s aphasia and does not statistically 

distinguishing the two groups of people. Indeed, the IFC 
and its subregions have a wide range of proposed language-
specific and domain-general functions (Rogalsky and Hickok 
2011; Fadiga et al. 2009; Grodzinsky and Santi 2008), and 
functional organization of IFC has high variability between 
individuals (Fedorenko and Blank 2020). Disruption could 
therefore give rise to a range of symptoms, not just those 
specifically associated with Broca’s aphasia. Another pos-
sibility is that disruption of “Broca’s area” is not necessary 
to display the symptoms of Broca’s aphasia. This aligns with 
research suggesting that disruption of other areas, such as 
posterior STG and insula, are powerful predictors of Broca’s 
aphasia symptoms (Fridriksson et al. 2015; Dronkers et al. 
2007), and that Broca’s aphasia can present without dam-
age to Broca’s area proper (Fridriksson et al. 2007; Ardila 
et al. 2016).

For qualitative comparison to NBS, we also ran standard 
permutation-corrected VLSM and CLSM, where CLSM is 
most closely related to NBS in its connection-based infer-
ence approach. No connection survived the whole-brain 
CLSM, whereas whole-brain NBS revealed significant sub-
networks at a range of thresholds. We then restricted CLSM 
to a smaller set of regions hypothesized to be more involved 
in Broca’s aphasia than anomic. Ten bilateral connections, 
which resembled a subset of the NBS subnetwork, survived 
this restricted CLSM analysis. These results suggest that, 
when conducting a whole-brain analysis with thousands of 
connections, NBS may provide greater sensitivity, while 
maintaining robust control of false positives (Zalesky et al. 
2010), and allow exploration of large networks and their 
features. However, CLSM is likely more appropriate for use 
within a restricted, hypothesis-driven network of interest 
for two reasons. First, as demonstrated by (Zalesky et al. 
2010), NBS’s power advantage over CLSM scales as poten-
tial network size increases, but NBS is powerless to detect 
effects related to single, isolated links as opposed to con-
nected subnetworks. Second, due to differences in the per-
mutation control procedure between NBS and CLSM (i.e., 
controlling based on subnetwork size or each individual link, 
respectively), CLSM allows for strong claims about the sig-
nificance of individual links. This is advantageous when the 
analysis is restricted to a subset of a priori links that are 
hypothesized to be related to the behavior of interest.

Limitations and future directions

The present study focused on Broca’s and anomic apha-
sia. One reason for this was sample size, with other types 
of aphasia being comparatively underrepresented at our 
center. As such, we cannot strongly claim that the results 
presented here are specific to Broca’s aphasia, as comparing 
other aphasia types to anomic aphasia may reveal similar 
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subnetworks. Future studies could seek to use NBS to com-
pare the neural correlates of other types of aphasia. Also 
due to sample size, we did not leverage multivariate LSM, 
as recent work recommends that reliable multivariate LSM 
models require data from hundreds or even thousands of 
participants (Sperber et al. 2019; Ivanova et al. 2021; Kar-
nath et al. 2018; Mah et al. 2014). Future work with larger 
samples could apply multivariate techniques when compar-
ing the anatomical correlates of aphasia subtypes.

While we controlled for total lesion volume in all analy-
ses, the resting-state connectomes used in the current study 
are informed by a complex set of interacting features such 
as location of necrotic tissue (Manan et al. 2020), hypop-
erfusion (Zhang et al. 2019), white matter hyperintensi-
ties (Vettore et al. 2021), brain health in surviving tissue 
(Wilmskoetter et al. 2023; Stumme et al. 2022), etc. Future 
work could seek to investigate how these features relate to 
functional connectivity in post-stroke aphasia or, alterna-
tively, to statistically orthogonalize behavioral contributions 
of brain structure vs. function. As such, we do not seek to 
make claims about the etiology of the functional connec-
tomes observed here.

We did not find any evidence of connections that were 
weaker in the anomic group. The reason for this is likely 
that: (1) word-finding difficulties can be observed after dam-
age to a wide range of regions (Dronkers and Baldo 2009), 
reducing the likelihood of finding a common neural substrate 
at the group level, and (2) our anomic participants were less 
impaired and had more subtle language deficits than the 
group with Broca’s aphasia. Although differences in sever-
ity can be partially accounted for by including lesion size 
as a covariate, as was done here, it is simply more difficult 
to identify the neural correlates of relatively mild symp-
toms. Relatedly, as mentioned in the Introduction, grouping 
participants based on WAB-R aphasia classification may 
not be ideal, as there can be significant behavioral vari-
ability between participants within the same classification. 
An alternative is to use a data-driven dimension reduction 
approach such as principal component analysis to group par-
ticipants or correlated symptoms together (Stefaniak et al. 
2022), although this method also has its own drawbacks 
(Walker and Hickok 2023).

One of the advantages of the NBS method is control-
ling the FWER at a subnetwork level; while the standard 
mass univariate testing approach is controlling at individual 
connection independently, which ignores the interactions 
among ROIs. If suprathreshold edges form a subnetwork, the 
NBS method provides substantially greater power (Zalesky 
et al. 2010). Nevertheless, if ROIs are not connected by 
suprathreshold edges and thus cannot form a subnetwork, 
the NBS method will fail to make any decision. Under a 

network framework, once the NBS identifies any subnet-
work, it would allow us to study their network topology and 
make straightforward interpretations. These findings may 
be somewhat limited by not taking into account the effect 
sizes and significance of the differences. For instance, after 
a threshold is applied, the weight for suprathreshold edges 
would all set to 1. In future investigations, it may be possi-
ble to use weighted edges for a continuous analysis. On the 
other hand, the critical factor affecting the subnetwork size 
and determining whether suprathreshold edges would form 
a subnetwork is the threshold in the NBS method.

Under different thresholds, new subnetwork(s) with fewer 
or more functional connections may be identified, and the 
p-value of the subnetwork(s) may change and result in a 
loss of significance. To address the concern of threshold, 
we examined a range of thresholds in the NBS method and 
incorporated the baseline approach in our analysis. The 
functional connections are significant across both the NBS 
method with a range of thresholds and the baseline approach, 
which implies notable differences in functional connectivity 
between anomic and Broca’s aphasia. For future studies, the 
NBS method can be combined with a data-driven threshold 
selection. We can also explore multiscale topological net-
work models to overcome the arbitrary thresholding issue 
(Wang et al. 2022).

Conclusion

Here, we used VLSM, CLSM, and the NBS to examine neu-
ral correlates that distinguish anomic and Broca’s aphasia. 
Whole-brain NBS identified a subnetwork located in the 
dorsal language stream bilaterally, including supramarginal 
gyrus, primary sensory, motor, and auditory cortices, and 
insula. The connections among these areas are weaker in 
Broca’s aphasia than anomic aphasia. By examining network 
properties, we found that (1) the right paracentral gyrus, 
right inferior frontal sulcus, and bilateral STG display high 
clustering coefficients, and (2) the left auditory cortex, left 
SMG, and right primary sensory cortex exhibit high central-
ity, serving as connection hubs within the subnetwork. These 
findings suggest that the disruptions of these nodes and their 
connections are associated with Broca’s aphasia symptoms. 
CLSM corroborated these results, but only when restricting 
the analysis to a smaller a priori network of interest. This 
suggests that NBS is more sensitive than traditional CLSM 
when conducting a connectome-based analysis with thou-
sands of edges, and that NBS allows for the identification of 
larger networks and additional features than CLSM.
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Appendix. Performance evaluation of NBS

For baseline comparison with the NBS method, mass uni-
variate permutation testing with multiple comparison was 
performed. The p-value for comparing the jth edge weight 
was calculated by Pr

(
|t∗
j
| ≥ |tj|

)
 , where t∗

j
 and tj were the 

test statistics computed from permuted data and original data 
respectively. This p-value describes how likely the absolute 
value of test statistic from permuted data exceeds the abso-
lute value of test statistic from original data. Then, the fol-
lowing multiple comparison procedures were applied to 
correct multiple p-values and control the FWER: Bonferroni 
correction (Bonferroni 1936), Holm’s Bonferroni correction 
(Holm 1979), and false discovery rate (FDR) control (Ben-
jamini and Hochberg 1995).

We used three simulation studies to evaluate the empiri-
cal performance of the NBS method against mass univariate 
testing with multiple comparison. We assessed two aspects 
of the performance: (1) sensitivity or true positive rate 
(TPR): the proportion of connections or edges containing 
group differences that are correctly identified; (2) 1− speci-
ficity or false positive rate (FPR): the proportion of edges 
without differences that are misclassified. Ideally, TPR = 1 
(all edges that differ between the two groups are identified), 
and FPR = 0 (all edges that do not differ between the two 
groups are not identified). Suppose H is the set of edges 
that differ between the groups, R is the set of edges that 
do not differ between the groups, and ĥ is the set of edges 

comprising the subnetwork identified by a specific method 
(NBS, baseline mass univariate testing with multiple com-
parison). The TPR was then calculated by |H ∩ ĥ|∕|H| and 
the FPR by |R ∩ ĥ|∕|R|.

In each of the three studies, we generated two groups of 
p-node networks. The group sizes are n1 = n2 = 10 for all 
three studies. In each network, the weight of the edge between 
node i and j was generated by wij ∼ N(arctanh(rij), �

2
w
) with 

rij ∼ U(−1, 1) and �w = 1∕
√
p(p − 1)∕2 − 3 . We randomly 

chose Cr% of p(p − 1)∕2 edges to differ in weights between 
Group 1 and 2, and refer to these edges as contrast edges. 
The weights of contrast edges were generated independently 
with

where w∗ ∼ N(0.03, 0.01) . We compared the performance of 
the methods via different p and Cr values in the three studies. 

Study 1.  p = 20 and Cr% = 10%.
Study 2.  p = 40 and Cr% = 10%.
Study 3.  p = 40 and Cr% = 5%.

After the networks were generated, NBS with threshold 
2.5 and mass univariate testing with multiple comparison 
were performed (Fig. 9). We repeated the simulation process 

w∗
ij
=

{
wij + w∗, for wij ≥ 0

wij − w∗, for wij < 0,

Fig. 9  Simulation setup: The white blocks in the left side’s matri-
ces represent contrast edges, whose weights differ between the two 
groups. The white blocks in the right side’s matrices are the subnet-

work or connected component identified by the NBS method or the 
edges declared significant by multiple comparison
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5,000 times for each study. Average TPR and FPP were com-
puted respectively.

Simulation results

Table 3 summarizes results of the three simulation studies. 
In Study 1, the NBS method has the largest TPR and FPR, 
while the mass univariate testing with FDR detects a desira-
ble proportion of contrast edges and contains a small number 
of false discoveries. In Study 2, as the network size expands, 
the TPRs by the NBS and mass univariate testing methods 
increase, whereas the FPRs increase by the NBS and FDR 
methods and decrease by the Bonferroni and Holm’s Bon-
ferroni methods. In Study 3, when fewer contrast edges are 
placed in either of the two groups, the TPRs by the NBS and 
FDR methods decrease and the FPRs by the NBS and the 
two Bonferroni corrections stay similar to Study 2.

In summary, compared with mass univariate testing, the 
NBS method detects small group differences well under var-
ious network sizes and proportions of contrast edges. For the 
mass univariate testing, the FDR has the highest power and 
a favorable FPR; Bonferroni and Holm’s Bonferroni cor-
rections are highly conservative in detecting contrast edges. 
Additionally, we find that the computation speed is mainly 
affected by network size.
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