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Abstract
Lesions in the primary visual cortex (V1) cause extensive retrograde degeneration in the lateral geniculate nucleus, but it 
remains unclear whether they also trigger any neuronal loss in other subcortical visual centers. The inferior (IPul) and lateral 
(LPul) pulvinar nuclei have been regarded as part of the pathways that convey visual information to both V1 and extrastriate 
cortex. Here, we apply stereological analysis techniques to NeuN-stained sections of marmoset brain, in order to investigate 
whether the volume of these nuclei, and the number of neurons they comprise, change following unilateral long-term V1 
lesions. For comparison, the medial pulvinar nucleus (MPul), which has no connections with V1, was also studied. Compared 
to control animals, animals with lesions incurred either 6 weeks after birth or in adulthood showed significant LPul volume 
loss following long (> 11 months) survival times. However, no obvious areas of neuronal degeneration were observed. In 
addition, estimates of neuronal density in lesioned hemispheres were similar to those in the non-lesioned hemispheres of same 
animals. Our results support the view that, in marked contrast with the geniculocortical projection, the pulvinar pathway is 
largely spared from the most severe long-term effects of V1 lesions, whether incurred in early postnatal or adult life. This 
difference can be linked to the more divergent pattern of pulvinar connectivity to the visual cortex, including strong recipro-
cal connections with extrastriate areas. The results also caution against interpretation of volume loss in brain structures as 
a marker for neuronal degeneration.
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Introduction

Damage to the primary visual cortex (V1) can often occur 
due to stroke or trauma, leading to cortical blindness (Pol-
lock et al. 2011; Melnick et al. 2016; Hagan et al. 2017). 
Over subsequent months, V1 lesions also lead to significant 
neuronal loss due to retrograde degeneration in the lateral 
geniculate nucleus (LGN) and retina (Dineen and Hendrick-
son 1981; Cowey et al. 2011; Hendrickson et al. 2015). 

This is accompanied by significant volume loss in the LGN 
(Atapour et al. 2017) and thinning of the retina (Meier et al. 
2015). However, the possible effects of V1 lesions on other 
components of the visual pathway have been the subject of 
less study. Of particular interest is the pulvinar complex, 
which receives visual information both via the superior col-
liculus (Harting et al. 1980; Stepniewska et al. 2000; Berman 
and Wurtz 2010, 2011) and directly from the retina (Warner 
et al. 2010), and forms extensive projections to both striate 
and extrastriate visual areas (macaque: Ungerleider et al. 
1984; Adams et al. 2000; Shipp 2001, marmoset: Dick et al. 
1991; Huo et al. 2019).

The pulvinar is the largest nuclear complex of the pri-
mate thalamus, (Chalfin et al. 2007; Gutierrez et al. 2000), 
comprising four traditional anatomical subdivisions (infe-
rior, lateral, medial, and anterior; Walker 1938; Jones 2007; 
Paxinos et al. 2012), each having different cortical connec-
tivity (Stepniewska and Kaas 1997; Jones 2007; Baldwin 
et al. 2017). The medial pulvinar (MPul) nucleus has few or 
no connections to V1, but is connected to a wide expanse of 
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temporal, parietal, cingulate, and frontal cortices, including 
higher-order visual association areas (macaque: Trojanow-
ski and Jacobson 1997; Gutierrez et al. 2000; marmoset: 
Homman-Ludiye et al. 2020). Similarly, the anterior (or 
oral) pulvinar has no connections with V1, being function-
ally connected primarily with somatic and motor process-
ing areas (Grieve et al. 2000), including oculomotor control 
areas (macaque: Pons and Kaas 1985; Cusick et al. 1990; 
marmoset: Burman et al. 2015). In contrast, both the lateral 
(LPul) and the inferior pulvinar (IPul) nuclei have reciprocal 
connections with V1 and many extrastriate areas (macaque: 
Benevento and Rezak 1976; Ungerleider et al. 1983; Adams 
et al. 2000; Shipp 2001; marmoset: Dick et al. 1991; Huo 
et al. 2019; squirrel monkey: Cusick et al. 1993; Ogren 
and Hendrickson 1976; owl monkey: Beck and Kaas 1998; 
Cebus monkey: Soares et al. 2001). The LPul has a docu-
mented role in modulating visual responsiveness in primate 
V1 (Purushothaman et al. 2012), while the IPul is itself a 
complex formed by various subnuclei, with different neu-
rochemical characteristics and connections to visual cortex 
(Baldwin et al. 2017; Mundinano et al. 2019). In macaques, 
both the IPul and LPul receive ascending visual input from 
the superior colliculus (Harting et al. 1980), which is relayed 
to visual cortex (Berman and Wurtz 2010, 2011).

The present study asks if V1 lesions in marmoset mon-
keys also trigger neuronal loss in the pulvinar complex. 
Evidence from some double-labeling retrograde tracer 
injection studies in macaque indicate that single neurons in 
the visual pulvinar can form synapses with multiple visual 
areas, including V1 (Kennedy and Bullier 1985; Lysakowski 
et al. 1988). This distributed organization could minimize 
the chances of complete removal of synaptic targets by V1 
lesions, hence explaining why retrograde neuronal loss akin 
to that observed in the LGN has not been observed in the 
visual pulvinar. However, a study in marmoset monkeys 
has indicated that double-labeled cells in the pulvinar are 
observed only following injections in nearby locations in 
the cortex, within the likely range of the arborizations of 
thalamocortical axons (Kaske et al. 1991). On balance, these 
studies suggest that pulvinar neurons with exclusive projec-
tions to V1 could exist, a result that would lead to the expec-
tation of some degree of retrograde degeneration within this 
nucleus after V1 lesion. However, the existence of these neu-
rons, or their prevalence, has not been established.

In addition, we investigate whether there is a differen-
tial effect of V1 lesions incurred at different ages on the 
pulvinar. Lesions occurring in infancy reportedly cause 
more serious degeneration of the retina in marmosets (Hen-
drickson et al. 2015). The extrageniculate pathway via the 
pulvinar complex undergoes significant synaptic pruning as 
part of postnatal development (Warner et al. 2015), yielding 
ample opportunities for differential remodeling following V1 

lesions which may enable different types of residual vision 
(Bourne and Morrone 2017).

Materials and methods

Animals

Eighteen marmoset monkeys (Callithrix jacchus) were used 
in this study (Table 1). Twelve animals received partial uni-
lateral lesions of left V1, either at 6 weeks of age (neonatal 
lesions, n = 6) or soon after sexual maturity (young adult 
lesions, n = 6), while six non-operated, normal adults were 
used for comparison. The neonatal lesions were placed at the 
sixth week of life since it coincides with a period of rapid 
growth, synaptogenesis and cellular remodeling in marmo-
set V1 (Missler et al. 1993a, b; Bourne et al. 2005). The 
experiments were conducted in accordance with the Aus-
tralian Code of Practice for the Care and Use of Animals for 
Scientific Purposes. All procedures were approved by the 
Monash University Animal Ethics Experimentation Com-
mittee, which also monitored the health and well-being of 
the animals throughout the experiments.

V1 lesions

The procedure for V1 lesions was similar to that used in 
previous studies (Rosa et al. 2000; Yu et al. 2013, 2018; 
Atapour et al. 2017), with slight refinements incorporated 
to the drug administration protocol. The day before surgery, 
animals were pre-medicated with oral meloxicam (Metacam; 
Boehringer Ingelheim, 0.01 mg/kg (neonates) or 0.1 mg/kg 
(adults) and cephalexin (Ibilex; Alphapharm P/L, 30 mg/
kg). On the day of the surgery an intramuscular (i.m.) injec-
tion of atropine (Atrosite; Ilium, 0.2 mg/kg) was adminis-
tered (adult animals only) 30 min prior to the induction of 
anesthesia with 2–5% isoflurane (Isorrane; Baxter) in oxy-
gen. Dexamethasone (Dexason; Ilium, 0.3 mg/kg, i.m.) was 
also administered before the animals were positioned in a 
modified stereotaxic head holder. Body temperature, heart 
rate, and blood oxygenation  (PO2) were continually moni-
tored, and the rate of anesthetic was continuously adjusted 
(isoflurane 2–5%) to maintain areflexia, relaxed breathing, 
and low heart rates. Under sterile conditions, a craniotomy 
was made over the occipital pole of the left hemisphere. 
Using a fine-tipped cautery, an excision was then made of 
all cortical tissue caudal to a plane extending from the dor-
sal surface of the occipital lobe to the cerebellar tentorium, 
across its entire mediolateral extent (Rosa et al. 2000; see 
Fig. 1). This type of lesion removes the central visual field 
representation in the occipital operculum, as well as of the 
peripheral representation (in the calcarine sulcus) up to a 
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minimum of 40˚ eccentricity along the horizontal merid-
ian (Chaplin et al. 2013; Atapour et al. 2021). This cor-
responds to a minimum of 70% of V1, while sparing the 
majority of secondary visual area (V2) except for the border 
region with V1 in the central representation (as determined 
by electrophysiology; Yu et al. 2018). After application of 
hemostatic microspheres (Arista AH; BARD Davol Inc), the 
surfaces of the exposed occipital cortex and tentorium were 
protected with ophthalmic film (Gelfilm; Pfizer Inc), and the 

cavity was filled with Gelfoam (Pfizer Inc). The skull flap 
was repositioned and secured with cyanoacrylate (Vetbond; 
3M), and the skin was sutured. The marmosets were placed 
in a humidicrib until recovery of movement, after which 
they were returned to the mothers (neonatal animals) and, 
in all cases, subsequently reintroduced to the colony. Post-
operative analgesic (oral meloxicam 0.005 mg/kg neonates, 
0.05 mg/kg adults, 3 days) and antibiotic (oral cephalexin 
30 mg/kg, 5 days) were administered.

Table 1  Animal details

a Used for volume analysis only

Group Case Sex Body weight (g) Age at 
lesion 
(weeks)

Survival time post 
lesion (months)

Age at 
perfusion 
(months)

Control CJ167 F 390.0 – – 27
CJ173 M 340.0 – – 24
CJ198 M 383.0 – – 32
CJ200 F 441.0 – – 43
CJ204 M 426.0 – – 41
CJ1741 F 309.0 – – 40

Neonate -lesioned W6G M 376.0 6 24 25
W6H F 301.0 6 20 21
W6I M 447.0 6 28 29
W6Ka M 389.0 6 31 33
W6L F 375.0 6 33 35
W6M M 354.0 6 32 34

Adult-lesioned WA6 M 388.0 107 17 41
WA8 M 358.0 82 14 33
WA13 M 366.0 122 28 56
WA14 F 410.0 110 30 55
WA15 F 346.0 113 11 37
WA16 M 434.0 137 22 54

Fig. 1  Extent of the intended lesions, depicted in lateral (left) and 
medial (right) views of the marmoset cortex. The diagrams are based 
on an average template of the marmoset brain (Majka et  al. 2021), 
with colors indicating different cortical areas. The locations of the 
primary (V1) and second (V2) visual areas are indicated. The lesions 
(gray shading) were intended to remove the entire representation of 
the central visual field in V1, in the occipital operculum, as well as 

the caudal part of the calcarine sulcus. Based on electrophysiologi-
cal recordings in other animals with similar lesions (Yu et al. 2013, 
2018), this creates a contralateral scotoma that extends at least to 40° 
eccentricity along the horizontal meridian of the visual field. The 
lesions also involved V2 to variable extents. For histological docu-
mentation of lesion extents, see Atapour et al. (2021)
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Throughout the post-lesion period, the marmosets were 
housed in large cages with family groups, having access to 
both indoor and outdoor environments. During the survival 
period all animals demonstrated normal patterns of move-
ment, including the capacity to perform fine grasping and 
holding movements and to perform precise jumps across tree 
branches, and did not require assistance for daily activities 
such as seeking and obtaining food.

Tissue processing

Following survival times of 11–33 months (and in some 
cases, tracer injections not related to the present study), 
the animals were anesthetized with alfaxalone (10 mg/ml 
i.m.), and administered an overdose of sodium pentobar-
bitone (100 mg/kg, i.v.) after the loss of consciousness. 
They were then immediately perfused through the heart 
with heparinised saline, followed by 4% paraformaldehyde 
(PFA) in 0.1 M phosphate-buffered saline (PBS; pH 7.4). 
The brains were post-fixed in the same medium for at least 
24 h and then immersed in buffered paraformaldehyde with 
increasing sucrose concentrations (10–30%). They were then 
sectioned (40 µm thickness) in the coronal plane using a 
cryostat. Adjacent sections were stained for Nissl substance, 
NeuN (Wolf et al. 1996), and myelin (Gallyas 1979) fol-
lowing standard protocols (Fig. 2A). The spacing between 
adjacent sections in each series was 200 µm. For NeuN stain-
ing, the sections were incubated in blocking solution (10% 
normal horse serum and 0.3% Triton X-100 in 0.1 M PBS) 
for 1 h at room temperature and then incubated with the pri-
mary antibody for NeuN (1:800, MAB377, Merck Millipore) 
at 4 °C for 42–46 h. Secondary antibody (1:200, PK-6102, 
Vectastain Elite ABC HRP kit, Vector Laboratories) was 
applied for 30 min at room temperature followed by avidin/
biotin interaction and DAB (DAB Peroxidase Substrate Kit 
SK-4100, Vector Laboratories) staining. The remaining sec-
tions in each series were stored in cryoprotectant solution as 
a backup for unsatisfactory staining or damaged histological 
sections, or used for other stains (not reported here).

Identification of the medial, lateral and inferior 
pulvinar nuclei

Utilizing NeuN and myelin staining, we delineated the IPul, 
LPul and MPul using the Paxinos et al. (2012) atlas as the 
main guide. The characteristics of the pulvinar nuclei in the 
marmoset were consistent with previous descriptions in the 
macaque (Adams et al. 2000; Gutierrez et al. 2000; Jones 
2007). The MPul is lightly myelinated (Fig. 2A, right), and 
has a relatively homogeneous cytoarchitecture composed of 
small- to medium-sized neurons which stain homogenously 
for NeuN (Fig. 2A, left and Fig. 2B). These features helped 
differentiate MPul from the neighboring structures. The 

LPul has a distinctive pattern of myelinated fiber bundles 
running across its extent (Fig. 2A), resulting in variations in 
neuronal density, and shows a more diverse range of neuron 
sizes and cell body shapes in the NeuN stain (Fig. 2B). We 
defined the IPul according to the modern consensus (Step-
niewska and Kaas 1997; Adams et al. 2000; Gutierrez et al. 
2000; Soares et al. 2001; Mundinano et al. 2019) whereby 
this nucleus has heterogeneous myelination, including some 
densely myelinated patches (Fig. 2A), reflecting a proposed 
parcellation into subnuclei (Baldwin et al. 2017). In NeuN-
stained sections (Fig. 2A, left and Fig. 2B), IPul neurons 
appear as darkly stained, are tightly packed, and encompass 
a larger range of cell body sizes in comparison with the 
LPul. For the purposes of the present analysis the IPul was 
assessed as a single structure. Figure 3 (left) illustrates the 
extent of the three subdivisions included in this study in a 
series of coronal sections from a non-lesioned animal (case 
CJ1741).

Volume and neuron density measurement

Sections containing the pulvinar were scanned using an 
Aperio Scanscope AT Turbo at 20× magnification. The 
outlines of the IPul, LPul and MPul were drawn on NeuN-
stained sections using the Aperio ImageScope software 
(Aperio Technologies V12.1.0.5029) (Figs. 2, 3). An esti-
mate of the pulvinar volume was obtained using the Cava-
lieri estimator method (Gundersen and Jensen 1987; Royet 
1991), based on equally spaced sections through the nucleus. 
The pulvinar’s total volume was calculated based on the sum 
of volumes obtained for each section (pulvinar area × dis-
tance between sections). Measurements were corrected with 
a shrinkage factor of 0.8 (Atapour et al. 2017).

Sampling for neuronal counts was performed using 
previously described methods (Williams and Rakic 1988; 
Atapour et al. 2017, 2019). All available sections including 
the full anteroposterior extent of the IPul, LPul and MPul 
were sampled. Counting frames (300 × 300 μm2) were evenly 
spaced along the radial dimension of the pulvinar (Fig. 2B). 
Given the currently acknowledged structural and functional 
similarity between the LPul and the most lateral part of 
the IPul (subnucleus PIcl in Kaas and Baldwin 2020), we 
avoided including the latter. In addition, the fringes of the 
nuclear masses were avoided, to prevent sampling that could 
include regions outside the boundaries. Neurons were identi-
fied within each frame based on two exclusions lines (right 
and top), and two inclusion lines (bottom and left). Neu-
rons were counted if they were entirely within the counting 
frames or crossed the inclusion lines. Only neurons with evi-
dent nuclear staining, independent of size and shape, were 
counted. Numbers of neurons in each counting frame were 
divided by volume to calculate neuronal density. Neuronal 
density from each section along the anterior–posterior extent 
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of the pulvinar was compared among control, neonate and 
adult V1 lesion cases, to determine if natural variations (or 
differential effects of degeneration) occurred in a specific 
region along this axis. The volumes of the LGN were also 
measured to facilitate comparison with past studies.

Statistical analyses

For statistical analysis of the volume of pulvinar subdi-
visions, neuronal density and neuron number, we used 
one-way ANOVAs followed by post hoc Tukey’s tests. A 
repeated-measure two-way ANOVA was used to assess 

interhemispheric differences of neuronal density in the 
pulvinar nuclei ipsi- and contralateral to the lesions. Simple 
linear regression was used for analysis shown in Figs. 5 and 
8. Data are presented as mean ± SD and differences with 
p < 0.05 were considered statistically significant.

Results

The present study is based on comparisons between the IPul, 
LPul and MPul nuclei of non-lesioned (control) marmosets 
and both hemispheres of those that had unilateral V1 lesions 

Fig. 2  A Example coronal sec-
tions stained for the neuronal 
marker NeuN (left) and for 
myelin (right) corresponding to 
the interaural level + 3.00 mm 
in the Paxinos atlas (Paxinos 
et al. 2012), in which the medial 
(MPul), lateral (LPul) and infe-
rior pulvinar (IPul) subdivisions 
are indicated. MDL (Medi-
odorsal thalamic nucleus, lateral 
part), MGD (Medial geniculate 
nucleus, dorsal part), Po (Pos-
terior thalamic nuclear group), 
Rt (Reticular nucleus). B The 
location of sampling grids 
(300 × 300 µm2) on a repre-
sentative NeuN-stained coronal 
section. Insets show magnified 
examples of neurons counted in 
each counting grid for the three 
subdivisions
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either at 6 weeks of age or young adulthood. Because the 
MPul does not have connections with either V1 or caudal 
extrastriate areas, this nucleus was included in the analyses 
for comparison, to assess the hypothesis that any changes 
that resulted specifically from the V1 lesions would affect 
only the IPul and LPul.

Pulvinar volume

In control (non-lesioned) animals, the combined volume of 
the MPul, LPul and IPul was 22.3 ± 1.8  mm3 (mean ± SD, 
Fig. 4A). This value was comparable to that of a previous 
report in which delineations were also based on the Paxinos 
et al. (2012) marmoset atlas (Warner et al. 2015). In addi-
tion, the use of unilateral V1 lesions in this study allowed for 
the volume of the pulvinar in the hemisphere contralateral 
to the lesion to be used for comparisons which took into 
account individual variability.

Comparison of the combined volume of IPul, LPul and 
MPul revealed a significant reduction in the hemisphere 

ipsilateral to the lesion in both neonate- and adult-lesioned 
animals, compared to control animals [one-way ANOVA; 
F (4, 25) = 6.58, p = 0.0009, Fig. 4A]. Post hoc analysis 
indicated the mean combined volume in the neonate- and 
adult-lesioned animals was significantly lower than that in 
control animals (mean ± SD, Neonate-lesioned vs. Control; 
17.9 ± 1.3 vs 22.3 ± 1.8  mm3, p = 0.0009, Adult-lesioned 
vs Control; 19.3 ± 2.3 vs 22.3 ± 1.8  mm3, p = 0.03). For the 
neonate-lesioned animals the whole pulvinar volume was 
also significantly different between the ipsi- and contralat-
eral sides (mean ± SD, Neonate-lesioned, Ipsilateral vs. Con-
tralateral; 17.9 ± 1.3 vs 20.9 ± 0.8  mm3, p = 0.02).

Further analysis of volume loss according to subdivi-
sions of the pulvinar (Fig. 4B–D) showed that the volume 
loss was largely attributable to changes in LPul, but not in 
the MPul and IPul. This finding was reflected in both neo-
nate- and adult-lesioned cases [one-way ANOVA, MPul; F 
(4, 25) = 0.74, p = 0.57, Fig. 4B, LPul; F (4, 25) = 10.35, 
p < 0.0001, Fig. 4C and IPul; F (4, 25) = 2.31, p = 0.08, 
Fig. 4D]. Post hoc analysis indicated that mean score for 

Fig. 3  Delineation of marmoset pulvinar. Left: Diagrammatic repre-
sentation of the three subdivisions of the marmoset pulvinar [medial 
(MPul)—green, lateral (LPul)—blue, inferior (IPul)—orange] from 
posterior to the anterior (a–j), in coronal sections. Each section is 
approximately 200 µm apart. Bottom left section displays a represent-
ative coronal section stained for NeuN (neuronal marker) where the 
locations of the pulvinar nuclei are indicated. Top right inset shows 

the coronal levels at which the sections were obtained. Right: NeuN 
(top) and myelin (bottom) stained coronal sections showing borders 
of MPul, LPul, and IPul relative to adjacent nuclei. MDL (Mediodor-
sal thalamic nucleus, lateral part), MGNٔ (Medial geniculate nucleus), 
Po (Posterior thalamic nuclear group), Rt (Reticular nucleus), 
LGN (Lateral geniculate nucleus)
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LPul volume in the neonate- and adult-lesioned animals was 
significantly lower than that of control animals (mean ± SD, 
neonate-lesioned vs control, 5.8 ± 0.8 vs 8.4 ± 0.5  mm3, 
p < 0.0001, adult-lesioned vs control; 6.5 ± 1.0 vs 8.4 ± 0.5 
 mm3, p = 0.0015). For the neonate-lesioned animals the LPul 
volume was also significantly different between the sides 
ipsi- and contralateral to the lesions (mean ± SD, Neonate-
lesioned, Ipsilateral vs. Contralateral; 5.8 ± 0.8 vs 7.2 ± 0.7 
 mm3, p = 0.03).

Volume reduction in the LGN has been reported to be 
proportionate to the size of V1 lesion, which makes it a 
useful indicator of the degree of V1 loss (Hendrickson et al. 
2015; Atapour et al. 2017). We compared estimates of the 

LGN volume loss with corresponding estimates of pulvi-
nar volume loss. This analysis revealed no significant cor-
relation (Neonate lesions; r2 = 0.29, p = 0.26), Adult lesions 
(r2 = 0.29, p = 0.26), Fig. 5).

Neuronal density

The mean neuronal density in the MPul, LPul and IPul 
of control animals (mean ± SD) was 29,540 cells/mm3 
(± 9437), 20,560 cells/mm3 (± 5411) and 26,860 cells/mm3 
(± 7536), respectively.

To examine the effect of V1 lesions on neuronal density 
we calculated the averages of neuronal density from each 

Fig. 4  Pulvinar volume in lesioned and control hemispheres. A Sig-
nificant volume loss for the combined volume of pulvinar complex 
in the ipsilateral hemisphere of the neonate- and adult-lesioned ani-
mals. B–D Examination of pulvinar volume for the MPul, LPul and 

IPul. A significant volume decrease was detected only in the LPul, 
of both neonate- and adult-lesioned animals. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001. Bar indicates mean volume
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animal, by subdivision of the pulvinar complex, and for each 
hemisphere (Fig. 6). Comparison of neuronal density did not 
reveal any significant differences [One-way ANOVA; Pulvi-
nar complex; F (4, 23) = 0.83, p = 0.51, Fig. 6A, MPul; F (4, 
23) = 0.46, p = 0.76, Fig. 6B, LPul; F (4, 23) = 1.24, p = 0.31, 
Fig. 6C, and IPul; F (4, 23) = 1.15, p = 0.35, Fig. 6D)]. The 
results reveal that pulvinar neuronal density was not signifi-
cantly affected by V1 lesions induced either at the neonatal 
period or adulthood.

To further investigate the effects of V1 lesions on pulvi-
nar neuronal density, we also compared the ipsilateral and 
contralateral pulvinars in lesioned animals, using two-way 
repeated measures ANOVA. We found that despite the 
high variability of neuronal density among cases, the dif-
ferences between the ipsilateral and contralateral pulvinar 
neuronal density were not significant, both in the neonatal 
or adult-lesioned groups [Pulvinar complex; Lesion onset 
age; F (1, 5) = 1.59, p = 0.26, Hemisphere; F (1, 5) = 4.05, 
p = 0.1, Lesion onset age × Hemisphere; F (1, 3) = 0.28, 
p = 0.62, Fig. 7A, MPul; Lesion onset age; F (1, 5) = 1.14, 
p = 0.33, Hemisphere; F (1, 5) = 0.31, p = 0.59, Lesion onset 
age × Hemisphere; F (1, 3) = 0.03, p = 0.85, Fig. 7B, LPul; 
Lesion onset age; F (1, 5) = 1.96, p = 0.22, Hemisphere; F 
(1, 5) = 0.01, p = 0.90, Lesion onset age × Hemisphere; F (1, 
3) = 0.07, p = 0.80, Fig. 7C) and IPul; Lesion onset age; F 
(1, 5) = 2.21, p = 0.19, Hemisphere; F (1, 5) = 1.85, p = 0.23, 
Lesion onset age × Hemisphere; F (1, 3) = 1.19, p = 0.35, 
Fig. 7D].

Simple regression analysis showed no gradient of neu-
ronal density across the anterior–posterior extent of the 
pulvinar subdivisons in control [r2: MPul 0.009, LPul 0.10 
and IPul 0.05], neonatal lesion [r2: MPul 0.01, LPul 0.03 
and IPul 0.04] or adult-lesioned animals [r2: MPul 0.05, 
LPul 0.15 and IPul 0.12, Fig. 8]. Slopes were not signifi-
cantly different across the anterior–posterior extent of the 
pulvinar complex between control, neonate- and adult-
lesioned animals [MPul; F (2, 248) = 2.27, p = 0.10, LPul; 

F (2, 249) = 0.34, p = 0.71, IPul; F (2, 226) = 0.24, p = 0.78, 
Fig. 8]. Only data from the side ipsilateral to the lesion have 
been analyzed and shown in Fig. 8.

Total neuron numbers in the pulvinar

Finally, to evaluate if V1 lesions cause a loss of neurons in 
the pulvinar complex, estimates of the total neuron number 
within each section were calculated by multiplying the neu-
ronal density in each subdivision by its volume. Although 
the estimates tended to be lower on average in the hemi-
spheres ipsilateral to the lesions, this analysis did not find 
any significant differences in total neuron numbers across 
the whole pulvinar, when comparing neonate-lesioned, 
adult-lesioned and control animals [one-way ANOVA; F 
(4, 23) = 1.47, p = 0.24] (Fig. 9).

Discussion

We found no evidence of obvious retrograde neuronal 
degeneration in the pulvinar complex following V1 lesions. 
This finding supports the notion that cells in this complex 
remain capable of transferring signals to the extrastriate cor-
tex for enabling the residual visual abilities that continue 
in the absence of V1 (Hagan et al. 2019). Our findings are 
compatible with the view that the more distributed pattern 
of pulvino-cortical connectivity, when compared with the 
geniculocortical projection, spares neurons in this complex 
from retrograde degeneration triggered by the full loss of 
synaptic targets. Further, our data on neuronal density of 
MPul, LPul and IPul in control marmoset monkeys provide 
accurate, stereology-based estimates which may be useful 
in models aimed at further understanding this component 
of the visual thalamic circuitry.

Fig. 5  The interhemispheric 
volume reduction of the pulvi-
nar complex does not correlate 
with the reduction of the lateral 
geniculate nucleus (LGN) of 
the same animals. Data for both 
neonate- (r2 = 0.29, p = 0.26) 
and adult- (r2 = 0.29, p = 0.26) 
lesioned animals are shown 
separately
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Pulvinar volume

Our estimates of the volumes of IPul, LPul and MPul 
were comparable to those obtained by Warner et  al. 
(2015). Both the IPul and LPul form projections to V1 
(Adams et al. 2000; Soares et al. 2001), and therefore 
could be expected to be affected by lesions in this area. 
Yet, the small degree of volume loss in the lesioned ani-
mals was limited to the LPul. In the absence of significant 
cellular loss, we regard this volume reduction as most 
likely being due to the loss of myelinated axons, which 
has been observed following other types of injury and in 
neurodegenerative diseases (Minagar et al. 2013; Marion 
et al. 2019; Chen et al. 2020). The LPul is characterized 
by distinctive myelin-rich patches between the clusters 

of neurons, and the observed shrinkage could represent 
the loss of axons traversing this nucleus on the way to 
visual structures such as the superior colliculus. Consist-
ent with this idea, an imaging study of a macaque brain 
born with bilateral V1 lesions reported volume loss from 
the white matter tracts surrounding the pulvinar (Bridge 
et al. 2019). Another possible contributor to the volume 
loss in the LPul could be changes in the dendritic neuro-
pil of pulvinar neurons, similar to that observed in other 
structures following traumatic brain injury (Ratliff et al. 
2020). Although loss of cortical inputs may cause changes 
in the thalamic neuronal architecture, the fact that the 
volume loss was confined to the LPul (where the most 
abundant myelin tracts are found) renders this explana-
tion less likely. Nonetheless, the fact that the LPul has an 

Fig. 6  Neuronal density in the pulvinar complex (A) or each subdivision investigated in the present study (B–D). No significant difference was 
detected between groups. Each point represents the averaged pulvinar neuronal density across all pulvinar sections of a single animal
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established function in shaping neuronal responses in V1 
(Purushothaman et al. 2012) indicates that this deserves 
further study, including neuronal filling by intracellular 
injection, Golgi stains, or electron microscopy techniques.

Since volume reduction in the LPul subsequent to V1 
lesions does not correspond with a measurable degree 
of neuronal loss in the LPul, caution is required when 
interpreting data from neuropathological studies where 
volume of a neuronal structure is the only measure avail-
able. Volume measurement has been regarded as a useful 
tool in the assessment of severity of many brain disor-
ders including schizophrenia (Byne et al. 2007; Kemether 
et  al. 2003), multiple sclerosis (Mahajan et  al. 2020; 
Pareto et al. 2020), stroke (Krishnamurthy et al. 2020), 
migraines (Magon et al. 2015; Shin et al. 2019), and panic 
disorder (Asami et al. 2018). However, our data demon-
strate that this type of measurement should not be used as 
an indication of a proportional neuronal loss.

Pulvinar neuronal density

The present study was based on long (11–33 months) sur-
vival times following V1 lesions. Our previous studies in the 
LGN showed that retrograde degeneration stabilizes after a 
few months (Atapour et al. 2017). Thus, it is unlikely that the 
lack of evidence of neuronal loss in the pulvinar complex is 
due to insufficient time for neuronal loss to become evident.

The pulvinar nuclei have complex shapes, and the neu-
rons therein form several retinotopic maps (Dick et  al. 
1991; Adams et al. 2000; Soares et al. 2001; Mundinano 
et al. 2019). We explored the possibility that neuronal loss 
would be confined to a specific region by sampling neu-
ronal density across sections encompassing the entire ante-
rior–posterior extent of the IPul, MPul and LPul. Although 
our results did not uncover evidence of localized cellular 
loss, they cannot exclude the possibility of localized loss 
confined to small regions, beyond the detection power of 

Fig. 7  Interhemispheric differences of neuronal density in the pulvi-
nar complex (A) and each of its subdivisions in lesioned animals 
(B–D). Each point represents the averaged pulvinar neuronal density 

across all pulvinar sections of a single animal. Note this is an inter-
hemispheric plot of data obtained from lesioned animals shown in 
Fig. 6
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our sampling and analysis. In this regard, the small volume 
of the neurochemically distinct subdivisions of IPul (Cusick 
et al. 1993; Gutierrez et al 2000; Soares et al. 2001; Paxinos 
et al. 2012) creates challenges to the application of unbiased 
stereological analyses.

It is important to note that neuronal density estimates in 
the individuals sampled in this study were found to be vari-
able, a fact that may partially be due to differences observed 
in NeuN staining. This result is somewhat puzzling, in view 
of the fact that estimates obtained in the LGN with similar 
techniques, sometimes in the same individuals, were not 
correspondingly variable (Atapour et al. 2017). However, 
despite inter-individual differences, the interhemispheric 
estimates of neuronal density were small in all lesioned 
animals, confirming that V1 lesion did not cause detect-
able neuronal loss. Another methodological consideration 
is that although our sampling frames were designed larger 
(> 2 times) than those used in our previous studies (Atapour 
et al. 2017, 2019), to account for the presence of fiber tracts. 
The sampled regions excluded the largest fiber tracts within 
the LPul, where the shrinkage may have mainly occurred. 
This may have contributed to the lack of changes in neuronal 
density (and neuronal number) in lesioned cases, despite 
volume loss.

Retrograde degeneration of thalamocortical neurons can 
mainly be attributed to the impaired retrograde axonal trans-
port and loss of synaptic targets after axotomy (Perlson et al. 
2010; Hill et al. 2016). While numerous molecular path-
ways and pathological processes are involved in the axonal 
degeneration and neuronal death (Hill et al. 2016), defec-
tive axonal transport and changes in retrograde signaling 
pathways are the major contributing factors (Perlson et al. 
2010). Moreover, loss of corticothalamic inputs after V1 
lesion may amplify neurodegeneration due to the associ-
ated reduction in synaptic activity that may influence over-
all neuronal function (Gao et al. 2011). In this light, the 
lack of degeneration in the pulvinar nuclei following V1 
lesions could be explained by two main contributing fac-
tors. First, the anatomical connections of the pulvinar nuclei 
with V1 (in several primate species including marmoset) 
have been described as being less prominent, in comparison 
with those to extrastriate areas (Adams et al. 2000; Kaas and 
Lyon 2007). For example, projecting neurons in the LPul 
and IPul form relatively denser connections with V2 than 
with V1 (macaque; Benevento and Rezak 1976). In con-
trast, the LGN is primarily connected to V1, but has sparser 
connections with V2 (macaque; Bullier and Kennedy 1983) 
and other areas (marmoset; Huo et al. 2019). Second, there 
is evidence from double-labeling experiments in macaques 
that single pulvinar neurons may form projections to more 
than one area, such as V1 and V2 (Kennedy and Bullier 
1985) or V1 and V4 (Lysakowski et al. 1988). These pro-
jections terminate superficially in V1, and thus are likely 

Fig. 8  Neuronal density across the anterior–posterior axis of pulvi-
nar subdivisions. The averaged neuronal density along the posterior–
anterior extent of medial pulvinar (MPul, A), lateral pulvinar (LPul, 
B) and inferior pulvinar (IPul, C) is shown for control, neonate- and 
adult-lesioned marmosets. Each data point is averaged neuronal den-
sity obtained from a section. Each section is 200 µm apart

Fig. 9  Estimated number of neurons in the pulvinar complex for 
lesioned and control animals. Each point represents the averaged 
number obtained from a single animal. No significant difference was 
observed among groups. Bars indicates means
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of calbindin-positive, ’matrix’ relay cell origin, known to 
terminate diffusely (Jones 2001). In addition, single-label 
experiments have revealed that the pulvinar projecting zones 
to V1 and extrastriate areas overlap extensively, reiterating a 
distributed connectivity (Cebus monkey; Soares et al. 2001). 
These alternative targets for pulvinar neurons could help sus-
tain pulvinar neurons after V1 lesions, preventing retrograde 
degeneration. Whereas the existence or distribution of pulvi-
nar neurons that only project to V1 has not been established, 
the current findings suggest that, if they exist, they must not 
be concentrated in a manner that leads to a circumscribed 
degeneration zone in this nuclear complex.

Lesions in infancy and adulthood

Our results showed no evidence of a differential effect of 
V1 lesions sustained in early postnatal life (6 weeks of age), 
versus adulthood. This is significant in view of the fact that 
the first of these periods is associated with developmental 
changes in the visual cortex (Missler et al. 1993a, b; Bourne 
et al. 2005; Bourne and Rosa 2006), which creates opportu-
nity for significant rearrangement of the thalamocortical pro-
jection pattern (Warner et al. 2015). This rearrangement has 
been associated with better preservation of visual function 
following V1 lesions in infancy, compared to adulthood (Fox 
et al. 2020). Our results indicate that the plasticity mecha-
nisms underlying such changes do not involve differential 
survival of neurons in the pulvinar.

Conclusions

In summary, our results show that the pulvinar nuclei remain 
relatively largely unaffected following V1 lesions either in 
infancy or adulthood. These findings are in line with the 
hypothesis that the pulvinar complex has a role in supporting 
residual visual capabilities (Rodman et al. 1990; Bridge et al. 
2016; Takakuwa et al. 2021), but do not provide additional 
evidence which can be correlated to the better functional 
outcomes of lesions in early life. Finally, they also dem-
onstrate that a moderate degree of volume loss can occur 
in a neural structure without concomitant neuronal death, 
a conclusion which may have practical significance in the 
interpretation of neuropathological mechanisms from non-
invasive imaging data.
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