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Abstract
Fetal brain MRI has become an important tool for in utero assessment of brain development and disorders. However, quantita-
tive analysis of fetal brain MRI remains difficult, partially due to the limited tools for automated preprocessing and the lack 
of normative brain templates. In this paper, we proposed an automated pipeline for fetal brain extraction, super-resolution 
reconstruction, and fetal brain atlasing to quantitatively map in utero fetal brain development during mid-to-late gestation in 
a Chinese population. First, we designed a U-net convolutional neural network for automated fetal brain extraction, which 
achieved an average accuracy of 97%. We then generated a developing fetal brain atlas, using an iterative linear and nonlin-
ear registration approach. Based on the 4D spatiotemporal atlas, we quantified the morphological development of the fetal 
brain between 23 and 36 weeks of gestation. The proposed pipeline enabled the fully automated volumetric reconstruction 
for clinically available fetal brain MRI data, and the 4D fetal brain atlas provided normative templates for the quantitative 
characterization of fetal brain development, especially in the Chinese population.

Keywords U-net convolutional network · Fetal brain extraction · Chinese fetal brain atlas · Morphological development · 
Super-resolution reconstruction

Introduction

Magnetic resonance imaging (MRI) provides superior and 
versatile contrasts of the gray and white matter structures 
relative to other imaging modalities, such as ultrasound. 
It is also one of the few clinical options to examine the 
fetal brains with hardly known safety concerns (Chartier 
et al. 2019) compared to other ionizing radiation imaging 

methods, and its role in fetal brain examination has been 
recognized over the years (Griffiths et al. 2017; Weisstanner 
et al. 2015; Jarvis and Griffiths 2019). In utero MRI offers 
exquisite anatomical details of the fetal brain within mil-
limeter resolution and has become an important tool for pre-
natal diagnosis, complementary to ultrasound examination 
(Nielsen and Scott 2017). For instance, in utero MRI plays 
an important role in identifying gyral and sulcal abnormali-
ties (Rolo et al. 2011), corpus callosum dysgenesis (Glenn 
2006), and abnormal cortical maturation (Fogliarini et al. 
2005) in the fetal brain. Moreover, quantitative analysis of 
in utero images has further improved our understanding of 
fetal brain development (Makropoulos et al. 2018; Scott 
et al. 2011).

Three-dimensional (3D) high-resolution images are 
often required for quantitative analysis of the brain, which, 
however, remains challenging for in utero MRI, due to the 
excessive and unpredictable fetal and maternal abdominal 
motion. Although direct 3D imaging of the fetal brain was 
possible in animal studies with anesthesia, respiratory gat-
ing, navigator-based motion correction (Wu et al. 2015), 
and retrospective motion correction (Kochunov et  al. 
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2010), it remains extremely challenging for human studies, 
and clinical fetal brain MRI is predominantly performed 
with 2D multi-slice protocols. Slice-to-volume registration 
(SVR) (Rousseau et al. 2006; Jiang et al. 2007; Kainz et al. 
2015) of 2D multi-slice images with the super-resolution 
(SR) technique (Gholipour et al. 2010; Kuklisova-Murgas-
ova et al. 2012; Rousseau et al. 2010) is commonly used 
to achieve the 3D volumetric reconstruction of the fetal 
brains. To achieve accurate SR reconstruction, extraction 
of the fetal brain from in utero images is required, which 
relies on the manual delineation of the brain contours on 
2D slices in all three orientations. This labor-intensive 
process inhibits large data analysis. Several brain extrac-
tion methods have been proposed and are widely available 
in published toolboxes, such as the Brain Extraction Tool 
(BET) (Jenkinson et al. 2005) and others (Cox 1996; Lin 
et al. 2003; Iglesias et al. 2011), which were developed for 
the adult brain and usually fail for the fetal brain, due to 
the complex in utero and abdominal tissues surrounding 
the fetal brain. Deep learning-based segmentation meth-
ods have been proposed in recent years (Kleesiek et al. 
2016; Salehi et al. 2017; Ebner et al. 2020), which have 
also been extended to segment the fetal brain and achieved 
higher segmentation accuracy compared to the traditional 
approaches. Therefore, we proposed a model-based U-net 
(Ronneberger et al. 2015) to directly segment the fetal 
brain from routine clinical in utero MRI data acquired in 
three orientations, as a preprocessing step before 3D volu-
metric reconstruction.

Another challenge for in utero fetal brain MRI is that the 
rapid developmental changes of the fetal brain impose dif-
ficulties for radiological examinations that mainly rely on 
visual inspection and empirical assessment. It is essential to 
have normative fetal brain templates at matching gestational 
ages (GA) to compare with. Brain templates or atlases play 
an important role in quantitative image analysis. Currently, 
the development of fetal brain atlases is limited compared 
with that of neonatal, pediatric, and adult brain atlases, due 
to the difficulties in the acquisition and preprocessing. Initial 
attempts have been made. Habas et al. developed a proba-
bilistic fetal brain MRI atlas using clinical MR scans of 20 
young fetuses with GA ranging from 20.6 to 24.7 weeks 
(Habas et al. 2010). Serag et al. constructed a 4D atlas of the 
developing fetal brains between 23 and 37 weeks of gesta-
tional, using T2 weighted MR images from 80 fetuses (Serag 
et al. 2012a, b) (https:// brain- devel opment. org/ brain- atlas 
es/ fetal- brain- atlas es/ fetal- brain- atlas- serag/). Gholipour 
et al. established an unbiased four-dimensional atlas of the 
fetal brain using high-resolution MRI of 81 normal fetuses 
between 19 and 39 weeks of gestation (Gholipour et al. 
2017) and made it a public resource (http:// crl. med. harva rd. 
edu/ resea rch/ fetal_ brain_ atlas/).

However, all the aforementioned fetal brain atlases were 
established in Caucasian or mixed populations. It is known 
that there are considerable anatomical and functional differ-
ences between Caucasian and Chinese cohorts in the pediat-
ric, adolescent, and adult brains (Lee et al. 2005; Tang et al. 
2010; Uchiyama et al. 2013). These differences likely start 
in the fetal period due to both genetic and environmental 
factors (Rao et al. 2017; Chee et al. 2009; Tang et al. 2010). 
Therefore, the existing atlases may not be ideal for the anal-
ysis of fetal brains in a non-Caucasian population. Given 
the rapid development of the fetal brain, a small difference 
between the subject and atlas may have a noticeable impact. 
Here, we generated the first version of Chinese fetal brain 
atlas between 23–36 weeks of gestation, which allowed us to 
quantitatively characterize the 3D morphological evolution 
of the fetal brain.

Methods

Dataset

In our study, all the data were collected retrospectively at 
Women’s Hospital of Zhejiang University School of Medi-
cine between the years of 2013–2019. The research proto-
cols were approved by the local Institutional Review Board 
with a waiver of consent. In utero MRI images from preg-
nant women between 21 and 40 weeks of pregnancy were 
included in this study. The gestational age was dated accord-
ing to the first day of the last menstrual period.

The scans were performed at a 1.5 T GE scanner (Signa 
Hdxt) with an 8-channel cardiac coil. No sedation or con-
trast agents were administered in this study. Images were 
acquired using the single shot Fast Spin Echo (ssFSE) or the 
T2-prepared balanced Steady State Free Precession (bSSFP) 
sequence. The ssFSE data were acquired with repetition 
time (TR) = 2400 ms, echo time (TE) = 130 ms, field-of-
view (FOV) = 360 × 360 mm, imaging matrix = 512 × 512 
(in-place resolution = 0.7 × 0.7 mm), and approximately 
20 slices with slice thickness of 4 ± 0.1 mm and no slice 
gap. The bSSFP data were acquired at TR = 4.7  ms, 
TE = 2.1 ms, flip angle = 55º, FOV = 380 × 380 mm, imaging 
matrix = 512 × 512 (in-place resolution = 0.74 × 0.74 mm), 
and approximately 16 slices with slice thickness of 
5 ± 0.1 mm and no slice gap.

In total, we obtained 636 stacks from 212 fetal brains 
(each fetus has three stacks of slices in axial, coronal, and 
sagittal orientations) after visual inspection for image qual-
ity. The number of stacks at each GA for axial, coronal, 
and sagittal scans with either bSSFP or ssFSE sequences is 
presented in Fig. 1. These data were used for two purposes. 
(1) To train the U-net based fetal brain extraction, all 636 
scans were used. Note that for this purpose, the three stacks 

https://brain-development.org/brain-atlases/fetal-brain-atlases/fetal-brain-atlas-serag/
https://brain-development.org/brain-atlases/fetal-brain-atlases/fetal-brain-atlas-serag/
http://crl.med.harvard.edu/research/fetal_brain_atlas/
http://crl.med.harvard.edu/research/fetal_brain_atlas/
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of a fetal brain did not have to be of the same sequence type. 
Since the SSFSE and bSSFP images in this study had com-
parable contrasts, they were jointly used to train the U-net. 
(2) To build the fetal brain atlas, data acquired with bSSFP 
in all three orientations (n = 95) were used. We included 
only the normal-developing fetuses, and excluded fetuses 
with suspected fetal growth restriction based on ultrasound 
screening, fetal intracranial abnormalities such as ventricu-
lomegaly, cerebral hemorrhage, chromosome abnormali-
ties, gestational diabetes mellitus, and maternal intrauterine 
infections including cytomegalovirus and toxoplasmosis, 
and abnormalities in the rest of the body. 47 of the 95 fetal 
brains were diagnosed as radiologically and clinically nor-
mal by experienced radiologists and clinicians (ZY, YG, and 
LK). After removing 12 of the 47 fetal brains that did not 
have sufficient image quality after volumetric reconstruction 
for atlas generation (small motion artifacts or insufficient 
SNR), 35 normally developing fetal brains between 23 and 

36 weeks of gestation were selected (five brains every two 
gestational weeks).

Fetal brain extraction

D U‑Net architecture

The fetal brain masks were manually delineated by a trained 
research assistant on all 636 scans and used as the ground 
truth for training in the following network. Manual brain 
extraction took about thirty to forty minutes per fetal brain 
(including three orientations), depending on the GA of the 
fetal brain and the quality of the images.

Figure 2 shows the U-Net CNN structure for fetal brain 
segmentation. The U-net has an approximately symmet-
ric structure, which consists of a contracting path and an 
expanding path. Each convolutional layer is followed by 
a ReLU nonlinear layer. In the contracting path, a 2 × 2 

Fig. 1  Distribution of the fetal brain MRI data used for the U-net based fetal brain extraction. The images were acquired in the axial (a), coronal 
(b), and sagittal (c) orientations between 21–40 gestational weeks, by SSFSE and bSSFP sequences
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max-pooling layer is applied after two 3 × 3 convolutional 
layers and the number of feature channels gets doubled. 
Correspondingly, the expanding path utilizes a 2 × 2 up-
sampling layer after a convolutional operation to halve the 
feature channels. A dropout rate of 0.5 is used before the 
last pooling layer and the first up-sampling layer. The sizes 
of the symmetric structures between the contracting and the 
expanding paths are kept the same. Therefore, the outputs of 
the contracting path are directly concatenated with the cor-
responding layers of the expanding path. In the final layer, a 
3 × 3 convolutional layer converts the feature maps to label 
probability, and a 1 × 1 convolution layer with linear output 
predicts the fetal brain contour.

Images acquired in three orientations were separately 
trained using independent U-net, which shared the same net-
work structure. There were 212 scans from 212 fetal brains 
for each network, and we used individual slices as input data 
to the U-nets. The data were randomly divided into 6:2:2 for 
training, validation, and testing within each gestational week 
bin. Four-fold cross-validation was applied to the training 
and validation sets and then averaging the results from the 
cross-validation gave the final validation outcome. Image 
data in the training and validation sets were enhanced by 
ten times with image translation ranged 0–20 pixels, rota-
tion ranged 0–20 degrees, random cropping, and vertical 
mirror symmetry (Wang and Perez 2017).

We applied the Softmax method to measure the loss 
function for every pixel, and the cross-entropy loss func-
tion between predicted results and ground truth was mini-
mized on 30 epochs. The U-net network was trained using 
an ADAM optimizer with an initial learning rate of 1 ×  10–6 
that was multiplied by 0.1 for every 10 epochs. The training 
time was approximately six hours with four parallel Nvidia 

Geforce GTX2080Ti GPUs. For testing, we obtained a 
probability image as the output of the network, and the final 
mask was determined using a threshold of 0.9. The choice of 
threshold (between 0.1 and 0.9) did not affect the segmenta-
tion accuracy.

Evaluation of the segmentation accuracy

The test set of fetal brain images was also segmented using 
an open-source toolkit “NiftyMIC” (Ebner et al. 2018a, b, 
2020) (https:// github. com/ gift- surg/ Nifty MIC), which incor-
porates fetal brain extraction using CNNs for localization 
and segmentation. The neighborhood filling was performed 
for both the U-net and the NiftyMIC outputs to remove the 
holes and islands. The performance of U-Net and NiftyMIC 
was assessed by comparison with the manual brain segmen-
tation based on the Dice score, intersection over union 
(IOU), sensitivity, and specificity in three orientations. 
Based on the predicted brain mask A and the ground truth 
mask B, the true positive (TP), false positive (FP), true nega-
tive (TN), and false negative (FN) rates were calculated, and 
Dice is defined as 2|A|∩|B|

|A|+|B|
=

2TP

2TP+FP+FN
 , IOU as |A|∩|B|

|A|∪|B|
 , speci-

ficity as TN

TN+FP
 , and sensitivity as TP

TP+FN
.

D volumetric reconstruction

3D fetal brain images were reconstructed using an SR 
pipeline (Rousseau et al. 2006) based on the 2D fetal 
brain images extracted in three orientations. We used 
an open-source toolkit “BTK” (Rousseau et  al. 2013) 
(https:// github. com/ rouss eau/ fbrain) to perform global 
histogram matching among the axial, sagittal, and coronal 

Fig. 2  The U-net convolutional network for fetal brain segmentation. 
The network consisted of a contraction path and an expansion path. 
The convolution layer was set to have a kernel size of 3 × 3 and stride 

of 2 with zero-padding. The number of features is labeled above the 
network layers, and the types of connection between layers are indi-
cated in the lower right corner

https://github.com/gift-surg/NiftyMIC
https://github.com/rousseau/fbrain
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images, non-local denoising, SVR registration, and SR 
reconstruction. The 3D fetal brain images were recon-
structed into 0.8 mm isotropic resolution.

Generation of the fetal brain atlas

Before the atlas generation, the image intensities of indi-
vidual fetal brains were normalized into 0–1 to avoid the 
atlas dependency on a single subject. We designed an iter-
ative linear and nonlinear registration framework to con-
struct the fetal brain atlas based on SR reconstructed 3D 
fetal brains. We selected five normal brains from every 
two gestational week bins to generate population tem-
plates. The atlas generation pipeline is shown in Fig. 3. 
Among the five brains in each bin, we carried out pair-
wise registrations (Serag et al. 2012a) by selecting one 
of the brains as a target image, and the rest of the brains 
were registered to the target brain, by affine and deform-
able registration using Symmetric image Normalization 
(SyN) (Avants et al. 2008) in the ANTs toolbox (https:// 
github. com/ ANTsX/ ANTs). This procedure was applied 
to each of the five brains and produced a group aver-
age for every brain. Averaging the five groups averaged 
images generated the initial template (IA1). The use of 
pairwise registrations eliminated bias in the atlas toward 
any of the original images. In the first iteration, the five 
brains were registered to the IA1 from their native space 
using affine and deformable registration, and averaged 
to obtain an averaged template (IA2). In the second itera-
tion, all brains were transformed to IA2 from their native 
space with affine and deformable registration, and aver-
aged to get an averaged template (IA3). The procedure 
was repeated 15 times until the template became stable 
(Supplementary Fig. 1).

Mapping the morphological fetal brain 
development

To quantify the morphological changes of the fetal brain 
parenchyma, we removed the cerebrospinal fluid (CSF) on 
the fetal brain atlas. The atlas images were first segmented 
by the Developing Brain Region Annotation with Expec-
tation–Maximization (Draw-EM) tool (Makropoulos et al. 
2014) and the segmentation results were then manually cor-
rected by a trained research assistant in ROIEditor (https:// 
www. mrist udio. org/). Note we did not perform the segmen-
tation on individual fetal brains because the segmentation 
accuracy of the individual brains based on Draw-EM was 
poor and extensive manual corrections would be needed 
which is subject to manual errors.

Based on the CSF-free fetal brain atlas, morphologi-
cal changes between gestational stages were quantified by 
the transformation between adjacent gestational stages. 
For instance, transforming the template at 23–24 weeks to 
the template at 25–26 weeks to obtain the morphological 
change from 23.5 weeks to 25.5 weeks. The transformation 
was achieved by rigid registration followed by SyN-based 
deformable registration. For each pair of transformations, 
the deformation field was computed using the log-Jacobian 
matrix of the deformable transformation. The determi-
nant of the log-Jacobian matrix was used to quantify the 
amount of morphological differences between adjacent ges-
tational stages. In addition, the dynamic changes from 23 
to 36 weeks of gestation can be captured continuously by 
interpolating the log-Jacobian matrices, and predicted brain 
atlas can be obtained at any given GA.

Fig. 3  Pipeline for fetal brain atlas generation. Five normal develop-
ing fetal brain images were chosen at a given gestational stage (every 
two weeks). Pairwise registrations using affine and deformable reg-
istration were performed to generate the initial template  IA

1. In the 

first iteration, the five fetal brains were registered to the  IA
1 from their 

native space by affine and deformable transformation to generate  IA
2. 

The procedure was iterated 15 times to produce the final template

https://github.com/ANTsX/ANTs
https://github.com/ANTsX/ANTs
https://www.mristudio.org/
https://www.mristudio.org/
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Results

Figure 4 shows representative segmentation results of fetal 
brains at different GAs in the sagittal, coronal, and axial 
orientations. The automated segmentation by the U-net 
(magenta contours), mostly overlapped with the manually 
delineated ground truth (green contours). Table 1 demon-
strates the segmentation performance of the U-net method 
compared with the NiftyMIC method in the test set, in three 
orientations. The U-net method yielded an average Dice 
score of 0.97 across the three brain orientations (0.9774, 
0.9759, and 0.9564 in the coronal, sagittal, and axial orienta-
tions, respectively). In comparison, the average Dice score 
of NifityMIC based segmentation was 0.90 (0.9266, 0.9285, 
and 0.8330 in the coronal, sagittal, and axial orientations, 

respectively) and lower IOU, sensitivity, and specificity in 
all three orientations. 

We observed a GA-dependent variation of the segmenta-
tion accuracy in our results (Fig. 5), especially in the axial 
images. The relatively low accuracy at early GA (before 
25 weeks) was likely to be related to the relatively small 
number of training data (Fig. 1) and relatively large mor-
phologic change at early GA compared to later stages. 
Besides, Dice scores in the coronal and sagittal orientations 
were higher than those in the axial orientation, which was 
possibly due to the difficulty in segmenting the bottom part 
of the fetal brain in the axial orientation, e.g., the medulla 
oblongata and the cerebellum. Nevertheless, the overall high 
segmentation accuracy was sufficient for SR reconstruction.

Based on the U-net masked images, we constructed 
the 3D fetal brain images using SR reconstruction 

Fig. 4  The contours of the U-net predicted brain mask (in magenta) and the ground truth (in green) are shown for fetal brains at different gesta-
tional weeks, in sagittal, coronal, and axial orientations

Table 1  The performance of the U-net model and the NiftyMIC toolbox. The Dice score, IOU, specificity, and sensitivity of the segmentation 
results in three orientations were compared between the two methods

Dice IOU

Methods Coronal Sagittal Axial Coronal Sagittal Axial

U-net 0.9774 ± 0.0074 0.9759 ± 0.0121 0.9564 ± 0.0176 0.9558 ± 0.0139 0.9531 ± 0.0226 0.9170 ± 0.0320
NiftyMIC 0.9266 ± 0.0633 0.9285 ± 0.0769 0.8330 ± 0.1468 0.8685 ± 0.0924 0.8742 ± 0.1090 0.7364 ± 0.1860

Specificity Sensitivity

Methods Coronal Sagittal Axial Coronal Sagittal Axial

U-net 0.9994 ± 0.0003 0.9992 ± 0.0004 0.9982 ± 0.0009 0.9762 ± 0.0109 0.9744 ± 0.0216 0.9723 ± 0.0128
NiftyMIC 0.9976 ± 0.0042 0.9975 ± 0.0090 0.9882 ± 0.0154 0.9762 ± 0.0176 0.9150 ± 0.0393 0.9477 ± 0.0194
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(Supplementary Fig.  2). We then constructed the fetal 
brain atlas by computing the average brain templates every 
two weeks from 23 to 36 gestational weeks. The 4D spati-
otemporal fetal brain atlas with an isotropic resolution of 
0.8 mm is shown in Fig. 6, in sagittal, coronal, and axial 
views, which characterized the drastic changes in the shape 
and size of the fetal brains. It was observed that between 
23 and 26 weeks of gestation, the development of calcarine 
fissure and cingulate gyrus were prominent; part of the pri-
mary sulci, precentral gyrus, and post-central gyrus were 
formed between 27 and 30 weeks of gestation; the rest of 
the primary sulci and part of the secondary sulci appeared 
between 31 and 34 weeks of gestation; and between 34 and 
36 weeks of gestation, the ventricles gradually shrink due 

to the expansion of brain parenchyma. In addition, to fill 
the gestational gap (2 weeks) in the current atlas, we inter-
polated the transformation matrices between adjacent GA 
to generate pseudo-templates at a 0.5-week interval (Sup-
plementary Fig. 3), or even finer intervals (Supplementary 
Video) for better visualization of the dynamic process.

The morphological changes between adjacent gestational 
stages are illustrated in Fig. 7 in 2D and 3D views. The 
color bar represents the amount of morphological deforma-
tion when transforming one template to the next, indicat-
ing the rate of brain growth from one gestational stage to 
the next. Dramatic fetal brain growth was observed dur-
ing early gestation, e.g., from 23.5 to 27.5 weeks, and the 
growth rate slowed down towards late gestation. Moreover, 

Fig. 5  Relation between the Dice scores from the U-net segmentation and GA in three orientations. The solid line indicates the mean and the 
shaded region indicates the standard deviation of the Dice scores at varying gestational weeks

Fig. 6  Fetal brain atlas was generated for GAs of 23–24, 25–26, 27–28, 29–30, 31–32, 33–34, and 35–36 weeks, in sagittal, coronal, and axial 
views
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a posterior-to-anterior developing pattern was observed. 
The log-Jacobian map of brain transformation from 27.5 to 
29.5 weeks indicated the fastest changes in the central and 
posterior brain including the central sulcus, pre- and post-
central gyri, and occipital lobe regions (white arrows), while 
the transformation from 31.5 to 33.5 weeks suggested promi-
nent changes in the frontal-orbital regions (blue arrows).

Discussion

In this work, we proposed a fully automatic segmentation 
method based on U-net, and together with the SR recon-
struction, 3D images of the fetal brains were obtained in 
an automated manner. Moreover, we generated a 4D spati-
otemporal atlas in a Chinese population, based on which, we 
quantitatively mapped the fetal brain development from 23 
to 36 weeks of gestation. To the best of our knowledge, the 
existing fetal brain atlases were collected from the Cauca-
sian populations, which might not be entirely appropriate for 
analysis of fetal brain development in a different population, 
as indicated by many studies (Tang et al. 2010; Liang et al. 
2015; Rao et al. 2017; Zhao et al. 2019b). Therefore, the 
establishment of a dedicated Chinese fetal brain atlas pro-
vided a normative brain template for the quantitative char-
acterization of fetal brain development in related studies and 

comparison with abnormally developing fetuses as a tool for 
prenatal disease detection.

For quantitative assessment and the volumetric recon-
struction of the fetal brain, accurate and automatic fetal 
brain segmentation is a prerequisite. Extracting the fetal 
brain from the in utero MRI image is an entirely differ-
ent task than skull stripping in the adult brain. Due to the 
complex in utero compositions (amniotic fluid, placental, 
fetal body), the maternal body tissues surrounding the fetal 
brain, and the random fetal brain orientation, the fetal brain 
is often not the gravitational center of the image. Therefore, 
traditional brain extraction methods that rely on image reg-
istration (Wright et al. 2014; Taimouri et al. 2015; Tourbier 
et al. 2017) mostly fail. Deep-learning methods open a new 
avenue for this challenging task (Khalili et al. 2019; Zhao 
et al. 2019a; Salehi et al. 2017; Ebner et al. 2020). Salehi 
et al. segmented the fetal brain with two different Auto-Net 
architectures, including a voxelwise CNN architecture and a 
fully convolutional network based on the U-net architecture, 
which achieved Dice scores of 0.9597 and 0.9380, respec-
tively, using a dataset of 75 images (Salehi et al. 2017). 
Ebner et al. proposed two separate CNNs for localization 
and segmentation of the fetal brain using 114 scans from 
normal and spina bifida fetuses for training and achieved 
a Dice coefficient around 0.935 (Ebner et al. 2020). Both 
studies have an optimized CNN structure, but the segmenta-
tion accuracies were moderate, possibly due to the limited 

Fig. 7  The morphological changes of fetal brains between adjacent 
gestational stages. The determinant of the log-Jacobian matrix, which 
represented the amount of morphological change between adjacent 

fetal brain templates, was rendered in 2D and 3D views. The colors 
indicate the amount of morphological expansion (red) or retraction 
(blue, e.g., when cortical folding takes place)
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training data. There were also other studies using deep learn-
ing methods for fetal brain tissue segmentation (Khalili et al. 
2019; Zhao et al. 2019a). Here, we proposed a U-net model 
to segment the fetal brain from 212 scans, which achieved 
an average Dice of 0.97 (± 0.01) and robust performance 
for images in all three orientations across a full gestational 
age from 23 to 38 weeks. Considering that the segmentation 
was performed on routine clinical scans with relatively thick 
slices and variable image qualities, the segmentation accu-
racy was comparable or even superior to the existing method 
(Table 1) and was sufficient for the subsequent volumetric 
reconstruction. Besides, the 2D U-net was computationally 
efficient, which only took 2–3 s to extract one fetal brain. 
This accurate, robust, and convenient tool is readily translat-
able to clinical studies.

The generation of fetal brain atlases becomes feasible 
with the automated fetal brain extraction and volumetric 
reconstruction pipeline. We took a deformable registration 
approach to generate a 4D spatiotemporal fetal brain atlas 
from 23 to 36 weeks of gestation. A number of population 
brain atlas generation methods have been proposed (Schuh 
et al. 2018; Makropoulos et al. 2016; Gousias et al. 2012; 
Serag et al. 2012a). Especially, for the generation of the fetal 
brain atlases, Habas et al. developed age-specific MR tem-
plates and tissue probability maps of the fetal brain, based on 
group-wise registration of manual segmentations and voxel-
wise nonlinear modeling (Habas et al. 2010). Gholipour 
et al. developed an algorithm to construct an unbiased four-
dimensional atlas of the developing fetal brain by integrating 
symmetric diffeomorphic deformable registration in space 
with kernel regression in age (Gholipour et al. 2017). Here 
we used iterative deformable registration to ensure gradual 
convergence of the individual brains to the template. The 
fact that the iteration converged in 15 iterations indicated 
the average template became representative of the individ-
ual brains at a given GA. This approach has been used in 
generating neonatal brain atlases (Alexander et al. 2017) 
and the SyN algorithm has been demonstrated to be among 
the best performing deformable registration methods (Klein 
et al. 2009; Ou et al. 2014). For a 4D atlas with a temporal 
dimension, some strategies have been proposed to improve 
the temporal consistency of atlases between timepoints, 
such as the adaptive kernel regression method (Serag et al. 
2012a) and the GroupWise approach (Schuh et al. 2018). 
However, since we had a limited number of brains (n = 35 
across 23–36 weeks) and their GA information was limited 
to integers of weeks, these strategies did not apply to our 
dataset.

High-quality fetal brain atlases in the Caucasian or 
mixed population have been reported (Serag et al. 2012a, 
b; Gholipour et al. 2014, 2017; Khan et al. 2019). Several 
comparative studies showed considerable anatomical differ-
ences between races in children and adults, in terms of the 

bran size, shape, and topology (Tang et al. 2010; Liang et al. 
2015; Rao et al. 2017; Zhao et al. 2019b). For instance, Zhao 
et al. showed that in pediatric brains between 6–12 years 
old, the major anatomical differences between Chinese and 
Caucasian brain templates were located in the bilateral fron-
tal and parietal areas (Zhao et al. 2019b). Tang et al. found 
significant differences in brain shape and size between Chi-
nese and Caucasian young males, such as the brain length, 
width, height, AC-PC line distance, and their perspective 
ratios (Tang et al. 2010). It is possible that the developmen-
tal differences begin in the fetal period, and, therefore, it is 
essential to build a racial specific fetal brain atlas for related 
studies. It would be ideal to perform a comparison between 
the Chinese atlas with the existing ones. However, since 
all of our imaging data were retrospectively collected from 
pure clinical scans at 1.5 T which typically had low resolu-
tion (thick slices), the current version of our atlas could not 
match the existing high-resolution atlas (Gholipour et al. 
2017) for a fair comparison. Higher-resolution data acquired 
with matched protocols are required to elucidate any ethnic 
differences. On the other hand, the current atlas is still suf-
ficient for capturing the overall brain development and could 
serve as suitable references for analyzing clinical fetal MRI 
data acquired at a similar resolution, e.g., for abnormality 
detection purpose.

In addition to visual examination of the fetal brain devel-
opment from the 4D atlas, we quantitatively characterized 
the morphological changes between gestational stages based 
on the deformation maps. Atlas-based morphological com-
parison based on population atlas is commonly used for 
quantifying developing/group differences, e.g., to charac-
terize neonatal brain development (Schuh et al. 2014; Breu 
et al. 2013) or to compare the fetal and neonatal brains. The 
deformation maps between the fetal atlases of neighboring 
GAs revealed that the calcarine fissure, the primary gyrus, 
pre- and post-central gyri, and secondary gyrus developed 
in sequential order, which agreed with previous findings 
of the spatiotemporal developmental pattern (Bendersky 
et al. 2006; Monteagudo and Timor‐Tritsch 1997). The fast 
changes in the central sulcus and the precentral/postcentral 
gyri indicated early development of the preliminary motor 
and sensory areas, while the subsequent changes in the supe-
rior and frontal gyri may relate to the development of higher-
order functions. The timeline captured by the deformation 
maps agreed well with the critical milestones of fetal brain 
development (Garel et al. 2001, 2003).

In addition to the aforementioned issues, there are sev-
eral other limitations in the current study. First, it would be 
attractive to quantify the development of individual brain 
regions, which however, would require detailed segmenta-
tion of individual brains. Automated segmentation of the 
fetal brain is difficult, especially given the limited resolution, 
and requires extensive manual correction; and therefore, 
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analysis of individual brains was not performed in our study. 
Second, the number of normal developing fetal brain sam-
ples was relatively small in our study. Therefore, we were 
only able to generate a population template for every two 
gestational weeks, assuming relatively small anatomical 
changes within the two-week periods. Finer GA intervals 
should be used when more data become available.

Conclusion

In this work, we proposed an automated fetal brain analysis 
pipeline, including brain extraction, 3D volumetric recon-
struction, atlas generation, and quantification of brain mor-
phological development. Using this automated approach, we 
were able to reconstruct fetal brains across gestation and 
generate a 4D fetal brain atlas between 23 and 36 gesta-
tional weeks in a Chinese population. The spatiotemporal 
atlas allowed us to depict the normal fetal brain development 
process and provided a normative reference for fetal brain 
examinations in clinical practice.
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