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Abstract
While previous structural-covariance studies have an advanced understanding of brain alterations in Parkinson’s disease 
(PD), brain–behavior relationships have not been examined at the individual level. This study investigated the topological 
organization of grey matter (GM) networks, their relation to disease severity, and their potential imaging diagnostic value in 
PD. Fifty-four early-stage PD patients and 54 healthy controls (HC) underwent structural T1-weighted magnetic resonance 
imaging. GM networks were constructed by estimating interregional similarity in the distributions of regional GM volume 
using the Kullback–Leibler divergence measure. Results were analyzed using graph theory and network-based statistics 
(NBS), and the relationship to disease severity was assessed. Exploratory support vector machine analyses were conducted 
to discriminate PD patients from HC and different motor subtypes. Compared with HC, GM networks in PD showed a higher 
clustering coefficient (P = 0.014) and local efficiency (P = 0.014). Locally, nodal centralities in PD were lower in postcentral 
gyrus and temporal-occipital regions, and higher in right superior frontal gyrus and left putamen. NBS analysis revealed 
decreased morphological connections in the sensorimotor and default mode networks and increased connections in the sali-
ence and frontoparietal networks in PD. Connection matrices and graph-based metrics allowed single-subject classification 
of PD and HC with significant accuracy of 73.1 and 72.7%, respectively, while graph-based metrics allowed single-subject 
classification of tremor-dominant and akinetic–rigid motor subtypes with significant accuracy of 67.0%. The topological 
organization of GM networks was disrupted in early-stage PD in a way that suggests greater segregation of information 
processing. There is potential for application to early imaging diagnosis.
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Introduction

Parkinson’s disease (PD) is a progressive neurological disor-
der with a variety of motor and non-motor features (Jankovic 
2008). The primary pathologic process involves disruptions 
in the nigrostriatal dopamine system, but neuroimaging has 
demonstrated functional and structural abnormalities in 
multiple brain regions (Weingarten et al. 2015; Atkinson-
Clement et al. 2017; Pan et al. 2017; Ji et al. 2018; Suo 
et al. 2021). Integrated analysis of the whole brain network 
may provide a more comprehensive understanding of brain 
abnormalities in PD.

The connectome (Sporns et al. 2005) approach, which 
models brain anatomy and function using graph analysis, 
characterizes brain anatomy as a complex network of nodes 
and edges from which graph metrics can be calculated to 
describe network attributes (Craddock et al. 2013). The brain 
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has ’small-world’ organization (Watts and Strogatz 1998), 
which facilitates the efficient segregation and integration 
of complex networks with low energy and wiring costs 
(Rubinov and Sporns 2010; Liao et al. 2017). Using nonin-
vasive neuroimaging, graph theoretical analysis has revealed 
PD-related disconnection patterns in both functional (Suo 
et al. 2017; Berman et al. 2016; Sang et al. 2015; Luo et al. 
2015; Fang et al. 2017; Ma et al. 2017b; Gottlich et al. 2013; 
Vancea et al. 2019) and structural white matter networks 
(Galantucci et al. 2017; Shah et al. 2017; Kamagata et al. 
2018; Tinaz et al. 2017; Aarabi et al. 2015; Wen et al. 2017a, 
b; Nigro et al. 2016; Abbasi et al. 2018; Mishra et al. 2020). 
However, little is known about whether PD disrupts the 
topological organization of grey matter (GM) morphologi-
cal networks.

Structural MRI can be used to assess GM networks by 
calculating interregional morphological correlations to form 
a structural covariance network (Bassett et al. 2008; He et al. 
2007). Several studies have characterized the brain structural 
covariance networks in PD (Xu et al. 2017, 2018; Wu et al. 
2018; Chang et al. 2017; Oosterwijk et al. 2018; Chou et al. 
2015; Li et al. 2017). Most have used a seed-based analysis 
to characterize specific networks (Chang et al. 2017; Oost-
erwijk et al. 2018; Chou et al. 2015; Li et al. 2017), e.g. 
striatal and limbic networks. Moreover, in these analyses, 
structural networks were calculated by constructing a sin-
gle brain network for each group (Alexander-Bloch et al. 
2013), thus individual networks for each subject could not 
be examined and correlated with clinical variables. Several 
methods for constructing individual morphological networks 
have been proposed, but have had limitations: for example 
a cube-based method (Tijms et al. 2012) did not allow nor-
malization of GM networks, so that the individual subjects’ 
networks may differ in size, which would influence network 
measures (van Wijk et al. 2010). A relatively new tool, 
the Kullback–Leibler divergence-based similarity (KLS) 
method, has been developed to normalize GM networks, 
constructing them of the same size across subjects (Kong 
et al. 2014, 2015; Wang et al. 2016), which has advantages 
for comparative analyses such as in patient-control compari-
sons. Individual metrics could be examined in relation to 
other patient features such as α-synuclein deposits (Khair-
nar et al. 2017) and motor function. Studies of individual 
morphological networks, as well enhancing understanding 
of the causes and clinical significance of whole-brain GM 
alterations in PD, may provide a non-invasive early-stage 
in vivo biomarker to guide treatment planning and predict 
disabilities and long-term outcome (Knossalla et al. 2018).

To this end, we used KLS to investigate the topologi-
cal organization of single-subject GM networks in early-
stage PD. We recruited 54 patients with early-stage PD 
and 54 healthy controls (HC). For each subject, a morpho-
logical GM network was constructed and its topological 

organization characterized by a graph-based analysis. Given 
previous group-based evidence of more regular organized 
cortical networks in PD (Wu et al. 2018; Xu et al. 2017), 
we hypothesized that single-subject GM networks in early-
stage PD would show similar disruptions compared with 
HC, namely higher segregation or lower integration of the 
morphological network. Secondly, as it is alterations in the 
sensorimotor network which have been most consistently 
reported in early-stage PD (Tessitore et al. 2014; Luo et al. 
2015; Fang et al. 2017), we hypothesized that early-stage 
PD patients would show disturbed nodal centralities in 
sensorimotor regions. Third, network alterations would be 
related to levels of motor disability and other clinical fea-
tures. Moreover, as recent studies have suggested that con-
nectome measures have diagnostic value in brain disorders 
(Lei et al. 2019), we hypothesized that GM network matri-
ces and graph-based metrics would discriminate PD patients 
from HC and different motor subtypes at the individual level 
with significant accuracy.

Materials and methods

Participants

This study was approved by the local ethics committee; all 
participants gave written informed consent. Study patients 
were consecutively recruited at the Movement Disorders 
Outpatient Clinic of West China Hospital of Sichuan Uni-
versity from September 2013 to January 2017. All patients 
met UK PD Society Brain Bank Clinical Diagnostic Criteria 
(Hughes et al. 1992). Clinical assessments were performed 
by experienced neurologists blinded to MRI results. Motor 
disability was assessed by the Unified PD Rating Scale 
(UPDRS) III (Goetz et al. 2008) and disease severity by 
Hoehn and Yahr stage (Hoehn and Yahr 1967); diagnos-
tic guidelines in China define those with Hoehn and Yahr 
stage ≤ 2.5 as early-stage PD patients (Chen et al. 2016). 
Cognition was assessed using the Mini-Mental State Exami-
nation (MMSE) (Folstein et al. 1983). Exclusion criteria at 
recruitment included atypical Parkinsonian disorder, prior 
learning disability, history of other neurologic conditions 
including moderate or severe head injury, stroke or vascular 
dementia, major psychiatric or medical illness, disease dura-
tion > 3 years, H-Y stage ≥ 3, and MMSE score ˂ 24. Further 
details of exclusion criteria and evaluation are described 
in our previous paper (Suo et al. 2017). Finally, this study 
included 54 right-handed early-stage PD patients (19 men, 
35 women). All patients were either drug-naïve (n = 38) or 
scanned in an ‘off’ state (n = 16) defined as ≥ 12 h after the 
last dose of dopaminergic medication. The antiparkinsonian 
drugs taken were differing combinations of levodopa, dopa-
mine agonists and catechol-O-methyl transferase inhibitors. 
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Antiparkinsonian medication was withdrawn for the study 
and all assessments (clinical, neuropsychological and neu-
roimaging) were done while patients were in the off state. 
Levodopa equivalent daily dose (LEDD) was calculated as 
described elsewhere (Tomlinson et al. 2010).

We recruited 54 right-handed age- and gender-matched 
HC participants (18 men, 36 women) from the local area by 
poster advertisements. They were excluded if they had any 
neurologic illness, as assessed by clinical evaluation and 
medical records, or clinically evident structural brain defects 
on T1- or T2-weighted images.

Data acquisition

High-resolution T1-weighted images covering the whole 
brain were acquired on a 3 T MR system (Siemens Medical 
System, Erlangen, Germany) using a sagittal 3-dimensional 
magnetization-prepared rapid gradient echo sequence. Foam 
padding was used to minimize head motion. The scanning 
parameters were: repetition time 1900 ms; echo time 2.3 ms; 
inversion time 900 ms; slice thickness 1 mm; no inter-slice 
gap; 176 slices; matrix size 256 × 256; field of view 24 × 24 
cm2; flip angle 9°. Conventional MRI protocols were per-
formed with a fast spin-echo sequence for the structural 
assessment: axial T2-weighted and fluid-attenuated inver-
sion recovery images were obtained. Sequence parameters of 
conventional MRI protocols are described in supplementary 
materials. Two neuro-radiologists verified image quality and 
evaluated for clinical abnormalities.

Data preprocessing

The MRI data were preprocessed, as previously described 
(Kong et al. 2015), using the automated quantitative mor-
phological analysis technique of voxel-based morphometry 
(VBM) (Ashburner and Friston 2000) implemented in Sta-
tistical Parametric Mapping version 12 (http://​www.​fil.​ion.​
ucl.​ac.​uk/​spm/​softw​are/​spm12/). The raw MRI data were 
checked manually for any apparent artifacts. The individual 
structural data were segmented to obtain the GM images, 
which were normalized to MNI 152 space using the Dif-
feomorphic Anatomical Registration Through Exponential 
Lie Algebra (DARTEL) approach (Ashburner 2007), non-
linearly modulated to compensate for spatial normalization 
effects, then smoothed individually with a 6 mm full-width 
at half-maximum Gaussian kernel. To preserve the tissue 
volume after warping, voxel values in individual GM images 
were modulated by multiplying by the Jacobian determinants 
derived from the normalization. Finally, a GM volume map 
was obtained for each participant (1.5 mm isotropic voxels).

Construction of GM brain networks

After preprocessing, the whole brain GM was parcellated 
into 90 regions of interest (ROIs) as nodes using the Auto-
mated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer 
et al. 2002). To construct the morphological GM networks 
we used the KLS method to define interregional morpho-
logical relations as edges/connection (Kong et al. 2014). 
For every subject, for each ROI, GM volume values of all 
the voxels were extracted, their probability density function 
was estimated using kernel density estimation (Wang et al. 
2016), then used to calculate the probability distribution 
function (PDF). The Kullback–Leibler (KL) divergence was 
then calculated between two PDFs of each pair of ROIs. This 
measures the difference between two probability distribu-
tions and equates to the information lost when a probability 
distribution is used to approximate another (Burnham and 
AnderSon 2002). The standard KL divergence from distribu-
tion Q to P is calculated using:

However, DKL(P‖Q) is not equal to DKL(Q‖P) . We used 
instead a symmetric measure (Kong et al. 2014, 2015; Wang 
et al. 2016), a variant of the KL divergence calculated as:

Finally, the KLS was computed as:

where P and Q are two PDFs and n is the number of 
sample points (n = 27 here, as in (Wang et al. 2016)). KLS 
values between all possible pairs of brain regions range from 
0 to 1, where 1 is for two identical distributions. Finally, the 
KLS-based 90 × 90 weighted undirected matrix was gener-
ated for every subject.

Analysis of GM brain networks

We used the GRETNA (http://​www.​nitrc.​org/​proje​cts/​
gretna/) toolbox to quantify the topological properties of 
the weighted networks. The global metrics included small-
world parameters (characteristic path length Lp, clustering 
coefficient  Cp, normalized characteristic path length λ, nor-
malized clustering coefficient γ, and small-worldness σ), 
and network efficiency parameters (global efficiency Eglob 
and local efficiency Eloc). The nodal metrics included nodal 
betweenness, nodal degree and nodal efficiency (Rubinov 
and Sporns 2010). To assess small-world properties, the Cp 
and  Lp of the network were compared with those (Cprandom 
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http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.nitrc.org/projects/gretna/
http://www.nitrc.org/projects/gretna/
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and Lprandom) of random networks (n = 100) that preserve the 
same number of nodes, edges, and degree distribution as 
the real network (Wang et al. 2015). A real network would 
be considered small-world if it meets the following criteria: 
γ = Cp/Cprandom >  > 1 and λ = Lp/Lprandom ≈ 1.

Consistent with previous studies (Zhang et al. 2011), we 
selected a range of sparsity S thresholds for the GM mor-
phological network based on the following criteria: 1) the 
averaged degree over all nodes of each thresholded network 
was larger than 2 × log (90); and 2) the small-worldness σ 
of the thresholded networks was larger than 1.1 for all par-
ticipants. Based on these criteria, we defined S ranging from 
0.1 to 0.34. For each network metric, we calculated the area 
under the curve (AUC) over a range of sparsity (0.10–0.34) 
with an interval step of 0.01, which provides a summarized 
scalar for topological characterization of brain networks to 
limit potential bias of any single threshold.

Statistical analysis

Differences in demographic data between PD patients and 
HC were analyzed with the Mann–Whitney U test (age and 
education years) and χ2 test (gender). Between-group dif-
ferences in the AUC of network metrics were compared 
using nonparametric permutation tests (5000 permutations) 
(Zhang et al. 2011). For nodal metric analysis, a False Dis-
covery Rate (FDR) correction for multiple comparisons 
was performed to maintain a significant level of 0.05. Par-
tial correlations taking age, gender and education years as 
covariates were computed to evaluate relationships between 
the network metrics and clinical variables (e.g. UPDRS-III, 
Hoehn and Yahr stage and MMSE scores) in PD.

The network-based statistics (NBS) (http://​www.​nitrc.​
org/​proje​cts/​nbs/) approach was used to localize altered 
morphologic connection in the GM network (Zalesky et al. 
2010). First, a threshold (P < 0.05) was applied to identify 
suprathreshold connections, among which any connected 
components and their size (the number of connections) 
were determined. Second, a nonparametric permutation 
approach was used to derive the empirical null distribution 
of connected component size for estimating the signifi-
cance of each connected component (5000 permutations). 
Finally, for a connected component of size N found in the 
real grouping of HC and patients, its corrected p value was 
determined by finding the proportion of the 5000 permu-
tations for which the maximal connected component was 
larger than N.

Functional brain network studies have found that differ-
ent PD motor subtypes have distinct small-world charac-
teristics (Zhang et al. 2014; Ma et al. 2017a). We, there-
fore, explored whether PD motor subtypes also showed 
morphological network differences.

Support vector machine (SVM) analysis

To determine whether morphological network measures 
can detect early-stage PD at the individual level, SVM 
analysis was applied to the GM morphological network 
matrices and graph-theoretical metrics to classify PD 
patients vs. HC and tremor-dominant vs. akinetic–rigid 
subtype. The SVM model maps the input vectors to a fea-
ture space using a set of mathematical functions known 
as kernels (Cortes and Vapnik 1995). In this feature 
space, the model finds the optimum separation surface 
that maximizes the margin of separation between differ-
ent classes within a training dataset. Once the separation 
surface is determined, it can be used to predict the class 
of new observations using an independent testing dataset. 
Here a linear kernel was preferred to a nonlinear one to 
minimize the risk of overfitting. The model was based on 
LIBSVM and implemented using the Scikit-Learn library 
(Pedregosa et al. 2012). A five-fold stratified cross-vali-
dation was used, dividing the original sample into 5 nono-
verlapping folds that preserved the relative proportion of 
the two classes. Four folds were defined as a training set 
and the remaining fold as a test set in each iteration. The 
linear SVM has only one parameter (soft margin parameter 
C) that controls the trade-off between reducing training 
errors and having a larger separation margin. An inter-
nal cross-validation was performed to select the optimal 
parameter. This parameter was optimized by perform-
ing a grid search (i.e., C = 10–3, 10–2, 10–1, 100, 101, 102, 
103, 104) to estimate the best value. An SVM model with 
the optimal parameter was trained on the training set. Its 
performance was assessed on the test set in terms of bal-
anced accuracy, specificity, and sensitivity. The reported 
balanced accuracy, specificity, and sensitivity are the mean 
values calculated on each partition of the cross-validation 
scheme. To estimate the significance for each SVM, a non-
parametric permutation test were performed to calculate a 
P value for balanced accuracy (Golland and Fischl 2003). 
This involved repeating the classification procedure 1000 
times with different random permutations of the group 
labels. A P value was then calculated by dividing the num-
ber of times that the balanced accuracy was higher for the 
permuted labels than the real labels by 1000.

Results

Demographic and clinical characteristics

There were no significant differences in age, gender, or 
years of education between PD patients and HC (P > 0.05) 
(Table 1).

http://www.nitrc.org/projects/nbs/
http://www.nitrc.org/projects/nbs/
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Alterations of global and nodal brain network 
metrics in PD

Both the PD and HC group showed small-world topology 
in the GM network (Fig S1 in supplementary materials). 
Compared with HC, PD showed a significantly higher  Cp 
(P = 0.014) and Eloc (P = 0.014), with no significant dif-
ferences in Lp (P = 0.100), γ (P = 0.104), λ (P = 0.298), σ 
(P = 0.098) or Eglob (P = 0.115) (Fig. 1, Table S1 in supple-
mentary materials).

Fig S2 in supplementary materials show the nodal 
betweenness, nodal degree and nodal efficiency for all 
90 cortical regions in HC and PD group. To locate brain 
regions that were consistently identified as hubs, we 
assigned each node a hub-score (ranged from 0 to 3) indi-
cating the frequency with which the node fell within the 
top 10% nodes across nodal centrality metrics. In the HC 
group, 9 association cortex regions were identified as hub 
regions; in PD group, 8 association cortex and 1 paralim-
bic cortex regions were identified as hub regions (Fig. 2, 
Table S2 in supplementary materials). In both groups, 
8 brain regions (bilateral middle and inferior temporal 
gyrus, bilateral lingual gyrus, right supramarginal gyrus 
and right middle occipital gyrus) were identified as hubs in 
common. These observations are comparable to the puta-
tive hubs reported in previous studies of morphological 
brain networks (Wang et al. 2016; He et al. 2007).

We identified the brain regions showing significant 
between-group differences in at least one nodal metric 
(P < 0.05, FDR corrected) (Table 2; Fig. 2). Compared 
with HC, PD showed higher nodal centralities in the right 
superior frontal gyrus (orbital part) and left putamen; PD 
showed lower nodal centralities in the left rectus gyrus, 
bilateral postcentral gyrus, right superior occipital gyrus, 
and right inferior temporal gyrus.

Alterations in network connection in PD

Compared with HC, PD presented both decreased and 
increased morphological connections in the NBS analysis 
(P < 0.05, NBS corrected). The subnetwork with signifi-
cantly decreased connections consisted of 10 brain regions 
and 10 edges, mainly involved in the default mode net-
work (DMN) and the sensorimotor network (Fig. 3a). The 
subnetwork with significantly increased connections con-
tained 9 brain regions and 9 edges, mainly involved in the 
frontoparietal network and the salience network (Fig. 3b).

Relationships between network metrics and clinical 
variables in PD

UPDRS-III values were negatively correlated with the 
nodal efficiency of right postcentral gyrus (P = 0.021, 
r = − 0.321) and the nodal degree of right postcentral 
gyrus (P = 0.033, r = − 0.299); Hoehn and Yahr stage was 
negatively correlated with the nodal efficiency of right 
postcentral gyrus (P = 0.015, r = − 0.340), nodal degree of 
right postcentral gyrus (P = 0.031, r = − 0.302), and nodal 
betweenness of right superior occipital gyrus (P = 0.009, 
r = − 0.363) (Fig S3). However, these correlations did not 
survive multiple comparison corrections. No significant 
association was identified with other network metrics or 
between MMSE score and any network metrics. Excluding 
two patients with a symmetric side of onset, the main find-
ings of the correlation analyses were maintained (Fig S4).

Multiple linear regression analysis revealed no signifi-
cant associations between UPDRS-III scores and Hoehn 
and Yahr stage after correction for multiple comparisons 
at FDR < 0.05 (Table S3).

Single‑subject classification of PD patients and HC

Using graph-based metrics, the mean balanced accu-
racy of classification of PD patients versus HC was 
72.7%, with sensitivity 63.6% and specificity 81.8% 
(P = 0.026). Using GM network matrices, discrimination 
of PD patients from HC at the single-subject level was 

Table 1   Demographics and clinical characteristics of patients with 
early-stage Parkinson’s disease and healthy controls

Measurements presented as mean ± SD or counts
PD Parkinson’s disease, HC healthy controls, y years, T tremor-domi-
nant, A akinetic–rigid, M mixed, UPDRS Unified Parkinson’s Disease 
Rating Scale, MMSE Mini–Mental State Examination, NA not appli-
cable
a P values for comparisons between PD and HC using Mann–Whitney 
U test
b P value for comparison using χ2 test

HC (n = 54) PD (n = 54) P

Age (years) 55.9 ± 6.7 56.0 ± 7.2 0.658a

Gender (female/male) 36/18 35/19 0.845b

Education (years) 9.3 ± 3.3 9.0 ± 3.6 0.776a

Disease duration (years) NA 1.5 ± 0.9 NA
UPDRS III score NA 17.4 ± 9.0 NA
MMSE score NA 27.9 ± 1.9 NA
Hoehn and Yahr stage NA 1.6 ± 0.5 NA
Age at onset (years) NA 54.5 ± 7.3 NA
Side of onset (left/right/sym-

metric)
NA 24/28/2 NA

Motor phenotype (T/A/M) NA 25/17/12 NA
Levodopa equivalent daily dose NA 129.4 ± 243.1 NA



1394	 Brain Structure and Function (2021) 226:1389–1403

1 3

improved; the mean balanced accuracy was 73.1%, with 
sensitivity 72.4% and specificity 73.8% (P < 0.001).

To identify brain regions providing the greatest con-
tribution to single-subject classification, the mean abso-
lute value of the weights of the model across the differ-
ent folds of the cross-validation were calculated. The 20 
brain regions with the highest mean values are reported 
in Table 3 and shown in Fig. 4. It can be seen that most of 
the brain regions overlap with the brain regions showing 
significant between-group differences in nodal metrics.

Brain network measures between different PD 
motor subtypes

There were no significant differences in the global, nodal 
or connection characteristics between tremor-dominant 
and akinetic–rigid motor subtypes (P > 0.05). As shown 

in Table S4, the mean balanced accuracy of the two motor 
subtypes’ classification using GM network matrices was 
close to the chance level (P > 0.05), but using graph-based 
metrics, the mean balanced accuracy of classification of 
two motor subtypes was 67.0%, with sensitivity 50.0% and 
specificity 84.0% (P = 0.031). The 20 brain regions with 
the highest mean values are reported in Table S5.

Discussion

This study demonstrated significant alterations, compared to 
HC, in the topological properties of single-subject whole-
brain GM networks in early-stage PD. They showed higher 
network segregation, reflected by higher Cp and Eloc, and 
altered nodal centralities in the putamen and temporal-occip-
ital regions. Analysis of individual patient networks revealed 

Fig. 1   Differences in global topological properties of the brain grey 
matter network between PD and HC. Cp and Eloc were significantly 
different between the two groups. An asterisk designates network 
metrics with a significant difference (P < 0.05). PD Parkinson’s dis-

ease, HC healthy control, Cp clustering coefficient, Lp characteristic 
path length, Eglob global efficiency, Eloc local efficiency, γ normal-
ized clustering coefficient, λ normalized characteristic path length, σ 
small-worldness
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Fig. 2   Hub regions in each group and nodal centrality differences 
between PD and HC. Brain regions with the highest nodal centrali-
ties (top 10%) were defined as hubs in each group and were presented 
in purple. Significantly lower nodal centralities in PD compared with 
HC were presented in blue and higher nodal centralities in red. The 
nodes were mapped onto the cortical surfaces using the BrainNet 
Viewer package (http://​www.​nitrc.​org/​proje​cts/​bnv). L left, R right, 
IFGtriang inferior frontal gyrus, triangular part, ITG inferior tem-

poral gyrus, LING lingual gyrus, MOG middle occipital gyrus, MTG 
middle temporal gyrus, ORBinf inferior frontal gyrus, orbital part, 
ORBsup superior frontal gyrus, orbital part, PCUN precuneus, PoCG 
postcentral gyrus, PUT putamen, REC, gyrus rectus, SMG supra-
marginal gyrus, SOG superior occipital gyrus, SPG superior parietal 
gyrus, TPOmid temporal pole: middle temporal gyrus, TPOsup tem-
poral pole: superior temporal gyrus

Table 2   Regions showing 
altered nodal centralities 
in patients with early-stage 
Parkinson’s disease compared 
with healthy controls

Regions were considered abnormal in patients if they exhibited significant between-group differences 
(P < 0.05, FDR corrected) in at least one of the three nodal centralities (shown in bold font)

Brain regions P value (Cohen’s  d)

Nodal betweenness Nodal degree Nodal efficiency

Parkinson’s disease < Healthy controls
 Left gyrus rectus 0.0164 (− 0.384) 0.0002 (− 0.787) 0.0002 (− 0.787)
 Right superior occipital gyrus 0.0026 (− 0.556) 0.0990 (− 0.247) 0.1320 (− 0.214)
 Left postcentral gyrus 0.1250 (0.229) 0.0026 (− 0.558) 0.0012 (− 0.568)
 Right postcentral gyrus 0.1348 (0.220) 0.0024 (− 0.573) 0.0022 (− 0.589)
 Right inferior temporal gyrus 0.1856 (− 0.177) 0.0024 (− 0.561) 0.0016 (− 0.575)

Parkinson’s disease > Healthy controls
 Right superior frontal gyrus, orbital part 0.0780 (0.271) 0.0004 (0.675) 0.0004 (0.653)
 Left putamen 0.0056 (0.477) 0.0024 (0.591) 0.0004 (0.625)

http://www.nitrc.org/projects/bnv
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that nodal centralities in right postcentral gyrus were nega-
tively correlated with UPDRS-III scores and Hoehn and 
Yahr stage. PD showed altered subnetworks, with decreased 
morphological connections in DMN and sensorimotor net-
work and increased connections mainly in frontoparietal 
and salience networks. Lastly, GM network matrices and 
graph-based metrics show the potential for allowing single-
subject classification of PD patients and HC with signifi-
cant accuracy of 73.1 and 72.7%, while graph-based metrics 
allowed single-subject classification of tremor-dominant and 
akinetic–rigid motor subtypes with significant accuracy of 
67.0%. Our findings might provide new insights into the 
understanding of the pathophysiology of PD.

The neurobiological meaning of morphological similar-
ity networks is not completely understood. One possible 
mechanism driving this level of brain network organization 
is axonal tension theory, which proposes that similarity 
of regions results during morphogenesis from mechanical 
tension in the axons between them (Van Essen 1997). Note 
that these GM networks cannot be simply taken as a proxy 
measure for fiber connections; morphological similarity 

may contain specific information (e.g. cytoarchitectonic 
similarity and co-expression of specialized neuronal 
function genes) unrelated to connectivity (Seidlitz et al. 
2018), and other factors such as levels of neurophysiologi-
cal activity can drive morphological similarity, regardless 
of direct white matter connections. Healthy human brain 
cortical morphology is a complex but efficient network 
which balances local specialization and global integration 
to maximize parallel information processing (Wang et al. 
2016). However, pathological lesions in PD, e.g. misfolded 
proteins which deposit in cortical GM and induce GM den-
sity changes (Khairnar et al. 2017; McMillan and Wolk 
2016), might impact the morphological similarity of dif-
ferent GM regions, and thus disturb the distributed GM 
morphological network architecture.

In formal terms, the brain’s small-world organization 
strikes an optimal balance between network segregation 
(reflected by Cp, γ and Eloc) and integration (reflected by Lp, 
λ and Eglob) of information processing. Despite an overall 
small-world architecture similar to HC, PD patients showed 
higher Cp and Eloc, which represent higher segregation of 

Fig. 3   PD-related alterations in the network connection. Each node 
denotes a brain region and each line a connection. Significantly 
decreased connections in PD compared with HC is presented in blue 
and increased connections in red. Associations of these nodes with 
specific brain networks are shown in different color, sensorimotor 
network (in yellow), default mode network (in green), salience net-
work (in orange), and frontoparietal network (in pink). L left, R right, 

ORBsup superior frontal gyrus, orbital part, ORBinf inferior frontal 
gyrus, orbital part, SFGmed superior frontal gyrus, medial, SMA sup-
plementary motor area, REC rectus gyrus, INS insula, ACG​ anterior 
cingulate gyrus, HIP hippocampus, PoCG postcentral gyrus, SPG 
superior parietal gyrus, PUT putamen, PAL palladium, HES Heschl 
gyrus, STG superior temporal gyrus
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GM networks. The network integration measures (Lp, λ and 
Eglob) of early-stage PD patients were preserved, in contrast 
to previous findings of longer Lp and lower Eglob in advanced 
PD (Gottlich et al. 2013; Suo et al. 2017). This may mean 
that PD patients are initially able to maintain overall infor-
mation transfer, but that as the disease progress, brain net-
works gradually fail to maintain global integration. From the 
perspectives of segregation and integration, altered small-
world properties in disease can be thought of falling into 
four patterns: regularization, randomization, and stronger 
and weaker small-worldization (Suo et al. 2018). Taken 
together, the higher segregation and preserved integration 
of GM networks may indicate a regularization pattern of 
altered small-world properties in early-stage PD, which is 
consistent with the previous findings in structural co-var-
iance networks (Wu et al. 2018; Xu et al. 2017) and indi-
vidual morphological network studies (Zhang et al. 2015a).

At a regional level, higher nodal centralities were 
observed in the left putamen. In PD, the prominent degen-
eration of dopaminergic nigrostriatal neurons of the sub-
stantia nigra leads to dopamine deficiency in the striatum, 
especially in the putamen, which is functionally interposed 
between the cortex and thalamus to modulate movement 
execution. In addition, lower nodal centralities in PD were 
observed in the postcentral gyrus, which were negatively 
correlated with the UPDRS-III scores, similar to our previ-
ous functional network study finding with a substantially 
overlapping sample (Suo et al. 2017). In line with previous 
work (Sang et al. 2015; Suo et al. 2017; Luo et al. 2015; 
Xu et al. 2018), our results indicate that the putamen and 

Table 3   Top 20 most relevant brain regions for the classification anal-
ysis of patients and controls

All the brain regions are from automated anatomical labelling atlas 
(Tzourio-Mazoyer et al. 2002)

No Regions Abbreviations

1 Right paracentral lobule PCL.R
2 Left Heschl gyrus HES.L
3 Left gyrus rectus REC.L
4 Left anterior cingulate and paracingulate gyri ACG.L
5 Right rolandic operculum ROL.R
6 Right superior frontal gyrus, medial orbital ORBsupmed.R
7 Left fusiform gyrus FFG.L
8 Left olfactory cortex OLF.L
9 Right calcarine fissure and surrounding cortex CAL.R
10 Right inferior temporal gyrus ITG.R
11 Right inferior frontal gyrus, opercular part IFGoperc.R
12 Right posterior cingulate gyrus PCG.R
13 Left postcentral gyrus PoCG.L
14 Left angular gyrus ANG.L
15 Right gyrus rectus REC.R
16 Left rolandic operculum ROL.L
17 Left precentral gyrus PreCG.L
18 Left lenticular nucleus, putamen PUT.L
19 Left superior parietal gyrus SPG.L
20 Left cuneus CUN.L

Fig. 4   Twenty brain regions making the greatest contribution to the 
single-subject classification of PD vs. HC. The nodes were mapped 
onto the cortical surfaces using the BrainNet Viewer package (http://​
www.​nitrc.​org/​proje​cts/​bnv). PD Parkinson’s disease, HC healthy 
control, L left, R right, ACG​ anterior cingulate and paracingulate 
gyri, ANG angular gyrus, CAL calcarine fissure and surround-
ing cortex, CUN cuneus, FFG fusiform gyrus, HES Heschl gyrus, 

IFGoperc inferior frontal gyrus, opercular part, ITG inferior tempo-
ral gyrus, OLF olfactory cortex, ORBsupmed superior frontal gyrus, 
medial orbital, PCG posterior cingulate gyrus, PCL paracentral lob-
ule, PoCG postcentral gyrus, PreCG precentral gyrus, PUT putamen, 
REC gyrus rectus, ROL Rolandic operculum, SPG superior parietal 
gyrus

http://www.nitrc.org/projects/bnv
http://www.nitrc.org/projects/bnv
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postcentral gyrus, which are associated with sensorimo-
tor dysfunction of PD, may be disrupted at an early stage. 
Further, our data highlight that at a morphological network 
level, nodal connections of these regions to other brain areas 
may be altered early in the course of disease progression.

Lower nodal centralities were also found in the superior 
occipital gyrus and inferior temporal gyrus, which comprise 
the visuoperceptive pathway responsible for the representa-
tion of complex object features and facial perception. Abnor-
malities of grey matter (Goldman et al. 2014), neuronal 
activity (Meppelink et al. 2009), and nodal centralities (Luo 
et al. 2015) in temporal-occipital regions have been reported 
in PD patients compared with HC, even before visual symp-
toms become clinically evident. Lower metabolism of the 
visual cortex was found in a different motor subtype of PD, 
suggesting that PD patients may control their motor symp-
toms through visual information (Hu et al. 2019). Our results 
suggest that impaired visual processing might occur early, 
before the recognized visuospatial dysfunction in early-stage 
PD patients.

Our examination of morphological connections of pairs 
of brain regions using NBS tools revealed a subnetwork with 
decreased morphological connections affecting the DMN 
and the sensorimotor network. It is unsurprising that there 
are abnormal connections associated with sensorimotor net-
work in PD. As for the DMN, which plays a crucial role in 
emotion regulation and cognitive process (Menon 2011), 
previous studies have found disrupted connections not only 
in PD patients with cognitive deficits (Pereira et al. 2015), 
but also in cognitively unimpaired PD patients (Tessitore 
et al. 2012). Recent research on cognitive impairment in 
PD reveals that DMN disruption characterizes PD patients, 
regardless of cognitive status, suggesting that DMN may 
be altered in PD as part of the pathological changes associ-
ated with PD independently of the development of clini-
cally evident mild cognitive decline (Amboni et al. 2015). 
Notably, our patients were cognitively intact as judged by 
the MMSE score. These data, taken together with previous 
findings (Tessitore et al. 2012; Sandrone and Catani 2013; 
Suo et al. 2017), suggest that DMN and sensorimotor net-
work disruption might be a common feature of PD, perhaps 
a direct consequence of the pathological brain damage in 
PD. Neurochemically, PD is characterized by depletion of 
an important neurotransmitter, which can be reasonably 
assumed to reflect reduced connectivity of specific connec-
tions. In contrast, increased morphological connections were 
observed in PD mainly involving the frontoparietal and sali-
ence network, which subserve cognitive and executive func-
tions (Menon 2011). Our findings are consistent with numer-
ous studies showing greater activation (Caminiti et al. 2015; 
Marie et al. 2007), and increased centrality (Zhang et al. 
2015b) and functional connectivity (de Schipper et al. 2018; 
Navalpotro-Gomez et al. 2020) in PD. These increases may 

perhaps reflect cerebral compensation for primary patho-
physiological changes. Given our patients’ relatively intact 
neuropsychological abilities, we speculate that increased 
morphological connections in these two networks might be 
an early compensatory mechanism for disease-related defi-
cits, perhaps to maintain cognitive performance. This is of 
course speculative, and more studies are required on this 
issue.

Overall, these global, nodal and connection findings sup-
port the conceptualization of PD as a network disease, an 
impairment in the normal balance of brain networks. Cp is 
calculated as Cp =

1

n

∑
i∈N

2ti

ki(ki−1)
 , n is the number of nodes 

(n = 90 in our study), ti is the number of triangles around a 
node i, and ki is the number of links connected to a node  i 
known as nodal degree (Rubinov and Sporns 2010). The 
mean Cp for the network hence reflects, on average, the 
prevalence of clustered connectivity around individual 
nodes, which is normalized individually for each node. From 
the above formula (Rubinov and Sporns 2010), it can be seen 
that a decrease of node centrality could lead to the increase 
of Cp, which has been also observed in prior studies (Wu 
et al. 2018; Nan et al. 2016; Suo et al. 2015; Zhang et al. 
2012). Higher Cp and Eloc, representing a higher local seg-
regation of the networks, suggest a shift toward a topological 
pattern of regularization. Although the biological mecha-
nisms of the shift remain unclear, the regular pattern has 
been shown to reduce signal propagation speed and synchro-
nizability across distant regions compared with small-world 
networks (Strogatz 2001). On examination of the PD-related 
network, a considerable proportion of the increased connec-
tions are short-range (i.e. cortical-subcortical connections), 
whereas decreased connections were mainly long-range (i.e. 
different cortex connections, especially between the frontal 
and temporal cortex, and the frontal and parietal cortex). The 
abnormalities in the short-range connections might be the 
predominant contributors to the segregation alterations of 
topological organization (He et al. 2009), which have been 
observed in other neurodegenerative diseases such as amyo-
trophic lateral sclerosis (Zhang et al. 2019). The network 
connections identified in PD patients by NBS comprised 
mainly regions that overlap spatially the regions with altered 
nodal centralities, which are directly related to the whole-
brain global network topology. Taken together, these topo-
logical alterations at different levels reflect the deficient 
transmission of information, and are related to disability in 
PD through its influence on sensorimotor coordination.

Consistent with our third hypothesis, the accuracy of clas-
sification of PD vs. HC was 73.1 and 72.7% using network 
matrices and graph-based metrics, respectively. Our recent 
study of schizophrenia also found that connectome-wide 
matrices allowed single-subject classification of patients 
and controls with high accuracy (average: 81%) (Lei et al. 
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2019). Moreover, brain regions showing the between-group 
difference in nodal metrics we observed overlapped with 
most of the top 20 brain regions providing the greatest con-
tribution to the classification: among them were the above-
mentioned sensorimotor and visual regions. Therefore, the 
current results provide support for the view that brain net-
works based on structural MRI might have potential diag-
nostic value for PD. Moreover, although the accuracy of the 
classification of tremor-dominant vs. akinetic-rigid subtypes 
was 67.0%, this does suggest that graph-based metrics might 
help to differentiate different subtypes of PD patients. It is 
important to acknowledge that, at present, neuroimaging is 
still far from becoming a tool used in the day-to-day clinical 
practice. This is because there is still insufficient evidence 
that such methodology could reliably support diagnostic 
and prognostic evaluations. Nevertheless, the present study 
enhances current understanding of network-level abnormali-
ties in PD, which in turn could inform the development of 
diagnostic and prognostic imaging-based markers in the 
future.

Our study has several limitations. First, further studies 
will be needed to determine whether these altered network 
patterns can be replicated and whether they change with dis-
ease progression and treatment. Second, there is no widely 
accepted optimal approach for defining nodes and edges. We 
used the AAL template regions as nodes and interregional 
similarity in the distributions of regional GM volume as 
edges, but other node definitions and surface-based morpho-
logical measures (such as cortical thickness or surface area) 
could also be used to calculate network metrics. Anatomical 
boundaries in the AAL template may not necessarily match 
functional boundaries, and nodes could be defined function-
ally rather than anatomically. A systematic comparison of 
parcellation methods found none that optimally addressed 
all challenges (Arslan et al. 2018), and method development 
research is ongoing. As most work has used the AAL tem-
plate, we made that methodologically conservative choice 
to facilitate literature comparison. Future research should 
validate and extend our observations across multiple resolu-
tions, using different templates and approaches for combin-
ing nodes into networks. Third, although the patients in this 
study were restricted to the early stage, their heterogeneity 
may have influenced the network topology. Future studies 
with a more homogeneous sample might refine our conclu-
sions. Our subgroup analysis showed no significant differ-
ence between motor subtypes, and this factor is unlikely to 
explain the observed differences in GM morphological net-
works. However, non-motor symptoms such as psychiatric 
symptoms were not evaluated. Fourth, we used MMSE to 
exclude global cognitive impairment or dementia. There are 
more sensitive neuropsychological tests that could provide a 
more precise characterization of the relationship of cognitive 
symptoms to network changes early in PD. Future studies 

will delineate specific subtype-related brain network reor-
ganization following a detailed assessment of cognitive and 
affective symptoms. Fifth, the results of correlation analy-
ses between network metrics and clinical variables in PD 
patients did not survive multiple comparison corrections, 
and should be considered exploratory. To increase statistical 
power, future studies must be conducted using a larger sam-
ple of PD patients with strict inclusion and criteria. Finally, 
available connectome studies are restricted to the macro-
scopic scale and do not provide information on the func-
tionally important microscopic dimension. In research using 
the ultrahigh-resolution brain model BigBrain (Amunts et al. 
2013) to construct a brain network, the similarity of regional 
distribution in microscopic data may be a concise and mean-
ingful measure of connections at an almost cellular level. 
Thus, it would be interesting to explore underlying patterns 
further by combining microscopic scale techniques from the 
perspective of complex networks.

In conclusion, the use of single-subject GM networks 
may extend previous group-level morphological brain net-
work analyses by showing their relation to disease severity 
and their potential diagnostic value, and providing a poten-
tial structural basis for the functional alterations observed 
in our previous work with an overlapping patient sample 
(Suo et al. 2017). PD was characterized by sub-optimal top-
ological organization of GM networks, reflected in higher 
network segregation at an early stage of illness, suggesting 
how GM networks might contribute to imaging evidence for 
the classification of individual PD patients. These results 
demonstrate the potential of graph theoretical measures of 
the brain network as imaging biomarkers for understanding 
and characterizing PD. Specifically, this study adds to the 
field of psychoradiology (Sun et al. 2018; Huang et al. 2019; 
Gong 2020), an evolving subspecialty of radiology, which is 
primed to be of major clinical importance in guiding diag-
nostic and therapeutic decision making in patients with neu-
ropsychiatric disorders.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00429-​020-​02200-9.

Acknowledgments  We gratefully acknowledge all the participants.

Author contributions  Conceptualization: QG and RP; Methodology: 
XS, DL, NL, WL, GJK and JAS; Formal analysis and investigation: 
XS, DL and NL; Writing—original draft preparation: XS; Writing—
review and editing: XS, DL, NL, WL, GJK, JAS, RP, and QG; Funding 
acquisition: QG, RP and XS; Resources: RP and QG; Supervision: RP 
and QG. All authors read and approved the final manuscript.

Funding  This study was supported by the National Natural Science 
Foundation of China  (Grant Nos. 81621003, 81820108018, and 
82001800), Sichuan Science and Technology Program (Grant No. 
2018HH0077), the China Postdoctoral Science Foundation (Grant No. 
2020M683317), and the Post-Doctor Research Project, West China 
Hospital, Sichuan University (Grant No. 2019HXBH104).

https://doi.org/10.1007/s00429-020-02200-9


1400	 Brain Structure and Function (2021) 226:1389–1403

1 3

Compliance with ethical standards 

Conflict of interest  Dr. Sweeney is a consultant for VersSci. None of 
the remaining authors have financial conflicts of interest.

Availability of data, material and code  The data, material and code that 
support the findings of this study are available from the corresponding 
author upon reasonable request. The data, material and code sharing 
adopted by the authors comply with the requirements of the funding 
institute and with institutional ethics approval.

Ethics approval  Approval was obtained from the ethics committee of 
West China Hospital of Sichuan University. The procedures used in this 
study adhere to the tenets of the Declaration of Helsinki.

Informed consent  Written informed consent was obtained from all 
participants after they had received a full explanation of the study 
procedures.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aarabi MH, Kamalian A, Mohajer B, Shandiz MS, Eqlimi E, Shojaei 
A, Safabakhsh H (2015) A statistical approach in human brain 
connectome of Parkinson Disease in elderly people using Network 
Based Statistics. Conf Proc IEEE Eng Med Biol Soc 2015:4310–
4313. https://​doi.​org/​10.​1109/​EMBC.​2015.​73193​48

Abbasi N, Mohajer B, Abbasi S, Hasanabadi P, Abdolalizadeh A, 
Rajimehr R (2018) Relationship between cerebrospinal fluid bio-
markers and structural brain network properties in Parkinson’s 
disease. Mov Disord 33(3):431–439. https://​doi.​org/​10.​1002/​mds.​
27284

Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural 
co-variance between human brain regions. Nat Rev Neurosci 
14(5):322–336. https://​doi.​org/​10.​1038/​nrn34​65

Amboni M, Tessitore A, Esposito F, Santangelo G, Picillo M, Vitale 
C, Giordano A, Erro R, de Micco R, Corbo D, Tedeschi G, Bar-
one P (2015) Resting-state functional connectivity associated 
with mild cognitive impairment in Parkinson’s disease. J Neurol 
262(2):425–434. https://​doi.​org/​10.​1007/​s00415-​014-​7591-5

Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau 
ME, Bludau S, Bazin PL, Lewis LB, Oros-Peusquens AM, Shah 
NJ, Lippert T, Zilles K, Evans AC (2013) BigBrain: an ultrahigh-
resolution 3D human brain model. Science 340(6139):1472–1475. 
https://​doi.​org/​10.​1126/​scien​ce.​12353​81

Arslan S, Ktena SI, Makropoulos A, Robinson EC, Rueckert D, Pari-
sot S (2018) Human brain mapping: a systematic comparison of 
parcellation methods for the human cerebral cortex. Neuroimage 
170:5–30. https://​doi.​org/​10.​1016/j.​neuro​image.​2017.​04.​014

Ashburner J (2007) A fast diffeomorphic image registration algo-
rithm. Neuroimage 38(1):95–113. https://​doi.​org/​10.​1016/j.​
neuro​image.​2007.​07.​007

Ashburner J, Friston KJ (2000) Voxel-based morphometry–the meth-
ods. Neuroimage 11(6 Pt 1):805–821. https://​doi.​org/​10.​1006/​
nimg.​2000.​0582

Atkinson-Clement C, Pinto S, Eusebio A, Coulon O (2017) Diffu-
sion tensor imaging in Parkinson’s disease: Review and meta-
analysis. Neuroimage Clin 16:98–110. https://​doi.​org/​10.​1016/j.​
nicl.​2017.​07.​011

Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger 
DR, Meyer-Lindenberg A (2008) Hierarchical organization of 
human cortical networks in health and schizophrenia. J Neu-
rosci 28(37):9239–9248. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​
1929-​08.​2008

Berman BD, Smucny J, Wylie KP, Shelton E, Kronberg E, Leehey 
M, Tregellas JR (2016) Levodopa modulates small-world archi-
tecture of functional brain networks in Parkinson’s disease. Mov 
Disord 31(11):1676–1684. https://​doi.​org/​10.​1002/​mds.​26713

Burnham K, AnderSon D (2002) Model selection and multimodel 
inference: a practical information-theoretic approach. Springer, 
New York

Caminiti SP, Siri C, Guidi L, Antonini A, Perani D (2015) The neu-
ral correlates of spatial and object working memory in elderly 
and Parkinson’s disease subjects. Behav Neurol 2015:123636. 
https://​doi.​org/​10.​1155/​2015/​123636

Chang YT, Lu CH, Wu MK, Hsu SW, Huang CW, Chang WN, Lien 
CY, Lee JJ, Chang CC (2017) Salience network and depressive 
severities in Parkinson’s disease with mild cognitive impair-
ment: a structural covariance network analysis. Front Aging 
Neurosci 9:417. https://​doi.​org/​10.​3389/​fnagi.​2017.​00417

Chen S, Chan P, Sun S, Chen H, Zhang B, Le W, Liu C, Peng G, 
Tang B, Wang L, Cheng Y, Shao M, Liu Z, Wang Z, Chen 
X, Wang M, Wan X, Shang H, Liu Y, Xu P, Wang J, Feng 
T, Chen X, Hu X, Xie A, Xiao Q (2016) The recommenda-
tions of Chinese Parkinson’s disease and movement disorder 
society consensus on therapeutic management of Parkinson’s 
disease. Transl Neurodegener 5:12. https://​doi.​org/​10.​1186/​
s40035-​016-​0059-z

Chou KH, Lin WC, Lee PL, Tsai NW, Huang YC, Chen HL, Cheng 
KY, Chen PC, Wang HC, Lin TK, Li SH, Lin WM, Lu CH, Lin 
CP (2015) Structural covariance networks of striatum subdivi-
sion in patients with Parkinson’s disease. Hum Brain Mapp 
36(4):1567–1584. https://​doi.​org/​10.​1002/​hbm.​22724

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 
20(3):273–297. https://​doi.​org/​10.​1007/​BF009​94018

Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Castellanos FX, Di 
Martino A, Kelly C, Heberlein K, Colcombe S, Milham MP 
(2013) Imaging human connectomes at the macroscale. Nat Meth-
ods 10(6):524–539. https://​doi.​org/​10.​1038/​nmeth.​2482

de Schipper LJ, Hafkemeijer A, van der Grond J, Marinus J, 
Henselmans JML, van Hilten JJ (2018) Altered whole-brain and 
network-based functional connectivity in Parkinson’s disease. 
Front Neurol 9:419. https://​doi.​org/​10.​3389/​fneur.​2018.​00419

Fang J, Chen H, Cao Z, Jiang Y, Ma L, Ma H, Feng T (2017) Impaired 
brain network architecture in newly diagnosed Parkinson’s disease 
based on graph theoretical analysis. Neurosci Lett 657:151–158. 
https://​doi.​org/​10.​1016/j.​neulet.​2017.​08.​002

Folstein MF, Robins LN, Helzer JE (1983) The mini-mental state 
examination. Arch Gen Psychiatry 40(7):812. https://​doi.​org/​10.​
1001/​archp​syc.​1983.​01790​06011​0016

Galantucci S, Agosta F, Stefanova E, Basaia S, van den Heuvel MP, 
Stojkovic T, Canu E, Stankovic I, Spica V, Copetti M, Gagli-
ardi D, Kostic VS, Filippi M (2017) Structural brain connec-
tome and cognitive impairment in Parkinson disease. Radiology 
283(2):515–525. https://​doi.​org/​10.​1148/​radiol.​20161​60274

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/EMBC.2015.7319348
https://doi.org/10.1002/mds.27284
https://doi.org/10.1002/mds.27284
https://doi.org/10.1038/nrn3465
https://doi.org/10.1007/s00415-014-7591-5
https://doi.org/10.1126/science.1235381
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1006/nimg.2000.0582
https://doi.org/10.1016/j.nicl.2017.07.011
https://doi.org/10.1016/j.nicl.2017.07.011
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1002/mds.26713
https://doi.org/10.1155/2015/123636
https://doi.org/10.3389/fnagi.2017.00417
https://doi.org/10.1186/s40035-016-0059-z
https://doi.org/10.1186/s40035-016-0059-z
https://doi.org/10.1002/hbm.22724
https://doi.org/10.1007/BF00994018
https://doi.org/10.1038/nmeth.2482
https://doi.org/10.3389/fneur.2018.00419
https://doi.org/10.1016/j.neulet.2017.08.002
https://doi.org/10.1001/archpsyc.1983.01790060110016
https://doi.org/10.1001/archpsyc.1983.01790060110016
https://doi.org/10.1148/radiol.2016160274


1401Brain Structure and Function (2021) 226:1389–1403	

1 3

Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-
Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, 
Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans 
S, LeWitt PA, Nyenhuis D, Olanow CW, Rascol O, Schrag A, 
Teresi JA, van Hilten JJ, LaPelle N, Movement Disorder Society 
URTF (2008) Movement Disorder Society-sponsored revision of 
the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): 
scale presentation and clinimetric testing results. Mov Disord 
23(15):2129–2170. https://​doi.​org/​10.​1002/​mds.​22340

Goldman JG, Stebbins GT, Dinh V, Bernard B, Merkitch D, deToledo-
Morrell L, Goetz CG (2014) Visuoperceptive region atrophy inde-
pendent of cognitive status in patients with Parkinson’s disease 
with hallucinations. Brain 137(Pt 3):849–859. https://​doi.​org/​10.​
1093/​brain/​awt360

Golland P, Fischl B (2003) Permutation tests for classification: towards 
statistical significance in image-based studies. Inf Process Med 
Imaging 18:330–341. https://​doi.​org/​10.​1007/​978-3-​540-​45087-
0_​28

Gong Q (2020) Psychoradiology, Neuroimaging Clinics of North 
America, vol 30. Elsevier Inc, New York, pp 1–123. https://​www.​
elsev​ier.​com/​books/​psych​oradi​ology-​an-​issue-​of-​neuro​imagi​ng-​
clini​cs-​of-​north-​ameri​ca/​gong/​978-0-​323-​70886-9

Gottlich M, Munte TF, Heldmann M, Kasten M, Hagenah J, Kramer 
UM (2013) Altered resting state brain networks in Parkinson’s 
disease. PLoS ONE 8(10):e77336. https://​doi.​org/​10.​1371/​journ​
al.​pone.​00773​36

He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in 
the human brain revealed by cortical thickness from MRI. Cereb 
Cortex 17(10):2407–2419. https://​doi.​org/​10.​1093/​cercor/​bhl149

He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans 
A (2009) Impaired small-world efficiency in structural cortical 
networks in multiple sclerosis associated with white matter lesion 
load. Brain 132(Pt 12):3366–3379. https://​doi.​org/​10.​1093/​brain/​
awp089

Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and 
mortality. Neurology 17(5):427–442. https://​doi.​org/​10.​1212/​wnl.​
17.5.​427

Hu J, Xiao C, Gong D, Qiu C, Liu W, Zhang W (2019) Regional homo-
geneity analysis of major Parkinson’s disease subtypes based on 
functional magnetic resonance imaging. Neurosci Lett 706:81–87. 
https://​doi.​org/​10.​1016/j.​neulet.​2019.​05.​013

Huang X, Gong Q, Sweeney JA, Biswal BB (2019) Progress in psy-
choradiology, the clinical application of psychiatric neuroimag-
ing. Brit J Radiol 92(1101):20181000. https://​doi.​org/​10.​1259/​
bjr.​20181​000

Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical 
diagnosis of idiopathic Parkinson’s disease: a clinico-pathological 
study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184. 
https://​doi.​org/​10.​1136/​jnnp.​55.3.​181

Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. 
J Neurol Neurosurg Psychiatry 79(4):368–376. https://​doi.​org/​10.​
1136/​jnnp.​2007.​131045

Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K 
(2018) Functional connectivity of the corticobasal ganglia-thalam-
ocortical network in Parkinson disease: a systematic review and 
meta-analysis with cross-validation. Radiology 287(3):973–982. 
https://​doi.​org/​10.​1148/​radiol.​20181​72183

Kamagata K, Zalesky A, Hatano T, Di Biase MA, El Samad O, Saiki S, 
Shimoji K, Kumamaru KK, Kamiya K, Hori M, Hattori N, Aoki 
S, Pantelis C (2018) Connectome analysis with diffusion MRI 
in idiopathic Parkinson’s disease: evaluation using multi-shell, 
multi-tissue, constrained spherical deconvolution. Neuroimage 
Clin 17:518–529. https://​doi.​org/​10.​1016/j.​nicl.​2017.​11.​007

Khairnar A, Ruda-Kucerova J, Szabo N, Drazanova E, Arab A, Hutter-
Paier B, Neddens J, Latta P, Starcuk Z Jr, Rektorova I (2017) 
Early and progressive microstructural brain changes in mice 

overexpressing human alpha-Synuclein detected by diffusion 
kurtosis imaging. Brain Behav Immun 61:197–208. https://​doi.​
org/​10.​1016/j.​bbi.​2016.​11.​027

Knossalla F, Kohl Z, Winkler J, Schwab S, Schenk T, Engelhorn T, 
Doerfler A, Golitz P (2018) High-resolution diffusion tensor-
imaging indicates asymmetric microstructural disorganization 
within substantia nigra in early Parkinson’s disease. J Clin Neu-
rosci 50:199–202. https://​doi.​org/​10.​1016/j.​jocn.​2018.​01.​023

Kong XZ, Liu Z, Huang L, Wang X, Yang Z, Zhou G, Zhen Z, Liu 
J (2015) Mapping individual brain networks using statisti-
cal similarity in regional morphology from MRI. PLoS ONE 
10(11):e0141840. https://​doi.​org/​10.​1371/​journ​al.​pone.​01418​40

Kong XZ, Wang X, Huang L, Pu Y, Yang Z, Dang X, Zhen Z, Liu J 
(2014) Measuring individual morphological relationship of corti-
cal regions. J Neurosci Methods 237:103–107. https://​doi.​org/​10.​
1016/j.​jneum​eth.​2014.​09.​003

Lei D, Pinaya WHL, van Amelsvoort T, Marcelis M, Donohoe G, 
Mothersill DO, Corvin A, Gill M, Vieira S, Huang X, Lui S, 
Scarpazza C, Young J, Arango C, Bullmore E, Gong Q, McGuire 
P, Mechelli A (2020) Detecting schizophrenia at the level of the 
individual: relative diagnostic value of whole-brain images, con-
nectome-wide functional connectivity and graph-based metrics. 
Psychol Med 50(11):1852-1861. https://​doi.​org/​10.​1017/​S0033​
29171​90019​34

Li X, Xing Y, Schwarz ST, Auer DP (2017) Limbic grey matter changes 
in early Parkinson’s disease. Hum Brain Mapp 38(7):3566–3578. 
https://​doi.​org/​10.​1002/​hbm.​23610

Liao X, Vasilakos AV, He Y (2017) Small-world human brain net-
works: perspectives and challenges. Neurosci Biobehav Rev 
77:286–300. https://​doi.​org/​10.​1016/j.​neubi​orev.​2017.​03.​018

Luo CY, Guo XY, Song W, Chen Q, Cao B, Yang J, Gong QY, Shang 
HF (2015) Functional connectome assessed using graph theory 
in drug-naive Parkinson’s disease. J Neurol 262(6):1557–1567. 
https://​doi.​org/​10.​1007/​s00415-​015-​7750-3

Ma LY, Chen XD, He Y, Ma HZ, Feng T (2017a) Disrupted brain 
network hubs in subtype-specific Parkinson’s disease. Eur Neurol 
78(3–4):200–209. https://​doi.​org/​10.​1159/​00047​7902

Ma Q, Huang B, Wang J, Seger C, Yang W, Li C, Wang J, Feng J, Weng 
L, Jiang W, Huang R (2017b) Altered modular organization of 
intrinsic brain functional networks in patients with Parkinson’s 
disease. Brain Imaging Behav 11(2):430–443. https://​doi.​org/​10.​
1007/​s11682-​016-​9524-7

Marie RM, Lozza C, Chavoix C, Defer GL, Baron JC (2007) Functional 
imaging of working memory in Parkinson’s disease: compensa-
tions and deficits. J Neuroimaging 17(4):277–285. https://​doi.​org/​
10.​1111/j.​1552-​6569.​2007.​00152.x

McMillan CT, Wolk DA (2016) Presence of cerebral amyloid modu-
lates phenotype and pattern of neurodegeneration in early Parkin-
son’s disease. J Neurol Neurosurg Psychiatry 87(10):1112–1122. 
https://​doi.​org/​10.​1136/​jnnp-​2015-​312690

Menon V (2011) Large-scale brain networks and psychopathology: a 
unifying triple network model. Trends Cogn Sci 15(10):483–506. 
https://​doi.​org/​10.​1016/j.​tics.​2011.​08.​003

Meppelink AM, de Jong BM, Renken R, Leenders KL, Cornelissen 
FW, van Laar T (2009) Impaired visual processing preceding 
image recognition in Parkinson’s disease patients with visual 
hallucinations. Brain 132(Pt 11):2980–2993. https://​doi.​org/​10.​
1093/​brain/​awp223

Mishra VR, Sreenivasan KR, Yang Z, Zhuang X, Cordes D, Mari Z, 
Litvan I, Fernandez HH, Eidelberg D, Ritter A, Cummings JL, 
Walsh RR (2020) Unique white matter structural connectivity in 
early-stage drug-naive Parkinson disease. Neurology 94(8):e774–
e784. https://​doi.​org/​10.​1212/​WNL.​00000​00000​008867

Nan J, Zhang L, Zhu F, Tian X, Zheng Q, Deneen KM, Liu J, Zhang 
M (2016) Topological alterations of the intrinsic brain network 

https://doi.org/10.1002/mds.22340
https://doi.org/10.1093/brain/awt360
https://doi.org/10.1093/brain/awt360
https://doi.org/10.1007/978-3-540-45087-0_28
https://doi.org/10.1007/978-3-540-45087-0_28
https://www.elsevier.com/books/psychoradiology-an-issue-of-neuroimaging-clinics-of-north-america/gong/978-0-323-70886-9
https://www.elsevier.com/books/psychoradiology-an-issue-of-neuroimaging-clinics-of-north-america/gong/978-0-323-70886-9
https://www.elsevier.com/books/psychoradiology-an-issue-of-neuroimaging-clinics-of-north-america/gong/978-0-323-70886-9
https://doi.org/10.1371/journal.pone.0077336
https://doi.org/10.1371/journal.pone.0077336
https://doi.org/10.1093/cercor/bhl149
https://doi.org/10.1093/brain/awp089
https://doi.org/10.1093/brain/awp089
https://doi.org/10.1212/wnl.17.5.427
https://doi.org/10.1212/wnl.17.5.427
https://doi.org/10.1016/j.neulet.2019.05.013
https://doi.org/10.1259/bjr.20181000
https://doi.org/10.1259/bjr.20181000
https://doi.org/10.1136/jnnp.55.3.181
https://doi.org/10.1136/jnnp.2007.131045
https://doi.org/10.1136/jnnp.2007.131045
https://doi.org/10.1148/radiol.2018172183
https://doi.org/10.1016/j.nicl.2017.11.007
https://doi.org/10.1016/j.bbi.2016.11.027
https://doi.org/10.1016/j.bbi.2016.11.027
https://doi.org/10.1016/j.jocn.2018.01.023
https://doi.org/10.1371/journal.pone.0141840
https://doi.org/10.1016/j.jneumeth.2014.09.003
https://doi.org/10.1016/j.jneumeth.2014.09.003
https://doi.org/10.1017/S0033291719001934
https://doi.org/10.1017/S0033291719001934
https://doi.org/10.1002/hbm.23610
https://doi.org/10.1016/j.neubiorev.2017.03.018
https://doi.org/10.1007/s00415-015-7750-3
https://doi.org/10.1159/000477902
https://doi.org/10.1007/s11682-016-9524-7
https://doi.org/10.1007/s11682-016-9524-7
https://doi.org/10.1111/j.1552-6569.2007.00152.x
https://doi.org/10.1111/j.1552-6569.2007.00152.x
https://doi.org/10.1136/jnnp-2015-312690
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1093/brain/awp223
https://doi.org/10.1093/brain/awp223
https://doi.org/10.1212/WNL.0000000000008867


1402	 Brain Structure and Function (2021) 226:1389–1403

1 3

in patients with functional dyspepsia. J Neurogastroenterol Motil 
22(1):118–128. https://​doi.​org/​10.​5056/​jnm15​118

Navalpotro-Gomez I, Kim J, Paz-Alonso PM, Delgado-Alvarado M, 
Quiroga-Varela A, Jimenez-Urbieta H, Carreiras M, Strafella AP, 
Rodriguez-Oroz MC (2020) Disrupted salience network dynam-
ics in Parkinson’s disease patients with impulse control disorders. 
Parkinsonism Relat Disord 70:74–81. https://​doi.​org/​10.​1016/j.​
parkr​eldis.​2019.​12.​009

Nigro S, Riccelli R, Passamonti L, Arabia G, Morelli M, Nistico 
R, Novellino F, Salsone M, Barbagallo G, Quattrone A (2016) 
Characterizing structural neural networks in de novo Parkin-
son disease patients using diffusion tensor imaging. Hum Brain 
Mapp 37(12):4500–4510. https://​doi.​org/​10.​1002/​hbm.​23324

Oosterwijk CS, Vriend C, Berendse HW, van der Werf YD, van den 
Heuvel OA (2018) Anxiety in Parkinson’s disease is associ-
ated with reduced structural covariance of the striatum. J Affect 
Disord 240:113–120. https://​doi.​org/​10.​1016/j.​jad.​2018.​07.​053

Pan P, Zhan H, Xia M, Zhang Y, Guan D, Xu Y (2017) Aberrant 
regional homogeneity in Parkinson’s disease: a voxel-wise 
meta-analysis of resting-state functional magnetic resonance 
imaging studies. Neurosci Biobehav Rev 72:223–231. https://​
doi.​org/​10.​1016/j.​neubi​orev.​2016.​11.​018

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel 
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas 
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É 
(2012) Scikit-learn: machine learning in python. J Mach Learn 
Res 12(10):2825–2830

Pereira JB, Aarsland D, Ginestet CE, Lebedev AV, Wahlund LO, 
Simmons A, Volpe G, Westman E (2015) Aberrant cerebral 
network topology and mild cognitive impairment in early Par-
kinson’s disease. Hum Brain Mapp 36(8):2980–2995. https://​
doi.​org/​10.​1002/​hbm.​22822

Rubinov M, Sporns O (2010) Complex network measures of brain 
connectivity: uses and interpretations. Neuroimage 52(3):1059–
1069. https://​doi.​org/​10.​1016/j.​neuro​image.​2009.​10.​003

Sandrone S, Catani M (2013) Journal Club. Default-mode network 
connectivity in cognitively unimpaired patients with Parkinson 
disease. Neurology 81(23):e172-175. https://​doi.​org/​10.​1212/​
01.​wnl.​00004​36943.​62904.​09

Sang L, Zhang J, Wang L, Zhang J, Zhang Y, Li P, Wang J, Qiu M 
(2015) Alteration of brain functional networks in early-stage 
Parkinson’s disease: a resting-state fMRI study. PLoS ONE 
10(10):e0141815. https://​doi.​org/​10.​1371/​journ​al.​pone.​01418​15

Seidlitz J, Vasa F, Shinn M, Romero-Garcia R, Whitaker KJ, 
Vertes PE, Wagstyl K, Kirkpatrick Reardon P, Clasen L, Liu 
S, Messinger A, Leopold DA, Fonagy P, Dolan RJ, Jones PB, 
Goodyer IM, Consortium N, Raznahan A, Bullmore ET (2018) 
Morphometric similarity networks detect microscale cortical 
organization and predict inter-individual cognitive variation. 
Neuron 97(1):231–247. https://​doi.​org/​10.​1016/j.​neuron.​2017.​
11.​039

Shah A, Lenka A, Saini J, Wagle S, Naduthota RM, Yadav R, Pal 
PK, Ingalhalikar M (2017) Altered brain wiring in Parkinson’s 
disease: a structural connectome-based analysis. Brain Connect 
7(6):347–356. https://​doi.​org/​10.​1089/​brain.​2017.​0506

Sporns O, Tononi G, Kotter R (2005) The human connectome: a struc-
tural description of the human brain. PLoS Comput Biol 1(4):e42. 
https://​doi.​org/​10.​1371/​journ​al.​pcbi.​00100​42

Strogatz SH (2001) Exploring complex networks. Nature 
410(6825):268–276. https://​doi.​org/​10.​1038/​35065​725

Sun H, Chen Y, Huang Q, Lui S, Huang X, Shi Y, Xu X, Sweeney 
JA, Gong Q (2018) Psychoradiologic utility of MR imaging for 
diagnosis of attention deficit hyperactivity disorder: a radiom-
ics analysis. Radiology 287(2):620–630. https://​doi.​org/​10.​1148/​
radiol.​20171​70226

Suo X, Lei D, Li K, Chen F, Li F, Li L, Huang X, Lui S, Li L, Kemp 
GJ, Gong Q (2015) Disrupted brain network topology in pediatric 
posttraumatic stress disorder: a resting-state fMRI study. Hum 
Brain Mapp 36(9):3677–3686. https://​doi.​org/​10.​1002/​hbm.​22871

Suo X, Lei D, Li L, Li W, Dai J, Wang S, He M, Zhu H, Kemp GJ, 
Gong Q (2018) Psychoradiological patterns of small-world 
properties and a systematic review of connectome studies of 
patients with 6 major psychiatric disorders. J Psychiatry Neurosci 
43(5):170214. https://​doi.​org/​10.​1503/​jpn.​170214

Suo X, Lei D, Li N, Cheng L, Chen F, Wang M, Kemp GJ, Peng 
R, Gong Q (2017) Functional brain connectome and its rela-
tion to Hoehn and Yahr stage in Parkinson disease. Radiology 
285(3):904–913. https://​doi.​org/​10.​1148/​radiol.​20171​62929

Suo X, Lei D, Li W, Li L, Dai J, Wang S, Li N, Cheng L, Peng R, 
Kemp GJ, Gong Q (2021) Altered white matter microarchitecture 
in Parkinson’s disease: a voxel-based meta-analysis of diffusion 
tensor imaging studies. Front Med 15(1):125–138. https://​doi.​org/​
10.​1007/​s11684-​019-​0725-5

Tessitore A, Esposito F, Vitale C, Santangelo G, Amboni M, Russo A, 
Corbo D, Cirillo G, Barone P, Tedeschi G (2012) Default-mode 
network connectivity in cognitively unimpaired patients with Par-
kinson disease. Neurology 79(23):2226–2232. https://​doi.​org/​10.​
1212/​WNL.​0b013​e3182​7689d6

Tessitore A, Giordano A, De Micco R, Russo A, Tedeschi G (2014) 
Sensorimotor connectivity in Parkinson’s disease: the role of func-
tional neuroimaging. Front Neurol 5:180. https://​doi.​org/​10.​3389/​
fneur.​2014.​00180

Tijms BM, Series P, Willshaw DJ, Lawrie SM (2012) Similarity-based 
extraction of individual networks from gray matter MRI scans. 
Cereb Cortex 22(7):1530–1541. https://​doi.​org/​10.​1093/​cercor/​
bhr221

Tinaz S, Lauro PM, Ghosh P, Lungu C, Horovitz SG (2017) Changes 
in functional organization and white matter integrity in the con-
nectome in Parkinson’s disease. Neuroimage Clin 13:395–404. 
https://​doi.​org/​10.​1016/j.​nicl.​2016.​12.​019

Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) 
Systematic review of levodopa dose equivalency reporting in Par-
kinson’s disease. Mov Disord 25(15):2649–2653. https://​doi.​org/​
10.​1002/​mds.​23429

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard 
O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical 
labeling of activations in SPM using a macroscopic anatomical 
parcellation of the MNI MRI single-subject brain. Neuroimage 
15(1):273–289. https://​doi.​org/​10.​1006/​nimg.​2001.​0978

Van Essen DC (1997) A tension-based theory of morphogen-
esis and compact wiring in the central nervous system. Nature 
385(6614):313–318. https://​doi.​org/​10.​1038/​38531​3a0

van Wijk BC, Stam CJ, Daffertshofer A (2010) Comparing brain 
networks of different size and connectivity density using graph 
theory. PLoS ONE 5(10):e13701. https://​doi.​org/​10.​1371/​journ​
al.​pone.​00137​01

Vancea R, Simonyan K, Petracca M, Brys M, Di Rocco A, Ghilardi 
MF, Inglese M (2019) Cognitive performance in mid-stage Par-
kinson’s disease: functional connectivity under chronic antipar-
kinson treatment. Brain Imaging Behav 13(1):200–209. https://​
doi.​org/​10.​1007/​s11682-​017-​9765-0

Wang H, Jin X, Zhang Y, Wang J (2016) Single-subject morphological 
brain networks: connectivity mapping, topological characteriza-
tion and test-retest reliability. Brain Behav 6(4):e00448. https://​
doi.​org/​10.​1002/​brb3.​448

Wang J, Wang X, Xia M, Liao X, Evans A, He Y (2015) GRETNA: 
a graph theoretical network analysis toolbox for imaging con-
nectomics. Front Hum Neurosci 9:386. https://​doi.​org/​10.​3389/​
fnhum.​2015.​00386

https://doi.org/10.5056/jnm15118
https://doi.org/10.1016/j.parkreldis.2019.12.009
https://doi.org/10.1016/j.parkreldis.2019.12.009
https://doi.org/10.1002/hbm.23324
https://doi.org/10.1016/j.jad.2018.07.053
https://doi.org/10.1016/j.neubiorev.2016.11.018
https://doi.org/10.1016/j.neubiorev.2016.11.018
https://doi.org/10.1002/hbm.22822
https://doi.org/10.1002/hbm.22822
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1212/01.wnl.0000436943.62904.09
https://doi.org/10.1212/01.wnl.0000436943.62904.09
https://doi.org/10.1371/journal.pone.0141815
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1089/brain.2017.0506
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1038/35065725
https://doi.org/10.1148/radiol.2017170226
https://doi.org/10.1148/radiol.2017170226
https://doi.org/10.1002/hbm.22871
https://doi.org/10.1503/jpn.170214
https://doi.org/10.1148/radiol.2017162929
https://doi.org/10.1007/s11684-019-0725-5
https://doi.org/10.1007/s11684-019-0725-5
https://doi.org/10.1212/WNL.0b013e31827689d6
https://doi.org/10.1212/WNL.0b013e31827689d6
https://doi.org/10.3389/fneur.2014.00180
https://doi.org/10.3389/fneur.2014.00180
https://doi.org/10.1093/cercor/bhr221
https://doi.org/10.1093/cercor/bhr221
https://doi.org/10.1016/j.nicl.2016.12.019
https://doi.org/10.1002/mds.23429
https://doi.org/10.1002/mds.23429
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1038/385313a0
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1371/journal.pone.0013701
https://doi.org/10.1007/s11682-017-9765-0
https://doi.org/10.1007/s11682-017-9765-0
https://doi.org/10.1002/brb3.448
https://doi.org/10.1002/brb3.448
https://doi.org/10.3389/fnhum.2015.00386
https://doi.org/10.3389/fnhum.2015.00386


1403Brain Structure and Function (2021) 226:1389–1403	

1 3

Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” 
networks. Nature 393(6684):440–442. https://​doi.​org/​10.​1038/​
30918

Weingarten CP, Sundman MH, Hickey P, Chen NK (2015) Neuroimag-
ing of Parkinson’s disease: expanding views. Neurosci Biobehav 
Rev 59:16–52. https://​doi.​org/​10.​1016/j.​neubi​orev.​2015.​09.​007

Wen MC, Heng HSE, Hsu JL, Xu Z, Liew GM, Au WL, Chan LL, 
Tan LCS, Tan EK (2017a) Structural connectome alterations in 
prodromal and de novo Parkinson’s disease patients. Parkinson-
ism Relat Disord 45:21–27. https://​doi.​org/​10.​1016/j.​parkr​eldis.​
2017.​09.​019

Wen MC, Xu Z, Lu Z, Chan LL, Tan EK, Tan LCS (2017b) Micro-
structural network alterations of olfactory dysfunction in newly 
diagnosed Parkinson’s disease. Sci Rep 7(1):12559. https://​doi.​
org/​10.​1038/​s41598-​017-​12947-7

Wu Q, Gao Y, Liu AS, Xie LZ, Qian L, Yang XG (2018) Large-scale 
cortical volume correlation networks reveal disrupted small world 
patterns in Parkinson’s disease. Neurosci Lett 662:374–380. 
https://​doi.​org/​10.​1016/j.​neulet.​2017.​10.​032

Xu J, Zhang J, Zhang J, Wang Y, Zhang Y, Wang J, Li G, Hu Q, Zhang 
Y (2017) Abnormalities in structural covariance of cortical gyri-
fication in Parkinson’s disease. Front Neuroanat 11:12. https://​doi.​
org/​10.​3389/​fnana.​2017.​00012

Xu X, Guan X, Guo T, Zeng Q, Ye R, Wang J, Zhong J, Xuan M, Gu 
Q, Huang P, Pu J, Zhang B, Zhang M (2018) Brain atrophy and 
reorganization of structural network in Parkinson’s disease with 
hemiparkinsonism. Front Hum Neurosci 12:117. https://​doi.​org/​
10.​3389/​fnhum.​2018.​00117

Zalesky A, Fornito A, Bullmore ET (2010) Network-based sta-
tistic: identifying differences in brain networks. Neuroimage 
53(4):1197–1207. https://​doi.​org/​10.​1016/j.​neuro​image.​2010.​
06.​041

Zhang D, Liu X, Chen J, Liu B (2014) Distinguishing patients with 
Parkinson’s disease subtypes from normal controls based on func-
tional network regional efficiencies. PLoS ONE 9(12):e115131. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​01151​31

Zhang D, Wang J, Liu X, Chen J, Liu B (2015a) Aberrant brain network 
efficiency in Parkinson’s disease patients with tremor: a multi-
modality study. Front Aging Neurosci 7:169. https://​doi.​org/​10.​
3389/​fnagi.​2015.​00169

Zhang DL, Liu X, Chen J, Liu B, Wang JH (2015b) Widespread 
increase of functional connectivity in Parkinson’s disease with 
tremor: a resting-state fMRI study. Front Aging Neurosci 7:6. 
https://​doi.​org/​10.​3389/​fnagi.​2015.​00006

Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) 
Disrupted brain connectivity networks in drug-naive, first-episode 
major depressive disorder. Biol Psychiatry 70(4):334–342. https://​
doi.​org/​10.​1016/j.​biops​ych.​2011.​05.​018

Zhang Y, Lin L, Lin CP, Zhou Y, Chou KH, Lo CY, Su TP, Jiang T 
(2012) Abnormal topological organization of structural brain net-
works in schizophrenia. Schizophr Res 141(2–3):109–118. https://​
doi.​org/​10.​1016/j.​schres.​2012.​08.​021

Zhang Y, Qiu T, Yuan X, Zhang J, Wang Y, Zhang N, Zhou C, Luo C, 
Zhang J (2019) Abnormal topological organization of structural 
covariance networks in amyotrophic lateral sclerosis. Neuroim-
age Clin 21:101619. https://​doi.​org/​10.​1016/j.​nicl.​2018.​101619

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1016/j.neubiorev.2015.09.007
https://doi.org/10.1016/j.parkreldis.2017.09.019
https://doi.org/10.1016/j.parkreldis.2017.09.019
https://doi.org/10.1038/s41598-017-12947-7
https://doi.org/10.1038/s41598-017-12947-7
https://doi.org/10.1016/j.neulet.2017.10.032
https://doi.org/10.3389/fnana.2017.00012
https://doi.org/10.3389/fnana.2017.00012
https://doi.org/10.3389/fnhum.2018.00117
https://doi.org/10.3389/fnhum.2018.00117
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1371/journal.pone.0115131
https://doi.org/10.3389/fnagi.2015.00169
https://doi.org/10.3389/fnagi.2015.00169
https://doi.org/10.3389/fnagi.2015.00006
https://doi.org/10.1016/j.biopsych.2011.05.018
https://doi.org/10.1016/j.biopsych.2011.05.018
https://doi.org/10.1016/j.schres.2012.08.021
https://doi.org/10.1016/j.schres.2012.08.021
https://doi.org/10.1016/j.nicl.2018.101619

	Disrupted morphological grey matter networks in early-stage Parkinson’s disease
	Abstract
	Introduction
	Materials and methods
	Participants
	Data acquisition
	Data preprocessing
	Construction of GM brain networks
	Analysis of GM brain networks
	Statistical analysis
	Support vector machine (SVM) analysis

	Results
	Demographic and clinical characteristics
	Alterations of global and nodal brain network metrics in PD
	Alterations in network connection in PD
	Relationships between network metrics and clinical variables in PD
	Single-subject classification of PD patients and HC
	Brain network measures between different PD motor subtypes

	Discussion
	Acknowledgments 
	References




