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Abstract
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninva-
sive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its 
accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations 
of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the 
connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies 
have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, 
these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior 
anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing 
tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-
segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where 
streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current 
study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the 
same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually 
placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. 
Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that cur-
rent tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very 
accurately reflect the ground truth white matter connections.
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Introduction

Diffusion MRI fiber tractography is widely used to map the 
structural connections of the brain (Conturo et al. 1999; 
Mori et al. 1999; Basser et al. 2000; Behrens et al. 2003; 
Parker et al. 2003; Lazar and Alexander 2005). Tractogra-
phy utilizes the directionality of diffusion of water mole-
cules in brain tissue to estimate neuronal fiber orientation, 
and, subsequently, generates “streamlines”—typically by 
stepping along these orientation fields in some pre-deter-
mined ways (Mori et al. 1999; Mori and van Zijl 2002). 
These streamlines are representative of possible trajecto-
ries of white matter pathways of the brain and have been 
used to infer region-to-region connectivity (connectomics) 
or to identify and extract specific white matter tracts (bun-
dle-segmentation). These techniques can additionally be 
informed by a priori knowledge of anatomy or trajectories 
of the pathways (Wakana et al. 2007). For instance, ana-
tomical constraints can be employed by defining regions-
of-interest (ROIs) to constrain the resulting streamlines, 
which is more generally used in bundle-segmentation 
applications. Most commonly, “seed” ROIs define where 
streamlines must start or end, “AND” or “inclusion” ROIs 
that pathways must include, and “NOT” or “exclusion” 
ROIs that pathways must not contact. These constraints 
are typically implemented post-tracking as a filtering tech-
nique (Garyfallidis et al. 2018; Zhang et al. 2018; Guevara 
et al. 2012), but can also be used during track generation 
(Warrington et al. 2020; Behrens et al. 2007; Catani and 
de Schotten 2015; Catani et al. 2002), and are most com-
monly associated with the field of bundle segmentation 
(i.e., as a virtual dissection of specific pathways following 
seeding throughout the entire brain). 

Despite these significant achievements in human 
brain mapping, the field of diffusion MRI has uncovered 
and detailed a number of limitations in the anatomical 
accuracy of fiber tractography techniques, particularly 
in recent years. Early validation studies were mostly 
aimed at proving sensitivity of these techniques, and only 
recently highlighted the specificity issues, especially as 
it relates to connectomics. These studies have convinc-
ingly shown a fundamental trade-off between sensitivity 
(i.e., the ability to detect true connections) and specificity 
(i.e., the ability to avoid false connections) of tractography 
techniques (van den Heuvel et al. 2015; Azadbakht et al. 
2015; Thomas et al. 2014), and an overall limited accu-
racy in estimating both structural connectivity and spatial 
extent of pathways in the brain (Thomas et al. 2014; Schil-
ling et al. 2018a; Maier-Hein et al. 2017). These results 
have been confirmed in simulations, in phantoms, and in 
a number of animal models—with sensitivity/specificity 
trade-offs apparent across a range of tracking algorithms, 

parameters, and pathways under investigation (Azadbakht 
et al. 2015; Thomas et al. 2014; Schilling et al. 2018a,  
2019; Donahue et al. 2016; Knosche et al. 2015; Dyrby 
et al. 2007; Dauguet et al. 2007; Calabrese et al. 2015; 
Aydogan et al. 2018; Neher et al. 2014; Cote et al. 2013). 
It is now well known that these techniques can be plagued 
not only by overestimation of the extent and connections 
of pathways (false positives), but also underestimation of 
the same (false negatives). One influential work presented 
by Thomas et al. (2014) highlights “an inherent limitation 
in determining long-range anatomical projections based 
on voxel-averaged estimates of local fiber orientation 
obtained from DWI data that is unlikely to be overcome 
by improvements in data acquisition and analysis alone.” 
Thus, it appears that high anatomical accuracy remains 
an elusive goal with current tractography algorithms and 
strategies, unless a “revolution” happens in the additional 
information provided to tractography algorithms (Maier-
Hein et al. 2017, 2019). 

However, these limitations have largely been highlighted 
in validation studies that have implemented tractography in 
a manner most similar to that performed in connectomics 
studies—i.e., with little-to-no anatomical rules or constraints 
in a relatively “unsupervised” approach lacking advantages 
of prior information. Thus, they represent a lower-bound, or 
worst-case, scenario for tractography, and may not be indica-
tive of the anatomical accuracy in the process of bundle seg-
mentation where filtering and anatomical rules are common 
(Garyfallidis et al. 2018; Yendiki et al. 2011; Warrington 
et al. 2020; Wasserthal et al. 2018, 2019; Rheault et al. 2019; 
Wassermann et al. 2013, 2016). In fact, several early works 
in this field share a quite optimistic view of the accuracy of 
tractography (Catani et al. 2002; Lawes et al. 2008; Mori 
and van Zijl 2007), and “virtual” dissections of individual 
fiber bundles are qualitatively similar to cadaveric dissec-
tions (Hau et al. 2017; Wang et al. 2016; Forkel et al. 2014; 
Sarubbo et al. 2013). Further, constraints have been heav-
ily utilized in the previous validation studies for not only 
verifying anatomical accuracy, but identifying advantages 
of comparative anatomy across species (Jbabdi et al. 2013; 
Mars et al. 2011,  2016; Safadi et al. 2018), and confirm-
ing the trajectory or cortical origin of white matter bundles 
(Neubert et al. 2014, 2015; Mars et al. 2012; Innocenti et al. 
2017). While these studies, and many others incorporating 
prior information and anatomical constraints (Rheault et al. 
2019; Galinsky and Frank Jun 2017; Smith et al. 2012; Gal-
insky and Frank 2015; Frank and Galinsky 2016), suggest 
tractography can accurately reconstruct not only broad path-
ways but also the topology of smaller bundles within those 
pathways, the sensitivity and specificity when implementing 
anatomical guidance has not been explicitly quantified.

Along these lines, we hypothesize that to overcome the 
sensitivity/specificity curse, we simply (and intuitively) need 
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to utilize anatomical knowledge and anatomically informed 
rules as is commonly done in bundle-segmentation studies, 
which will enable us to constrain where tracks can and can-
not go (Rheault et al. 2019). With this in mind, the aim of 
the current study is to investigate and quantify the upper 
bounds of current tractography methods. Whereas previous 
quantitative validation studies have asked how well we can 
map connections from a given region, we ask how well we 
can extract known bundles and connections of the brain, i.e., 
given detailed (and painstakingly acquired) knowledge of the 
ground truth pathways (Schmahmann and Pandya 2006) we 
ask if existing algorithms can reach high anatomical accu-
racy in segmenting these pathways. Thus, we propose, and 
show, that simple guidance can be used to achieve a high 
sensitivity and high specificity at the same time (i.e., if we a 
priori know, and constrain, where the pathways start, where 
they end, and where they do not go)—confirming that the 
process of bundle segmentation, with the incorporation of a 
prior knowledge, has the potential to result in highly accu-
rate representations of the desired neural pathways. 

To do this, we utilize the validation dataset originally 
introduced by Thomas et  al. (2014) and subsequently 
employed in an international tractography challenge (Schil-
ling et al. 2018a), both of which came to the conclusion 
that alternative or new strategies are needed for mapping the 
brain’s fiber pathways. Here, we apply tractography methods 
to this ex vivo dataset of the macaque brain, and compare 
these methods to maps of known axonal projects from previ-
ous tracer studies in the macaque (Schmahmann and Pandya 
2006). Importantly, by utilizing the very same detailed tracer 
maps and explicit descriptions by the authors, we perform 
virtual dissections of a full brain tractogram. We constrain 
the streamlines using varying combinations of inclusion 
and exclusion regions in a manner consistent with common 

approaches in bundle segmentation. We assess the results 
using the code and analysis used in Thomas et al. (2014), 
iteratively refining the constraints until both high sensitivity 
and high specificity are achieved. We use the subject-specific 
data to drive the results, but obey anatomical rules with clear 
landmarks, as one might when driving a car by following 
GPS instructions and road maps.

Results

The aim of the methodology is to duplicate the process of a 
clinician, neuroanatomist, or researcher that may be manu-
ally delineating a fiber bundle, i.e., by applying and adapting 
guidelines until the streamlines best replicate the ground 
truth WM anatomy of the pathway of interest (for example 
when comparing to neuroanatomy textbooks, prior knowl-
edge, or tractography protocols). We selected the datasets 
and ground truth pathways from previous studies (Thomas 
et al. 2014; Schilling et al. 2018a), composed of anatomical 
locations of tracer-labeled regions from anterograde injec-
tions within (A) the precentral gyrus (PCG) corresponding 
to the foot region of the motor cortex [Case #28 in Schmah-
mann and Pandya (2006)] and (B) the ventral part of area 
V4 [Case #21 in Schmahmann and Pandya (2006)] of a rhe-
sus macaque—the same injection sites utilized in Thomas 
et al. (2014). Tracer-labeled regions were transposed to the 
same space as the diffusion MRI data (Fig. 1), and agree-
ment between tracer results and tractography was assessed 
in terms of the number of true-positive (TP), false-negative 
(FN), false-positive (FP), and true-negative (TN) connec-
tions, which are used to compute specificity [TN/(TN + FP)] 
and sensitivity [TP/(TP + FN)], which are defined by regions 

Fig. 1  Definition of ground truth and analysis. a Tracer substance 
delineated on individual slices [reproduced from Schmahmann 
and Pandya (2006)]. For the PCG injection (Case #28), tracer was 
described and detailed on 14 slices. b Example MRI b0 slice from 
approximately similar location. c Tracers were transposed to MRI 

data, as described in Thomas et  al. (2014), and digitized as binary 
“ground truth” volume of pathways. d Gray and white matter ROIs 
were manually delineated on the high-resolution data to assess agree-
ment between tracer and tractography results
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of the brain manually delineated by the authors of Thomas 
et al. (2014) (Fig. 1). 

Two different methods of streamline generation and 
subsequent pathway delineation were investigated, repre-
sentative of the approaches and software which the authors 
(KS and LP) chose in their own anatomical investigations. 
These are a manual-based approach and template-based 
approach. First, we utilized manually drawn ROIs (Wakana 
et al. 2007; Catani and de Schotten 2015), defining regions 

by hand where streamlines must go and where they must 
not go. These hand-drawn regions were typically in the 
form of planes or 2D free-form shapes, often orthogonal 
to the observed direction of streamline prorogation. Inclu-
sion regions were placed in regions specific to the pathway 
of interest, whereas streamlines considered false positives 
were eliminated by placing exclusion regions where these 
were visually identified to share areas in common (most 
commonly along adjacent white matter bundles or at the 

Fig. 2  Example procedures 
and constraints for manual 
dissection. Bundles, path-
ways, or groups of streamlines 
were individually segmented 
based on a priori anatomical 
knowledge written and pictured 
in Schmahmann and Pandya 
(2006). Injection region (blue), 
inclusion ROIs (green), exclu-
sion ROIs (red), and streamlines 
(yellow tubes) are visualized in 
2D, with green and red arrows 
used to highlight hard-to-see 
inclusion and exclusion regions, 
respectively, that are either in a 
plane perpendicular or oblique 
to the image slice, or those par-
tially obscured by streamlines. 
Detailed anatomical descrip-
tions and decisions used in the 
dissection process are given in 
Materials and methods
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sulcal depth of gyri). Example procedures and constraints 
are shown in Fig. 2 and described in detail in Materials and 
methods. Second, we made use of predefined anatomical 
regions defined in a macaque template to serve as inclu-
sion and exclusion regions. The template was composed 
of labels in the form 3D volumes to be used as regions-
of-interest. Example procedures and constraints shown in 
Fig. 3 and described in detail in Materials and methods.

Qualitative results of the final tractogram of connec-
tions to the injection region are shown in Fig. 4 for PCG 
connections, and in Fig. 5 for V4 connections. The refer-
ence atlas of digitized histological connections (i.e., the 
ground truth) is shown as well as a roughly anatomically 
matched MRI slice with tractography streamlines over-
laid, showing both manual dissection results and template-
based results. While the streamlines replicate the major 
pathways and connections from tracers, they do not do so 
on an individual axon/streamline basis. There are small 
inconsistencies from individual streamlines; however, 
on the scale of larger anatomical regions (see Fig. 1d), 
streamlines exist where expected and do not occupy 
regions that tracer does not. Visually, the manual dissec-
tions better replicate the ground truth in many regions, due 
to the ability to make subject-specific and location-specific 
inclusion and exclusion decisions.

Quantifying accuracy [as done (Thomas et  al. 2014) 
in and (Schilling et al. 2018a)] for PCG connections, we 
find manual dissections which result in a sensitivity of 
0.949, specificity of 0.956, and Youden index (sensitiv-
ity + specificity − 1) of 0.906 (TP = 132, FN = 7, TN = 328, 
FP = 15), and template-generated dissections a sensitivity 
of 0.863, specificity of 0.869, and Youden index of 0.732 
(TP = 120, FN = 19, TN = 298, FP = 45). For V4 connec-
tions, manual dissections result in a sensitivity of 0.852, 
specificity of 0.925, and Youden index of 0.777 (TP = 115, 
FN = 20, TN = 234, FP = 19), and template-generated dis-
sections result in a sensitivity of 0.770, specificity of 0.866, 
and Youden index of 0.636 (TP = 104, FN = 31, TN = 219, 
FP = 34). These results are plotted as ROC curves on top of 
the results of Thomas et al. (2014) and those of Schilling 
et al. (2018a) (Fig. 6a for PCG connections, Fig. 6b for V4 
connections). It is clear that a high sensitivity and a high 
specificity are achieved at the same time, with the values 
much higher than those from both the original investiga-
tion (Thomas et al. 2014), and the international community 
challenge (Schilling et al. 2018a). The highest Youden indi-
ces observed previously on this dataset were 0.59 and 0.56 
from Thomas et al. (2014) and Schilling et al. (2018a) for 
the PCG injection and 0.53 and 0.58 for the V4 injection. 
We note that this is not a comparison of algorithms, since 
we, of course, had access or direct knowledge of the ground 
truth to help choose constraints to improve sensitivity and/
or specificity.

Discussion

In this study, we aim to investigate the upper bounds 
of tractography performance. If we are given a detailed 
description of the ground truth, either depicted in a map 
or written explicitly as a set of rules, and liberty in manual 
editing of pathways, we ask if it is possible to overcome 
the sensitivity/specificity limitations of current tracking 
algorithms and achieve a high anatomical accuracy. We 
find our answer is ‘yes’—tracking can be highly accurate 
if we know where streamlines (or pathways) start, where 
they end, and (maybe most importantly) where they do 
not go.

The importance of prior knowledge

Importantly, a number of anatomical constraints were 
needed to achieve this accuracy. Thus, while our answer 
to the previous question is ‘yes’, it is not without cave-
ats. Our conclusion should be amended to say that current 
algorithms, in combination with constraints, can achieve 
both high sensitivity and high specificity. Or alternatively, 
current algorithms “in combination with previous anatom-
ical knowledge” can have high accuracy. This anatomical 
knowledge is what influences the regional constraints, and 
we find that both inclusion and exclusion regions were 
needed in our study. Thus, our results are exactly in agree-
ment with the previous literature (Thomas et al. 2014; 
Schilling et al. 2018a; Maier-Hein et al. 2017), that sim-
ply utilizing local orientation information alone will not 
lead to accurate results, and more information is needed. 
However, we believe that this additional information can, 
and should, come in the form of existing knowledge of the 
trajectories of the white matter.

This study serves as the link between the existing vali-
dation studies emphasizing inherent tractography limita-
tions and the ever-present sensitivity/specificity trade-offs 
(Thomas et al. 2014; Donahue et al. 2016; Knosche et al. 
2015; Dyrby et al. 2007; Schilling et al. 2018a, 2019; 
Cote et al. 2013; Dauguet et al. 2006; Delettre et al. 2019; 
Ambrosen et al. 2020; Shen et al. 2019), and those studies 
that suggest anatomically faithful white matter bundles 
visually matching independent cadaveric or tracer data 
(Jbabdi et al. 2013; Mars et al. 2011, 2016; Safadi et al. 
2018; Neubert et al. 2014, 2015; Innocenti et al. 2017; Sal-
let et al. 2013). The sensitivity/specificity trade-off has so 
far been quantified using algorithms or streamlines gener-
ated in a relatively unconstrained manner, without the use 
of prior knowledge or constraints. Alternatively, those that 
reveal accurate reconstructions of trajectories and connec-
tivity patterns are nearly always performed using inclusion 
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and exclusion criteria, chosen and implemented by those 
with expert a priori knowledge of the system or path-
ways under investigation. While the latter studies show 
similarities in bundle shape, location, and endpoints, the 
sensitivity and specificity has not been fully quantified. 

In this study, we quantitatively confirm that the use of a 
prior knowledge, in this case in the form of regional con-
straints, improves the anatomical accuracy of tractography. 
Thus, while false positives and false negatives still exist, 
the overall accuracy is significantly improved, suggesting 
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that the use of constraints as is commonly employed in a 
number of studies using bundle segmentation can indeed 
result in highly accurate reconstructions.

Relying on local orientation information alone is insuffi-
cient to ensure both sensitivity and specificity (Thomas et al. 
2014). Here, we show that current tractography algorithms 
can provide highly accurate maps of the white matter, utiliz-
ing prior knowledge to filter results. In this case, we chose 
an algorithm that was known have the ability to be highly 
sensitive (dependent upon thresholding) (high TP), and uti-
lized added constraints as the solution to improve specificity. 
The sets of utilized streamlines, prior to filtering, exhibited 
a high sensitivity and poor specificity (sensitivity = 1, speci-
ficity = 0.27, and Youden index = 0.27 for the probabilistic 
streamlines prior to manual filtering), in line with the previ-
ous findings with similar reconstruction and tractography 
algorithms (Schilling et al. 2018a, 2019), which showed a 
much higher overall accuracy after anatomical constraints 
were employed. This emphasizes that the high specificity 
and sensitivity is due to the exploited anatomical knowledge 
instead of tractography algorithm choices. 

The challenge, then, was to find how to guide dissection 
that improved tractography. Here, we utilized inclusion and 
exclusion ROIs, as well as maximum streamline lengths. To 
improve future tractography results, it is crucial to under-
stand what constraints are necessary (a task which is beyond 
the scope of the current study), and what additional con-
straints (i.e., clustering, seeding, and filtering) may be suc-
cessful. These constraints will almost certainly vary across 
the algorithm employed, and the system under investiga-
tion (i.e., the brain itself and the pathway of interest). In the 
human brain, these may vary on an individual subject basis 
(and animal regions will likely not be directly translatable to 
the human brain—see discussion below). For this reason, it 
is important to think critically about how these pathways are 

“defined” anatomically, the nomenclature used to describe 
them, and how best to replicate them using tractography 
tools. For example, pathways may be defined as connect-
ing cortical region A to region B, or as a bundle that passes 
through/over/under region C (Wakana et al. 2007; Catani 
and de Schotten 2015; Wassermann et al. 2013, 2016; Mori 
et al. 2008; Landman et al. 2007). In summary, it is clear that 
how a pathway is defined may influence constraints, and a 
consensus is not clearly within reach in humans, although 
efforts (or discussions) are underway (Mandonnet et al. 
2018; Panesar and Fernandez-Miranda 2019).

At first glance, these results may seem intuitive. If we 
choose a highly sensitive algorithm that connects everything 
to everything, the idea that we can detect connections to all 
areas of the brain seems obvious. However, the key is when 
ensuring specificity—the connections of these algorithms 
may go through regions the true pathways do not, and these 
are eliminated through exclusion regions. Despite these 
exclusions, we are still able to achieve high true-positive 
rates. This is certainly an encouraging result, as it means that 
removing false positives does not also necessarily remove 
excessive true positives at the same time (i.e., streamlines 
not only connect to the correct regions, but also pass through 
the correct regions along their route). The alternative, brute 
force algorithm would be to connect every seed voxel to 
every target voxel, through every inclusion voxel, to guar-
antee that all true-positive regions are able to be reached 
without traversing TN regions. However, the current algo-
rithms do not do this, and we are able to achieve successful 
results employing widely used algorithms in the literature.

Challenges in validation, tractography, and “gold” 
standards

The presented results tell us that on a region-by-region basis, 
we are able to achieve a high specificity and high sensitivity. 
However, it is clear that there are still spurious streamlines 
within both cortical and white matter regions (see Fig. 3). 
While these will still contribute to false-positive areas (if 
they are truly false positive over the defined regions), these 
results may not end up on the optimal end of the ROC curves 
if this was analyzed on a voxel-wise basis. However, the 
ground truth is only defined over anatomically meaningful 
gray and white matter regions rather than on the scale of 
voxels, an analysis which would be complicated, because 
tracer and tractography are performed on different physi-
cal brains (although analysis on the same brain has been 
performed, we have chosen this dataset as it most clearly 
highlighted the fundamental accuracy limitations of trac-
tography). As described in Thomas et al. (2014), while con-
nectivity strength may vary across animals and injections, 
the presence or absence of connections is likely to be similar 
across monkeys. 

Fig. 3  Example procedures and constraints for template-based virtual 
dissection. Bundles, pathways, or groups of streamlines were individ-
ually segmented based on a priori anatomical knowledge written and 
pictured in Schmahmann and Pandya (2006). Examples are shown 
for PCG injections for striatal and commissural pathways. ROIs are 
shown as colored volume renderings, and streamlines are colored 
based on directionality. Red arrows highlight apparent false-positive 
streamlines that are removed through the use of exclusion regions, 
and white arrows emphasize the dense cord of the bundle matching 
anatomical descriptions. Detailed anatomical descriptions and deci-
sions used in the dissection process are given in Materials and meth-
ods. Briefly, for striatal streamlines, the original streamlines (a) are 
limited to those connecting to the PT (b), which pass through the CR 
(c) but still have false positives. These false positives pass through 
FX, TH, and AM (d), and are eliminated using these as exclusion 
regions (e), resulting in the final striatal bundle (f). The commissural 
streamlines pass through the BCC (g); however, many false positives 
are apparent (h). Using a number of exclusion regions (i) eliminates 
erroneous streamlines (j), resulting in commissural streamlines trajec-
tory which agrees well with written descriptions (k)

◂
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This highlights the significance, and importantly the limi-
tations, of what we choose to call our gold standards, and the 
methods used to validate tractography (Dyrby et al. 2018). In 
this study, it is clear that we do not match the reference atlas 
perfectly, although our ROC analysis suggests near perfect 
results. When validating, it is important to ask how impor-
tant are individual streamlines to the analysis, how large 
are the anatomical white and gray matter regions which we 
should use to designate our ground truth, and how finely 
parcellated do we need these areas to be (entire gyral folds? 

Divisions into gyral crowns, walls, and sulcal fundi? Or on 
the scale of individual cortical columns?)? The answers to 
these questions may be based on the intended application 
of the tractography analysis. The use as a connectivity tool 
may require more finely detailed anatomical connections 
and localization, while the use as a segmentation tool may 
only necessitate accuracy on the coarser scale the size of 
the bundles themselves—although it is clear that accuracy 
in both cases requires prior constraints. However, use of 
tractography as an exploratory analysis (i.e., searching for 

Fig. 4  Qualitative comparison of tracer and tractography for PCG 
injection. Tracer digitized on the reference atlas [and reproduced 
from Schmahmann and Pandya (2006), with permission] is shown 

alongside the anatomically matched b0 slice with streamlines shown 
in black (only streamlines within ± 1 slice are displayed) for both the 
manual-based dissection and the template-based dissection



2395Brain Structure and Function (2020) 225:2387–2402 

1 3

new pathways, or connections to regions that are not well 
characterized) will have limited accuracy on both streamline 
and region-to-region bases without some prior anatomical 
knowledge, and results should be interpreted with care with-
out strong independent validation (i.e., histological tracers 
and dissection). 

Similarly, another major limitation is that the “gold” 
standard [chosen by Thomas et al. (2014)] is based on the 
very same reference used to constrain the tracking, which 

may bias the results. However, the aim was to investigate 
whether, with prior knowledge, it is possible to achieve 
a high sensitivity and specificity. In the human brain (or 
any brain), researchers and clinicians have the same abil-
ity to constrain streamlines to where they do/do not want 
them to go, which makes this a valid approach. And, again, 
we emphasize that given the ground truth defined previ-
ously, with anatomical accuracy defined and described as 

Fig. 5  Qualitative comparison of tracer and tractography for V4 
injection. Tracer digitized on the reference atlas (and reproduced 
from Schmahmann and Pandya (2006), with permission), are shown 

alongside the anatomically matched b0 slice with streamlines shown 
in black (only streamlines within ± 1 slice are displayed) for both the 
manual-based dissection and the template-based dissection
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an ROI-based sensitivity/specificity measure, tractography 
can be highly accurate (at least for the pathways investi-
gated). Finally, the present study presents a best-case sce-
nario not only in terms of utilizing a priori knowledge, but 
also of the pathways chosen to validate (projection areas of 
M1 and V4) which are generally major projection systems 
with larger, well-defined projections. The use of these two 
systems was motivated by their use and careful manual 
delineations and ground truth definitions in Thomas et al. 
(2014) which were chosen as two exemplar orthogonally 
oriented systems. Even in this ideal model system, a “per-
fect” sensitivity and specificity was not achieved, with 
false negatives observed at greater distances from injec-
tion site, and biases or inaccuracies at exact cortical termi-
nations, in line with the previous studies (Donahue et al. 
2016; Schilling et al. 2018b; Reveley et al. 2015).

Generalizability

These results lead to an important set of open questions 
regarding generalizability. First, how should anatomical rules 
be defined to ensure that they generalize not only across sub-
jects, but also across tracking algorithms? The exact set of con-
straints are almost certainly not optimal for all methods of gen-
erating streamlines. Clearly, these rules will differ with varying 
bundle-segmentation approaches, with much more flexibility 
and freedom in manually placed ROIs, whereas atlas-based 
labels are fixed and may provide the ability to include and/or 
exclude desired regions depending on how fine-grained the 
parcellation is. Next, how do these guiding principles change 
in healthy versus diseased individuals? It is critical that any 
guidance in either segmentation or connectivity analysis gener-
alize to subjects with anomalous diffusion and structural prop-
erties of both normal and abnormal (tumorous) tissue. Finally, 

Fig. 6  Sensitivity and specificity results compared to the previ-
ous tractography validation studies. Results of the current study 
are shown as a filled star for manual dissection and outline start for 
template-based dissection, overlaid on plots and results from Thomas 

et al. (2014), and Schilling et al. (2018a) (left column and right col-
umn, respectively), which utilize the same data, same ground truth, 
and same quantitative analysis. ROC curves for PCG connections are 
shown on top row, with V4 ROC curves shown on bottom row
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while the filtering approach used here is most directly related 
to the field of bundle segmentation, what physical, anatomical, 
or structural priors or rules can be used that will generalize to 
the connectomics field that will reduce invalid connections 
while ensuring the existence of valid connections? Major 
progress in the connectomics and bundle-segmentation field 
has taken place with advanced filtering and/or spatial priors 
based on anatomy (Warrington et al. 2020; Rheault et al. 2019, 
2020; Girard et al. 2014; St-Onge et al. 2018), microstructure 
(Girard et al. 2017), and the diffusion signal itself (conser-
vation of density) (Daducci et al. 2015; Smith et al. 2013). 
We believe the next big steps involve multimodal integration 
of these and orthogonal techniques used to probe the human 
connectome—for example myelin (Alonso-Ortiz et al. 2015; 
Ganzetti et al. 2014), BOLD contrasts (Galinsky and Frank 
2015;  2017; Gore et al. 2019; Ding et al. 2018; Huang et al. 
2018), functional imaging (Deslauriers-Gauthier et al. 2019; 
Galinsky et al. 2018), and quantitative microdissection (Ben-
edictis et al. 2018), which will lead to a better understanding 
of the fundamental rules governing the structural organization 
and connectivity of the brain and endeavors to fully incorpo-
rate these into tractography algorithms. In essence, all of these 
facilitate the adoption of rules, for example ways to include, 
exclude, or generate streamlines in the same way approached 
through this study, which can lead to breakthroughs in the 
anatomical accuracy of tractography—as quantitatively shown 
in this study. 

Finally, validation in animal models does not necessar-
ily validate this methodology (or tractography in general) in 
humans. These results, and specifically these constraints, are 
not necessarily immediately generalizable—especially to dif-
ferent pathways, subjects, or pathology in particular. Addi-
tionally, non-anatomical constraints, such as path curvature 
or anisotropy thresholds, are not immediately translatable 
from this non-human ex vivo model. In this study, we have 
the advantage of detailed histological tracings to define our 
constraints. In the human, there is a tremendous wealth of 
information from anatomists, gleaned from histological and 
blunt dissection methods. This knowledge, while it may not 
be able to constrain tracking to the degree used here, should 
be used on a pathway-by-pathway basis to define and refine 
constraints. Thus, collaboration between the anatomy and dif-
fusion communities is needed to reach general agreement on 
defining pathways—a good first step would be describing loca-
tions, areas, or general boundaries where pathways start, where 
they end, and regions they do/do not pass through.

Conclusion

Tractography, even if performed on high-quality diffusion 
MRI data with sophisticated methods, is faced with an 
inherent trade-off between sensitivity and specificity (the 

“sensitivity/specificity curse”) and it seems that additional 
information is needed to overcome these limitations. In this 
work, we show that tractography implemented as a bundle-
segmentation technique, incorporating prior knowledge, can 
indeed be highly anatomically accurate. Importantly, this 
necessitates detailed knowledge of where pathways go and 
where they do not go. In this study, this knowledge is trans-
lated into constraints in the bundle dissection process which 
allows dissection and filtering of the desired streamlines 
from potentially many invalid streamlines. These techniques 
of using anatomical constraints to define inclusion/exclusion 
criteria have been utilized previously in bundle dissection 
studies, and we propose that connectomics studies should 
consider similar constraints guided by known anatomical, 
developmental, or microstructural rules.

Materials and methods

The aim of the methodology is to duplicate the process 
of a clinician, neuroanatomist, or researcher that may be 
manually delineating a fiber bundle, i.e., by applying and 
adapting guidelines until the streamlines best replicate the 
ground truth WM anatomy of the pathway of interest (for 
example when comparing to neuroanatomy textbooks, prior 
knowledge, or tractography protocols). We first describe the 
ground truth dataset and accuracy assessment, followed by 
a description of how pathways were created and delineated.

Ground truth and accuracy assessment

Figure 1 displays the datasets and ground truth derivation 
used in this study—for a detailed description of the histol-
ogy, we refer to (Schmahmann and Pandya 2006), and for the 
acquisition and delineation of MRI, we refer to Thomas et al. 
(2014). Briefly, the ground truth is based on two anterograde 
tracer injections within (A) the precentral gyrus (PCG) cor-
responding to the foot region of the motor cortex [Case #28 
in Schmahmann and Pandya (2006)] and (B) the ventral part 
of area V4 [Case #21 in Schmahmann and Pandya (2006)] of 
a rhesus macaque—these are the same injection sites utilized 
in Thomas et al. (2014). Slides were digitized and tracer sub-
stance (i.e., connection to the injection site) was delineated 
on individual slices of the reference atlas by the authors of 
Thomas et al. (2014) (Fig. 1a). 

MRI acquisition is performed on an ex vivo rhesus mon-
key brain, and scanned over ~ 71 h using a 3D diffusion-
weighted EPI PGSE sequence (b value = 4800 s/mm2, 7 b = 0 
volumes, 121 DWIs with directions distributed over a tes-
sellated icosahedral hemisphere). The tracer-labeled regions 
were transposed to the same space as the diffusion data [by 
the authors of Thomas et al. (2014)] for each MRI slice that 
was anatomically matched with the histology slice from the 
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reference atlas. An example b = 0 (“b0”) slice from approx-
imately the same anatomical location is shown (Fig. 1b), 
along with the tracer results in MRI space (Fig. 1c). Finally, 
gray and white matter ROIs were manually delineated on the 
high-resolution data (Thomas et al. 2014), and the agree-
ment between tracer results and tractography was assessed 
in terms of the number of true-positive (TP), false-negative 
(FN), false-positive (FP), and true-negative (TN) connec-
tions, which are used to compute specificity [TN/(TN + FP)] 
and sensitivity [TP/(TP + FN)].

Tractography and pathway delineation

Two different methods of streamline generation and subse-
quent pathway delineation were investigated, representative 
of the approaches and software which the authors (KS and 
LP) choose in their own anatomical investigations. First, we 
utilized manually drawn ROIs (Wakana et al. 2007; Catani 
and de Schotten 2015), defining regions by hand where 
streamlines must go and where they must not go. Second, 
we made use of predefined anatomical regions defined in 
a macaque template to serve as inclusion and exclusion 
regions.

Manual delineation

Local voxel-wise reconstruction and orientation estimation 
were performed using constrained spherical deconvolution 
(Tournier et al. 2008) [one of the techniques investigated 
in both (Thomas et al. 2014) and (Schilling et al. 2018a)] 
implemented in the MrTrix3 software package (Tournier 
et  al. 2012, 2019). Probabilistic tractography was per-
formed (iFOD2 algorithm) using software default param-
eters, propagating pathways from randomly selected points 
throughout the brain until 5 million streamlines were gen-
erated throughout the whole brain. From this set of whole 
brain streamlines, subsets of pathways from the injection 
sites were virtually dissected.

Pathways connecting to the dorsal part of area 4 in the 
PCG were constrained and extracted using both the writ-
ten descriptions and tracer visualizations from Case #28 of 
“Fiber Pathways of the Brain” (pages 322–328) (Schmah-
mann and Pandya 2006), while those connecting the ven-
tral part of V4 were extracted using the descriptions and 
visualizations from Case #21. Example delineations for 5 
“pathways” from the PCG, and corresponding tractography 
constraints, are described in detail below (and shown in 
Fig. 2). Importantly, this was an iterative manual process, 
where both inclusion and exclusion regions were added, 
removed, and translated until streamlines qualitatively 
matched the ground truth displayed in Figs. 4 and 5, as well 
as continually quantifying sensitivity/specificity until we 
determined that region placement was near-optimal for this 

set of streamlines. Importantly, the labeled regions used to 
quantify sensitivity/specificity were not used as exclusion/
inclusion regions and were not used in the manual deline-
ation process.

Local association fibers—rostrally directed fibers (Fig. 2, 
first row).

Here, Schmahmann, and Pandya (2006) describe “Diffuse 
terminations adjacent to the injection site are seen in area 4”, 
and thus, we utilize 1 inclusion ROI (we note that the injec-
tion region is used as an inclusion ROI in all examples, thus 
is not included in the constraint count)—placed on two sepa-
rate slices rostral to the seed at approximately atlas slices 
#85 and #89 (Schmahmann and Pandya 2006)—as well as a 
maximum streamline length of 6 mm (which we found to be 
a trade-off between including additional streamlines at the 
expense of streamlines extending caudally past the seed).

Long association fibers—rostrally directed fibers (Fig. 2, 
second row)

Rostral to the injection site, “fibers travel in the white mat-
ter… [and] a small contingent of fibers near the inject site 
gathers at the upper bank and depth of the cingulate sulcus. 
These fibers terminate in the cortex at the depth of the cin-
gulate sulcus…” in motor areas M3 (see slice #81 in for ref-
erence) (Schmahmann and Pandya 2006). To replicate this, 
we utilize two inclusion ROIs, three exclusion ROIs, and a 
maximum length of 40 mm. The inclusion ROIs (again, the 
injection region is also an inclusion ROI) force the pathways 
to go through the white matter adjacent and rostral to the 
seed, and re-enter the cortex at the cingulate sulcus. The 
exclusion regions exclude interhemispheric crossing at the 
mid-sagittal plane, fibers extending anteriorly once enter-
ing the cortex, and fibers entering or adjacent to the striatal 
bundle.

Commissural fibers (Fig. 2, third row)

The commissural fibers descend into the white matter of 
the precentral gyrus (Schmahmann and Pandya 2006), and 
“move medially to enter the corpus callosum, and head 
towards the opposite hemisphere.” For these fibers, we use 
one inclusion region at the mid-sagittal slice of the corpus 
callosum, and three exclusion regions excluding all other 
interhemispheric connections (i.e., incorrect “jumps” across 
hemispheres from the superior parietal lobe), fibers entering 
the cingulate, and fibers that project laterally before moving 
medially.
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Striatal fibers (Fig. 2, fourth row)

The striatal bundle and Muratoff bundle descend from the 
injection site and terminate in the body and head of the cau-
date nucleus. Some fibers additionally traverse the dorsal 
internal capsule to terminate in the putamen (Schmahmann 
and Pandya 2006). For these systems, we utilized two large 
inclusion ROIs (one volume for the Putamen; one for the 
caudate nucleus) although we did not enforce streamlines 
to pass through both (i.e., they only had to pass/terminate 
in one or the other), and thus, these could be considered a 
single region. Additionally, we implemented five exclusion 
regions to prevent thalamic terminations, interhemispheric 
fibers (i.e., after traversing entirely through the caudate), and 
fibers extending too far laterally or posterior.

Subcortical fibers—pontine bundle (Fig. 2, fifth row)

Fibers in the pontine bundle “descend in the central and 
medial parts of the rostral posterior limb…and enter the 
cerebral peduncle as they continue into the brainstem” 
(Schmahmann and Pandya 2006). For these fibers, we 
included one simple inclusion region (following procedures 
very similar to that from Wakana et al. (2007) for the corti-
cospinal tract) and included several exclusion ROIs. These 
exclusion ROIs were drawn on a number of orthogonal and 
oblique slices to limit pathways that took tortuous trajec-
tories to reach the internal capsule, traveled across hemi-
spheres, or left and re-entered the expected pathways. 

For case #28 (PCG), 15 separate bundles, or sets of fibers/
streamlines, were extracted: 2 sets of local association fibers 
(1 rostrally and caudally directed), 3 sets of caudally directed 
long association fibers, 4 sets of rostrally directed long asso-
ciation fibers, 4 sets of commissural and subcortical fibers (1 
commissural, 1 terminating in thalamic nuclei, 1 terminating 
in the subthalamic nucleus, and 1 set through the cerebral 
peduncles), and 2 sets of striatal fibers traveling through the 
putamen and caudate nucleus. For case #21 (V4), 10 sets 
of fibers were extracted: 2 sets of local association fibers, 
2 sets of caudally directed long association fibers, 1 set of 
rostrally directed long association fibers, 1 set of commis-
sural fibers, and 4 sets of striatal fibers (1 terminating in the 
genu of the caudate nucleus, 1 in the body and head of the 
caudate nucleus, 1 terminating in the putamen, and 1 with 
fibers entering the claustrum).

We note that sub-divisions and classification decisions are 
made based on written descriptions (Schmahmann and Pan-
dya 2006), and decisions made during the iterative process, 
although it is likely that separate sets of streamlines could 
have been combined, for example by concatenating con-
straints. This process was very much iterative. Regions were 
removed, added, or edited until pathways reached desired 

results. Once deemed “acceptable”, sensitivity/specificity 
analysis was run, and more corrections performed based 
on quantitative results. Approximately 50 h were spent in 
the process of creating and editing ROIs (see discussion on 
feasibility on human data and applicability to clinical and 
research applications).

Template‑based delineation

Local voxel-wise reconstruction and orientation estimation 
were performed using constrained spherical deconvolution 
(Tournier et al. 2008) implemented in the Dipy software 
package (Garyfallidis et al. 2014). Probabilistic tractogra-
phy was performed (LocalTracking algorithm) using soft-
ware default parameters (step size = 0.5 × voxel size, max 
length = 800 steps), propagating pathways from randomly 
selected points throughout the brain until 1 million stream-
lines were generated. 

As in the manually drawn ROIs, pathways connecting 
to area 4 of PCG and V4 were extracted using both written 
descriptions and tracer visualizations from Case #28 and 
Case #21, respectively. However, in this case, we utilized a 
template of predefined anatomical regions defined in a stand-
ard atlas space. We chose the PennCHOP macaque template 
(Feng et al. 2017), which represents a good compromise of 
cortical, subcortical, and white matter ROIs.

Example dissections for two pathways from the PCG, 
and corresponding constraints, are described in detail below 
(and shown in Fig. 3). Again, this was an iterative process, 
typically involving defining the endpoints based on known 
anatomy, followed by refinement through exclusion regions 
or forcing pathways to go through specified WM regions.

Striatal fibers

As described in Schmahmann and Pandya (2006), the striatal 
bundles descend from the injection site, enter the corona 
radiata and dorsal aspect of the external capsule, and “termi-
nate in the dorsal segment of the claustrum as well as lateral 
sectors of the putamen throughout most of its rostrocaudal 
extent”. Focusing first on putamen streamlines, we select 
only streamlines with an endpoint in the putamen. While 
streamlines do enter the corona radiata, spurious looping 
streamlines are apparent, which are removed through the use 
of six exclusion ROIs (anterior, posterior, and retrolenticular 
limb of the internal capsule, fornix, thalamus, and amygdala) 
in addition to a length threshold of 50 mm.

Commissural fibers

Again, the commissural fibers enter the corpus callosum and 
head towards the opposite hemisphere. For these fibers, we 
use the body of the corpus callosum as an inclusion region, 
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followed by several exclusion regions that exclude regions 
where these fibers are known not to pass through before tra-
versing hemispheres (cingulum, Thalamus, fornix, posterior 
limb of the internal capsule, extreme capsule, and posterior 
cingulate gyrus). 

For case #28 (PCG), 12 separate bundles, or sets of fib-
ers/streamlines, were extracted (note that differences in 
manual delineations are due to constraints in template ROI 
parcellations): 3 sets of local association fibers (1 rostrally 
directed, 1 caudally directed, and one with a simple length 
threshold), 2 sets of caudally directed long association fibers, 
1 set of rostrally directed long association fibers, 4 sets of 
commissural and subcortical fibers (2 commissural through 
the splenium and through the body of the corpus callosum, 
1 passing through the cerebral peduncles, and 1 terminat-
ing in the thalamus), and 2 sets of striatal fibers (putamen 
and caudate nucleus), and 1 set of fibers projecting through 
the anterior corona radiata. For case #21 (V4), 12 sets of 
fibers were extracted: 4 sets of rostrally directed long asso-
ciation fibers (ending in the occipital gyrus, angular gyrus, 
inferior temporal gyrus, and middle temporal gyrus), 2 sets 
of caudally directed long association fibers (occipital gyrus 
and lingual gyrus), 1 set of commissural fibers (through the 
body of the corpus callosum), 3 sets of striatal fibers (1 ter-
minating in the caudate nucleus, 1 in the putamen, and 1 in 
the claustrum), and 1 set of fibers projecting through the 
extreme capsule.
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