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Abstract
The aims of the present study were to investigate in brain of adult rats (1) whether exercise-induced activation of brain-derived 
neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway is dependent on exercise intensity modality and 
(2) whether exercise-induced improvement of memory is proportional to this pathway activation. Wistar rats were subjected 
to low (12 m/min) or high (18 m/min) exercise intensity on horizontal treadmill (30 min/day, 7 consecutive days) that cor-
responds to ~ 40 and 70% of maximal aerobic speed, respectively. Animals treated with scopolamine to induce memory 
impairment were subjected to novel object recognition test to assess potential improvement in cognitive function. Expressions 
of BDNF, phosphorylated TrkB receptors, synaptophysin (a marker of synaptogenesis), c-fos (a neuronal activity marker) 
and phosphorylated endothelial nitric oxide synthase (a cerebral blood flow marker) were measured in prefrontal cortex 
and hippocampus of different groups of rats. In terms of cognition, our data reported that only the most intense exercise 
improves memory performance. Our data also revealed that BDNF pathway is dependent on intensity modality of exercise 
with a gradual effect in hippocampus whereas only the highest intensity leads to this pathway activation in prefrontal cortex. 
Our study revealed that memory improvement through BDNF pathway activation is dependent on exercise intensity. While 
reporting that our protocol is sufficient to improve cognition in animals with impaired memory, our data suggest that pre-
frontal cortex is possibly a more suitable structure than hippocampus when neuroplastic markers are used to mirror potential 
improvement in memory performance.
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Introduction

The regular practice of physical exercise (EX) is the most 
potent non-pharmacological strategy to positively enhance 
brain health. Indeed, numerous studies have reported posi-
tive actions of EX in both animals and humans. From ani-
mal studies, EX has been reported to promote memory and 
learning performance in rodents and to reverse impairment 
in memory and spatial learning in old or stressed animals 
(Aguiar et al. 2008; Loprinzi and Frith 2018; Yau et al. 
2011). In humans, analysis showed that active individuals 

may have decreased risk of cognitive impairment and neu-
rodegenerative disorders (Sofi et al. 2011). Moreover, being 
physically active during the early life has been associated 
with protection against cognitive decline later in life (Hot-
ting and Roder 2013). Physical EX benefits also to younger 
adults since it has been shown that exercise improved psy-
chological well-being, cognitive performance (Hogan et al. 
2013) and was related to a decreased risk of substance use 
disorders in adolescent (Nock et al. 2017). The positive 
effects of EX are linked to the ability of the neural system 
to modify its organization notably through an increase in 
synapse number and efficacy (Farmer et al. 2004; van Praag 
et al. 1999).

Among the molecules responsible for the structural and 
functional brain changes, brain-derived neurotrophic factor 
(BDNF) appeared to be an appealing candidate. BDNF acts 
through its high-affinity for tropomyosin-related kinase B 
(TrkB) receptor eliciting intracellular signaling cascades that 
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mainly impact positively brain function (Reichardt 2006). 
In response to EX, brain BDNF is produced in neurons but 
also in cerebral endothelial cells through mechanisms involv-
ing increase in neuronal activity and shear stress-dependent 
expression (Marie et al. 2018; Monnier et al. 2017a, b; Vayn-
man et al. 2003). In favor of the strong involvement of BDNF 
in the positive effect of EX on brain health, convincing evi-
dences are given by studies showing that anti-BDNF strate-
gies using antibody against its cognate TrkB receptor negate 
exercise-associated cognitive benefits (Gomez-Pinilla et al. 
2008; Liu et al. 2008). In addition, in human, the val66met 
polymorphism which is associated with an alteration of BDNF 
activity-dependent release moderates the cognitive benefits of 
EX (Erickson et al. 2013; Hopkins et al. 2012).

The typology of the better regimen of EX is not known. In 
rodents, beneficial effects on brain health have been reported 
after different type of EX such as treadmill/wheel running or 
swimming exercise (Liu et al. 2009; Ogonovszky et al. 2005; 
Vaynman et al. 2004). Of note, brain BDNF elevation in physi-
cally trained animals has been described to be dependent of 
the duration (Sheikhzadeh et al. 2015) while its link with the 
frequency of training sessions remains controversial (Costa 
et al. 2012; Dalise et al. 2017). In terms of intensity modality, 
evidences showed that this parameter is positively associated 
with a lower risk of cardiovascular diseases (Kemi et al. 2002, 
2005), but surprisingly, the connection between EX intensity 
and brain function improvement is poorly investigated (Pedard 
et al. 2018). Furthermore, whether cognitive benefits propor-
tionate to changes in the BDNF/TrkB pathway is not known.

Thus, the aims of the present study were to investigate 
in adult rats (1) whether EX-induced activation of the brain 
BDNF/TrkB/synaptophysin pathway is dependent on inten-
sity modality and (2) whether EX-induced improvement of 
memory function is proportional to the levels of activation of 
this pathway. For this purpose, animals were subjected to hori-
zontal treadmill EX at low (12 m/min, EX12) or high inten-
sity (18 m/min, EX18), 30 min a day for 7 consecutive days. 
Rats treated with scopolamine to induce memory impairment 
were assessed for memory performance through the novel 
object recognition (NOR) test while the expressions of BDNF, 
phosphorylated TrkB receptors at tyrosine 816 (p-TrkBY816), 
synaptophysin (SYN, a marker of synaptogenesis), c-fos (a 
marker of neuronal activity) and phosphorylated endothelial 
nitric oxide synthase at serine 1177 (p-eNOSS1177, a marker 
of cerebral blood flow) were measured in prefrontal cortex 
(PFC) and hippocampus (HP) of rats either sedentary (SED) 
or exercised at both intensities.

Materials and methods

Animals

Experiments were carried out on 10-week-old Wistar rats 
(n = 69) according to the French Department of Agriculture 
guidelines (License 21-CAE-099) and approved by the local 
ethic committee. They conformed to the European conven-
tion for protection of vertebrate animals used for experimen-
tal and other scientific purposes. The animals were housed 
five per cage, kept under a 12-h/12-h light/dark cycle and 
allowed ad libitum access to food and water. Rats were pur-
chased from Janvier (Le Genest Saint Isle, France).

Exercise training (EX) protocol and groups of rats

After a habituation period to the experimenter and tread-
mill apparatus (5 days), all animals were first subjected to 
an incremental to exhaustion exercise test on a treadmill 
(from 9 m/min to exhaustion by step of 3 m/min for 2 min) 
to determine their maximal aerobic speed (MAS, m/min). 
Refractory animals (three rats) to the treadmill exercise dur-
ing the habituation period were excluded from the experi-
ment. According to their MAS values, animals were allo-
cated to three different groups: SED (sedentary, n = 34), 
low-intensity EX (speed of the treadmill set at 12 m/min, 
EX12, n = 16), high-intensity EX (speed of the treadmill 
training set at 18 m/min, EX18, n = 16). Using these condi-
tions, EX intensity was ~ 40 and 70% of MAS for EX12 and 
EX18 groups, respectively. In the SED group, animals with 
different MAS were allocated. Rats assigned to the differ-
ent EX groups were trained 30 min/day (morning) using a 
horizontal treadmill for 7 consecutive days while SED rats 
were kept in their own cage at the proximity of the treadmill 
apparatus. Of note, no impact of EX was observed in terms 
of weight between the three groups of rats (data not shown). 
Animals were separated in two experiments to (1) assess the 
memory, the anxiety and locomotor activity (Experiment 1, 
n = 40) and (2) measure the biochemical changes of BDNF, 
p-TrkBY816, SYN, c-fos, p-eNOSS1177 after EX (Experiment 
2, n = 18). The experimental design is summarized in Fig. 1.

Novel object recognition (NOR) test

Animals from SED (n = 20), EX12 (n = 10) and EX18 
(n = 10) groups of Experiment 1 were submitted to the novel 
object recognition (NOR) test. The test was performed the 
morning during three consecutive days starting the last day 
of EX in a dark plastic enclosure (size: 60 × 60 cm with 
40 cm side walls) located in a dimly lit room with con-
stant illumination (45 Lux). NOR test (Fig. 1, Experiment 
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1) consisted in a habituation phase (Day 1) during which 
animals explored for 10 min the empty arena. After 24 h, 
animals were placed in the center of the previous area with 
two identical objects to explore during 5 min (Day 2). These 
objects were placed equidistantly to the opposite corners 
of the enclosure (27.5  cm between each object, 20  cm 
between object and corner). Then, animals were immedi-
ately replaced in home cages. Twenty-four hours later (Day 
3), animals were again positioned in the center of the field 
in the presence of the same object previously observed, and 
with a novel object during 2 min.

Position of each object was exchanged between animals 
to avoid potential confounding spatial clues. The enclosure 
and objects were cleaned with 70% ethanol before each ses-
sion and between each animal to minimize odor cues. Time 
spent exploring each object was recorded. A rat was consid-
ered exploring an object when its head was facing the object 
(< 2 cm) or when it was touching/sniffing the object. The 
NOR test analyses were performed by two persons blinded 
from experimental conditions.

Scopolamine, a non-selective post-synaptic muscarinic 
receptor blocker that impairs cognitive function via dimin-
ishing the effectiveness of acetylcholine in the central 
nervous system in animals and humans (Ebert and Kirch 
1998; Klinkenberg and Blokland 2010) was used to induce 
memory impairment in animals of Experiment 1. Rats were 
assigned into four groups: SED + saline solution, SED + sco-
polamine, EX12 + scopolamine, and EX18 + scopolamine. 
Treatment of scopolamine hydrobromide (1 mg/kg, i.p., 
161750010, Acros organics) or saline solution was admin-
istered 60 min after training phase (Day 2) and 60 min 

prior the testing phase (Day 3) of NOR test. The protocol 
of administration used in our study was designed to disturb 
both memory consolidation during the training phase as well 
as the capacity to discriminate the novel object during the 
testing phase (Ennaceur and Meliani 1992; Martini et al. 
2018).

Collection of brain samples

Twenty-four hours after the last treadmill session, rats of 
Experiment 2 (n = 26) were anesthetized with chloral hydrate 
(400 mg/kg, i.p., Sigma-Aldrich) and transcardially perfused 
with saline during 5 min to flush out blood from brain vas-
culature. After decapitation, brains were removed and two 
brain regions involved in cognition, hippocampus (HP) and 
prefrontal cortex (PFC) pooled from both hemispheres were 
quickly dissected on ice glass slide, immediately weighted 
and frozen at − 80 °C until further use.

Western blotting

Western blotting procedure was performed as previously 
described (Pedard et al. 2018). HP and PFC were homog-
enized in 10 volumes of ice cold lysis buffer [100 mmol/L 
Tris–HCl (pH 7.4), 150 mmol/L NaCl, 1 mmol/L EGTA, 
1% triton X-100, 1% protease inhibitor cocktail (P8340, 
Sigma-Aldrich), 1% phosphatase inhibitor cocktail (78420, 
Fischer Scientific)]. After homogenization, the protein con-
centration was measured using the Lowry method. Equal 
amounts of protein were separated on sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

Fig. 1   Schematic experimental 
design of Experiment 1 and 2. 
MAS maximal aerobic speed, 
NOR novel object recognition 
test, MB marble burying test
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electrophoretically transferred to polyvinylidene difluoride 
(PVDF) membranes using Turbo Transblot technology 
(1704150, Biorad). After blocking non-specific binding 
sites overnight at 4 °C, with a 5% solution of non-fat dry 
milk or 7.5% BSA in Tris Buffered Saline (20 mM Tris/HCl, 
137 mM NaCl, pH 7.4) containing 0.1% Tween 20 (TBST), 
membranes were probed with an anti-BDNF (1/3000, rabbit 
monoclonal antibody, ab108319, Abcam), anti-p-TrkBY816 
(1/1000, rabbit monoclonal antibody, ABN 1381, Merck 
Millipore), anti-c-fos (1/1000, mouse monoclonal antibody, 
sc-166940, Santa Cruz Biotechnology) anti-SYN (1/3000, 
rabbit polyclonal antibody, RB-1461-P1, Interchim), anti-p-
eNOSS1177 (1/1000, mouse monoclonal antibody, 612383, 
BD Biosciences) and anti-β-actin antibodies (1/10,000, 
mouse monoclonal antibody, A5441, Sigma-Aldrich). Then, 
membranes were incubated at room temperature with horse-
radish peroxidase [111-035-144 (anti-rabbit) and 115-035-
166 (anti-mouse), 1:10,000 to 1:50,000 according to the 
protein, Jackson ImmunoResearch Laboratories]. Protein-
antibody complexes were visualized using the enhanced 
chemiluminescence western blotting detection system (ECL 
2, 1151-7371, Fisher Scientific). The band densities were 
determined by scanning densitometry (GS-800, Biorad Lab-
oratories). Two groups of six rats were analyzed on the same 
gel, and each gel was run in triplicate. Data were analyzed 
and a representative immunoblot is shown above each graph.

Importantly, the amount of protein required to detect 
the protein of interest results in a signal that far exceeds 
the linear dynamic range when detecting β-actin, thereby 
eliminating the usefulness of β-actin for the normalization of 
western blots, β-actin being used here as an internal standard 
only to verify that proteins were indeed loaded on the gel. 
The appropriate amounts of total proteins to be analyzed 
were determined from concentration (increasing amounts of 
proteins)/response (optical density of the band) curves from 
two rats both belonging to a particular group (on the same 
gel). All gels were run in triplicate and identical amount of 
protein for each sample were loaded in the gel. Data were 
expressed as arbitrary units and were calculated from a rep-
resentative gel.

Data and statistical analysis

SigmaPlot 11.0 was used for statistical analysis and 
GraphPad Prism 6 for all graphs. Data were expressed as 
means ± standard deviations (SD) for protein expression. 
Differences between two groups were assessed using para-
metric t test or non-parametric Mann–Whitney test, depend-
ing on the normality and equal variance tests.

Pearson’s and Spearman’s correlations were used to 
measure the strength of the relationship between paired 
data, depending on normality distribution. In correlation 

description, r represents Pearson correlation coefficient and 
rs, spearman correlation coefficient.

For the NOR test, difference between time spent explor-
ing F and N objects were assessed by a Wilcoxon matched 
paired signed rank test.

A value of p < 0.05 was considered statistically 
significant.

Results

Exercise intensity effect on memory

Novel object recognition (NOR) test

No statistical difference was obtained concerning the total 
exploration time at training and testing steps between each 
group of rats (data not shown). For the testing phase (Day 
3), two different objects were presented and the time spent 
to explore each was recorded. Our data showed that in 
physiological conditions, the times spent exploring the N 
and F objects were not statistically different in SED and 
EX animals indicating that EX did not improve memory in 
healthy animals (data not shown). However, when treated 
with scopolamine (Fig. 2), the EX18 group of rats exhibited 
a significant increase in terms of exploration duration of 
the N compared to the F object (6.22 ± 3.76 vs. 3.99 ± 1.58, 
p < 0.01).

Of note, no difference was observed in terms of loco-
motor activity (actimetry) and anxiogenic response (marble 
burying test) in the different treated groups of animals (data 
not shown).

Effect of scopolamine treatment on BDNF 
expression

Since scopolamine has been shown to exert contradictory 
effect on BDNF expression (Ghosal et al. 2018; Lee et al. 
2014), BDNF expression was assessed in the HP and the 
PFC of SED rats receiving two i.p. injections of scopolamine 
(1 mg/kg, daily). As shown in Fig. 2b, no variation in BDNF 
expression could be observed either in the PFC or in the HP.

Exercise intensity effect on BDNF signaling

Hippocampus (HP)

BDNF, p-TrkBY816 and SYN levels were assessed in the HP 
of SED animals and compared to EX12 or EX18 groups. 
The results of the effect of EX on BDNF signaling in the HP 
are presented in Fig. 3.
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BDNF, p‑TrkBY816, SYN

As shown in Fig. 3, both intensities of EX led to a significant 
increase in BDNF (Fig. 3a, b), p-TrkBY816 (Fig. 3d, e) and 
SYN (Fig. 3g, h) expressions. These variations were depend-
ent on EX intensity for BDNF and SYN since for both pro-
teins, EX12 induced an increase in protein levels signifi-
cantly lower than EX18 (Fig. 3c, i). Concerning p-TrkBY816 
expression, no significant intensity effect was observed when 
p-TrkBY816 expression was compared by plotting EX12 and 
EX18 groups on the same membrane (Fig. 3f).

c‑fos

To verify whether increase in neuronal activity was pro-
portionated to the intensity of EX, c-fos expression was 
assessed in EX12 and EX18 groups and compared to SED 
animals. As shown in Fig. 4, both intensities of EX led to a 
sustained c-fos expression compared to SED values. Indeed, 
EX12 exhibited an increase of 97% (Fig. 4a) whereas EX18 

rats showed an elevation of c-fos expression of 133.5% 
(Fig. 4b). When compared on the same membrane, no sig-
nificant difference was obtained between the two modalities 
of EX (Fig. 4c).

p‑eNOSS1177

When p-eNOSS1177 was assessed as a marker of shear stress 
elevation in hippocampal structure (Fig. 4), our results 
revealed that although both intensities enhanced endothe-
lial NO production, only EX18 reached significance with 
a 216.3% increase compared to SED group (Fig. 4e). Con-
sistently, when both intensities were analyzed on the same 
membrane, p-eNOSS1177 expression in EX18 group exhib-
ited a strong rise compared to EX12 group (Fig. 4f).

Prefrontal cortex (PFC)

BDNF, p-TrkBY816 and SYN levels were assessed in the PFC 
of SED group and compared to trained EX12 and EX18 
animals (Fig. 5).

BDNF, p‑TrkBY816, SYN

As shown in Fig. 5, among the different groups of trained 
animals, only EX18 rats exhibited a significant increase in 
BDNF (Fig. 5a, b), p-TrkBY816 (Fig. 5d, e) and SYN (Fig. 5g, 
h) expressions as compared to SED animals. When both 
groups of EX were compared on the same membrane, sig-
nificant increase in BDNF and p-TrkBY816 expressions were 
revealed for EX18 compared to EX12 rats (Fig. 5c, f). Con-
cerning SYN expression, EX18 showed no significant aug-
mentation compared to EX12 group (Fig. 5i).

c‑fos

As shown in Fig. 6, both groups of trained animals exhibited 
a significant increase in c-fos expression (+ 71%, EX12 and 
+ 117.1%, EX18) compared to SED values. When EX12 and 
EX18 were compared on the same membrane, a significant 
difference of 91% (Fig. 6c) was observed.

p‑eNOSS1177

As assessed in Fig. 6, both intensities led to an increase in 
p-eNOSS1177 expression. As compared to SED values, EX12 
induced an increase of 79.3% whereas EX18 showed a rise 
of 227.1% in p-eNOSS1177 expression (Fig. 6d, e). When 
both intensities were compared on the same membrane, 
p-eNOSS1177 expression was significantly higher in EX18 
(+ 126.2%) compared to EX12 animals (Fig. 6f).

Fig. 2   Effect of exercise on scopolamine-induced memory impair-
ment in the novel object recognition (NOR) test. a The times spent 
to explore the novel (N, dotted) and familiar (F, white) objects dur-
ing day 3 of novel object recognition test, were compared for each 
groups: sedentary (SED), exercised at 12  m/min (EX12), exercised 
at 18  m/min (EX18) treated with scopolamine hydrobromide 1  mg/
kg (10 rats/group). b BDNF expression in the hippocampus (HP) 
and prefrontal cortex (PFC) of SED rats treated or not with scopola-
mine hydrobromide 1  mg/kg. (4 rats/group). A.U. arbitrary units. 
**p < 0.01 compared to exploration time of F object
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Association between BDNF and SYN expressions 
in both cerebral structures

To assess whether BDNF expression in the HP and PFC 
could be linked to neuroplastic changes, association 
between BDNF and SYN expressions were performed 
using correlation test (data not shown). Regarding the HP, 

positive associations were found when values of SED ani-
mals were plotted against EX12 (r = 0.752, p = 0.004) and 
EX18 (rs = 0.792, p = 0.001) groups of animals.

In the PFC, BDNF was positively associated to SYN 
expression when SED animals were plotted against EX18 
(r = 0.859, p = 0.0003) but not against EX12 (r = 0.569, 
p = 0.053) groups of animals.

Fig. 3   Effect of exercise on BDNF/p-TrkBY816/synaptophysin path-
way in hippocampus. BDNF (a–c), p-TrkBY816 (d–f) and synaptophy-
sin (SYN, g–i) levels in the hippocampus of trained rats at 12 (EX12) 
and 18  m/min (EX18) compared to sedentary rats (SED). Corre-

sponding immunoblots of the proteins of interest and β-actin as the 
internal control are shown above the bar charts. Values are expressed 
as mean ± SD (6 rats/group). *p < 0.05, **p < 0.01, ***p < 0.001 
compared to SED or EX12 values
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Discussion

The present study revealed that only the most intense EX 
(horizontal treadmill at 18 m/min, 30 min a day, 7 consecu-
tive days) improves memory performance assessed by NOR 
test and showed in both cerebral structures analyzed, that 
BDNF/TrkB/SYN pathway is dependent on intensity modal-
ity of EX with a gradual effect in the HP whereas in the 
PFC, only the highest intensity (EX18) led to a significant 
activation of this pathway.

Our data extend previous results showing the induction 
of the BDNF/TrkB pathway by EX (Monnier et al. 2017a; 
Pedard et al. 2018; Prigent-Tessier et al. 2013; Quirie et al. 
2012). In our experimental setting, our results provide 
strong evidences showing that this elevation was dependent 
on EX intensity since in both cerebral structures, BDNF 
and p-TrkBY816 expressions were always higher in EX18 
compared to EX12 group of animals. However, concerning 
animals exercised at low intensity, biochemical assessments 
gave different results according to the cerebral structure 
analyzed. Indeed, while in the HP, EX at 12 m/min was 
sufficient to significantly increase the expression of these 

markers, no statistical effect could be observed in the PFC. 
This difference of sensitivity to EX between these two brain 
areas could be explained by structural/histological differ-
ence but also by discrepancy in terms of neuronal activa-
tion and/or elevation of cerebral blood flow. Indeed, when 
analyzing neuronal activation through c-fos expression, 
our data showed in HP that the EX12 regimen already trig-
gered a sustained increase statistically comparable to EX18 
whereas in PFC, an intensity-dependent neuronal activation 
was reported. Concerning cerebral blood flow increase that 
has been shown to elevate brain BDNF expression through a 
NO-dependent mechanism (Banoujaafar et al. 2014, 2016), 
our p-eNOSS1177 expression results are coherent with stud-
ies on cerebral hemodynamic changes occurring during EX 
showing that EX induced hyperemia in cortical (Kimura 
et al. 1994) but also in sub-cortical regions such as the HP 
(Nakajima et al. 2003; Nishijima and Soya 2006). Consist-
ently, the two cerebral structures analyzed in our study 
exhibited a similar intensity-dependent activation of eNOS. 
Consequently, the differences in terms of BDNF/p-TrkBY816 
expressions observed at the low intensity might only relate to 
a disparity in neuronal activation between the two structures.

Fig. 4   Impact of exercise intensity on c-fos and p-eNOSS1177 expres-
sions in hippocampus. Assessment of c-fos (a–c), and p-eNOSS1177 
(d–f) levels in the hippocampus of sedentary (SED) and trained rats 
exercised at 12 (EX12) and 18 m/min (EX18). Corresponding immu-

noblots of proteins of interest and β-actin as the internal control are 
shown above the bar charts. Values are expressed as mean ± SD (6 
rats/group). *p < 0.05, **p < 0.01, ***p < 0.001 compared to SED or 
EX12 values
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Although not investigated directly in this work, BDNF/
TrkB activation may be coupled to SYN induction as a 
reflect of synaptogenesis (Banoujaafar et  al. 2014) and 
increase in synaptic activation since it has been reported 
that blocking BDNF action abrogates exercise-induced SYN 
expression (Vaynman et al. 2006) and that BDNF knockout 
mice have a reduced level of SYN in hippocampal synap-
tosomes (Pozzo-Miller et al. 1999). Consistently, a pattern 
of SYN expression similar to those of BDNF/TrkB was 

observed in the two brain areas. The EX regimen performed 
at the maximal intensity always induced the strongest eleva-
tion of SYN expression in both prefrontal and hippocampal 
regions. A graduated and significant increase was obtained 
in the HP whereas no statistical effect could be found in 
the PFC at the low intensity. In addition, when exercised 
animals were plotted against SED animals, a positive asso-
ciation between BDNF and SYN expressions was found for 
both intensities in the HP but only at the maximal intensity 

Fig. 5   Effect of exercise intensity on BDNF/p-TrkBY816/SYN pathway 
in prefrontal cortex. BDNF (a–c), p-TrkBY816 (d–f) and synaptophy-
sin (g–i) levels in the prefrontal cortex of trained rats at 12 (EX12) 
and 18  m/min (EX18) compared to sedentary rats (SED). Corre-

sponding immunoblots of the proteins of interest and β-actin as the 
internal control are shown above the bar charts. Values are expressed 
as mean ± SD (6 rats/group). *p < 0.05, **p < 0.01 compared to SED 
or EX12 values



1983Brain Structure and Function (2019) 224:1975–1985	

1 3

in the cortical region. This discrepancy in terms of intensity-
dependent-neuroplastic response in these two different brain 
structures is in line with the previously observed disparity 
in terms of BDNF/TrkB pathway related possibly to a dif-
ferential neuronal activation in these two cerebral regions at 
the low intensity of EX.

Finally, to characterize whether neuroplastic biochemical 
changes had a direct impact on cognitive function, rats from 
SED and exercised groups were subjected to NOR test. Of 
note, since EX by itself was not able to improve cognition 
in healthy animals (data not shown), animals dedicated to 
behavioral tests were treated with scopolamine to induce 
memory impairments. In terms of memory performance, our 
data showed that only the EX18 group of animals exhibited 
cognitive improvement as assessed by a significant prefer-
ence for the exploration of the novel object. Given the prom-
inent role of HP in memory, the absence of effect on cogni-
tive function at the low intensity (EX12) despite an increase 
in BDNF/TrkB/SYN pathway questions the pertinence of the 
study of these neuroplastic biochemical markers as a reflect 
of potential cognitive improvement in this cerebral area. 

Consistently, this cerebral region has been shown to be not 
always critical for one-trial object recognition (Dere et al. 
2007). In contrast, since the PFC has been reported to be 
anatomically related to the HP and to operate in parallel in 
memory consolidation (Preston and Eichenbaum 2013) and 
according to its important role especially in recent memory 
tests (Euston et al. 2012), our data showing an induction of 
the BDNF/TrkB/SYN pathway only at EX18 suggest that 
neuroplastic biochemical changes in this cerebral region 
would be a better mirror of potential cognitive improvement 
that those observed in the HP. In line with this proposal are 
the data showing that the PFC is needed in recent acquired 
memories stabilization but could play an even greater role 
in memory retrieval (Euston et al. 2012). Consistently, when 
performing object recognition task in rats, chemical disrup-
tion of the PFC in its ventromedial part through the infu-
sion of protein synthesis inhibitor or N-methyl-d-aspartate 
(NMDA) receptor antagonist is associated to both consoli-
dation and memory retrieval impairments (Akirav et al. 
2006). Besides, it also resonates with a study suggesting in 
humans that the PFC initiates the processing of target-related 

Fig. 6   Impact of exercise intensity on c-fos and p-eNOSS1177 
expressions in prefrontal cortex. Assessment of c-fos (a–c), and 
p-eNOSS1177 (d–f) levels in the prefrontal cortex of sedentary (SED) 
and trained rats exercised at 12 (EX12) and 18 m/min (EX18). Corre-

sponding immunoblots of proteins of interest and β-actin as the inter-
nal control are shown above the bar charts. Values are expressed as 
mean ± SD (6 rats/group). *p < 0.05, **p < 0.01, ***p < 0.001 com-
pared to SED or EX12 values



1984	 Brain Structure and Function (2019) 224:1975–1985

1 3

information to facilitate object detection during decision-
making procedure (Karimi-Rouzbahani et al. 2019).

As a limitation of the study design, biochemical analyses 
were not performed on animals treated with scopolamine 
and submitted to NOR test assessments. Data from the lit-
erature show contradictory results concerning scopolamine 
effect on BDNF expression with an increase 1 h after a sin-
gle low dose (25 µg/kg) in mice PFC (Ghosal et al. 2018) 
and a decrease after 14 days of treatment (2 mg/kg, daily) 
in rats HP (Lee et al. 2014). To verify whether our scopola-
mine protocol had an impact on BDNF metabolism, BDNF 
expression was assessed in rats receiving two injections of 
scopolamine (1 mg/kg, daily). In our experimental condi-
tions, no variation in BDNF expression could be observed 
either in the PFC or in the HP (Fig. 2b). This absence of 
effect is in line with data showing oppositely that muscarinic 
receptor agonist does not change BDNF expression (Di Lib-
erto et al. 2017).

In conclusion, our study revealed that BDNF/TrkB/SYN 
pathway activation is dependent on intensity modality of 
EX since the EX18 groups of animals showed the great-
est expression of these neuroplastic markers associated 
with memory improvement as assessed by NOR test. In our 
experimental paradigm, our data also suggest that the PFC 
is possibly a more pertinent cerebral structure than the HP 
when neuroplastic markers are used to mirror improvement 
in memory performance. As a clinical standpoint, when pro-
viding a rationale for the utilization of “assisted” EX to cope 
for instance in young individuals with memory impairment 
associated to substance use, intensity modality of EX should 
be considered as a crucial parameter.
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