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Abstract
Tractography is a powerful technique capable of non-invasively reconstructing the structural connections in the brain using 
diffusion MRI images, but the validation of tractograms is challenging due to lack of ground truth. Owing to recent devel-
opments in mapping the mouse brain connectome, high-resolution tracer injection-based axonal projection maps have been 
created and quickly adopted for the validation of tractography. Previous studies using tracer injections mainly focused on 
investigating the match in projections and optimal tractography protocols. Being a complicated technique, however, tractogra-
phy relies on multiple stages of operations and parameters. These factors introduce large variabilities in tractograms, hinder-
ing the optimization of protocols and making the interpretation of results difficult. Based on this observation, in contrast to 
previous studies, in this work we focused on quantifying and ranking the amount of performance variation introduced by these 
factors. For this purpose, we performed over a million tractography experiments and studied the variability across different 
subjects, injections, anatomical constraints and tractography parameters. By using N-way ANOVA analysis, we show that all 
tractography parameters are significant and importantly performance variations with respect to the differences in subjects are 
comparable to the variations due to tractography parameters, which strongly underlines the importance of fully documenting 
the tractography protocols in scientific experiments. We also quantitatively show that inclusion of anatomical constraints 
is the most significant factor for improving tractography performance. Although this critical factor helps reduce false posi-
tives, our analysis indicates that anatomy-informed tractography still fails to capture a large portion of axonal projections.
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Introduction

Tractography is an important and unique tool for the non-
invasive, in vivo study of brain connections (Mori et al. 
1999; Basser et al. 2000). With the emergence of modern 
and comprehensive diffusion MRI (dMRI) acquisition pro-
tocols, we can now map the human brain connections at an 
unprecedented resolution (Wandell 2016). Particularly, as 
a result of the advances in multi-band and parallel imag-
ing technologies (Feinberg et al. 2010; Moeller et al. 2010; 
Setsompop et al. 2012) and their successful application in 
the Human Connectome Project (HCP) (Toga et al. 2012; 
Van Essen et al. 2013), there have been substantial progress 
in multi-shell dMRI data acquisition and fiber orientation 
modeling (Yeh et al. 2010; Jbabdi et al. 2012; Jeurissen et al. 
2014; Cheng et al. 2014). With the latest efforts on studying 
tissue microstructure and compartment modeling (Panagio-
taki et al. 2012; Ferizi et al. 2014; Novikov et al. 2016; Tran 
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and Shi 2015) that provide even more accurate local uncer-
tainty models for fiber orientation densities (FODs), the 
community has been improving tractography algorithms as 
well (Aydogan and Shi 2016; Reisert et al. 2014), paving the 
way toward quantitative tractograms (Jbabdi and Johansen-
Berg 2011; Girard et al. 2014).

In spite of the developments in dMRI and tractogra-
phy techniques, we still face the long-standing challenge 
of missing ground truth for the validation of connections 
reconstructed by tractography. Validations using phantoms 
(Leemans et al. 2005; Campbell et al. 2006; Fieremans 
et al. 2008; Pullens et al. 2010; Bach et al. 2014; Girard 
et al. 2014; Neher et al. 2014) were proposed in various 
previous studies, but it is unclear how results obtained for 
artificial phantoms translate to biological tissues, especially 
when considering the neuroanatomical complexity of living 
organisms. Anatomically and histologically, tracer injections 
have long been considered the gold standard for the valida-
tion of tractography. While this usually is challenging, many 
important studies were done to compare tractography with 
tracer injections. Including on post-mortem human brains 
(Seehaus et al. 2012), tracer injection-based validations were 
done on monkeys (Dauguet et al. 2007; Schmahmann et al. 
2007; Jbabdi et al. 2013; Donahue et al. 2016), pigs (Dyrby 
et al. 2007; Knösche et al. 2015) and rats (Gyengesi et al. 
2014). Notably, mapping the mouse brain connectome has 
seen tremendous progress in creating detailed axonal pro-
jection maps with whole brain coverage (Zingg et al. 2014; 
Oh et al. 2014). The mouse brain connectome from the 
Allen Mouse Brain Atlas (AMBA) (Oh et al. 2014) quickly 
became an important resource for validating the connectivity 
constructed by diffusion imaging (Keifer et al. 2015; Cala-
brese et al. 2015; Chen et al. 2015).

Previous validation studies show that obtaining con-
nections in the brain using dMRI-based tractography is a 
challenging problem. Differences across image acquisition 
techniques (Tuch et al. 2002; Wedeen et al. 2005; Feinberg 
et al. 2010; Aganj et al. 2010; Setsompop et al. 2012; Moe-
ller et al. 2010), diffusion models (Tournier et al. 2004; Tuch 
2004; Panagiotaki et al. 2012; Basser et al. 1994), tractogra-
phy algorithms and parameters (Fillard et al. 2011; Mangin 
et al. 2013; Pestilli et al. 2014; Daducci et al. 2015; Smith 
et al. 2015) all introduce limits and assumptions that result 
in biases and variability, affecting the accuracy, reliability 
and reproducibility (Besseling et al. 2012; Girard et al. 2014; 
Thomas et al. 2014).

Without carefully validating the connections and studying 
the factors that affect the performance of our complicated 
techniques, it is difficult to fully leverage the rich informa-
tion obtained by tractography. A quantitative insight into 
the sources of performance variation is therefore crucial 
to improve how we conduct tractography experiments and 
interpret the results. Consequently, it is critical to rigorously 

analyze and study these factors which is a challenging and 
multidimensional problem.

Many validation studies addressing a single or few dimen-
sions of the sources of variations have been published earlier 
to improve the practices in tractography. In Thomas et al. 
(2014), projections obtained using anterograde tracer injec-
tions from two locations of a macaque brain were compared 
against the tractography results obtained from the same sub-
ject. The authors compared the variability between determin-
istic and probabilistic tractography results across four dif-
ferent diffusion models and four curvature thresholds. They 
reported common limitations of diffusion models and trac-
tography techniques, but did not quantitatively analyze and 
rank how much each factor influences the results. Gyengesi 
et al. (2014) compared the variability in performance with 
respect to different tractography techniques on 12 fiber bun-
dles in rat brains and reported limitations and advantages 
of deterministic and probabilistic approaches. Chen et al. 
(2015b) used a single mouse brain and studied the variation 
in probabilistic tractography results with respect to the vari-
ation in fractional anisotropy (FA) and curvature thresholds. 
The authors suggested optimal parameters by testing three 
different FA and five different curvature thresholds. In See-
haus et al. (2012), carbocyanine dyes were used as tracers on 
a human post-mortem tractography validation experiment. 
The variability of results was studied using three seed loca-
tions and nine different FA thresholds. The authors reported 
that for their study FA values between 0.02 and 0.08 were 
optimal. In Dauguet et al. (2007), tractography results were 
compared with 3D histological tracing of two injections on 
pre- and post-central gyrus on a single macaque brain. The 
variability in results with respect to FA, curvature and step 
size was studied. The authors tested 13 different FA, 11 dif-
ferent curvature and 13 different step size values. However, 
they fixed the other two parameters while checking the vari-
ability due to a single parameter, and thus did not address 
the coupling effects of multiple parameters.

Despite its relatively long history, tractography lacks 
maturity. Previous validation works show that the large num-
ber of sources for variation plays an important role, obstruct-
ing the way for the clinical applications of this unique tech-
nique. With such vast options for streamline reconstruction, 
there are very few common practices adapted in the litera-
ture, leaving a plethora of ways for not adopting adequate 
experimental protocols. This in addition makes parameter 
optimization studies challenging, since the significance 
of optimal parameters is questionable when several other 
variation sources is in effect. Due to the large variability 
in scanners, pre-processing pipelines, diffusion models and 
tractography algorithms, inevitably optimal parameters for 
tractography parameters also vary. Owing to this reason, in 
contrast to previous validation studies, we chose to focus on 
the extent of variability due to several parameters. Instead 
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of presenting optimal values, our study provides systematic 
ways to obtain robust and reproducible results with trac-
tography. While meticulously inspecting the trends, we not 
only take into account the coupled effects of several param-
eters, but we also rank how much variability each source 
introduces.

Our aim of this work is to expand our understanding on 
how to better conduct tractography experiments and interpret 
results by taking into account the sources of variations. For 
that we present results from our extensive (over 1 million) 
multidimensional tractography validation experiments using 
multi-shell dMRI data from mouse brains and tracer injec-
tions from AMBA. We studied the variability in the results 
with respect to seven different factors including their cross 
relations with each other using N-way ANOVA analysis. 
The factors we studied are: subject, tractography parameters 
(step size, curvature, cutoff, number of streamlines), use of 
anatomical constraints and the fiber bundle that is studied.

Our results have significant implications. Firstly and most 
importantly, we show that the variations in tractograms with 
respect to differences in subjects is comparable to variations 
with respect to tractography parameters used in the experi-
ments. Secondly, we show that the tractography results sig-
nificantly vary with respect to all parameters, including the 
commonly overlooked step size and number of streamlines. 
Lastly, our experiments show that while incorporating prior 
anatomical knowledge can dramatically reduce false posi-
tives, the overlaps between tractograms and injection experi-
ments are still not ideal due to false negatives.

Materials and methods

Materials

Eight wild-type female mice (Mus musculus) aged 
8–10 weeks were used as subjects. Subjects were deeply 
anesthetized with isoflurane gas then transcardially perfused 
with phosphate-buffered saline (PBS) with 0.05% heparin 
pH 7.4 at 37 °C, followed by 4% paraformaldehyde in PBS, 
pH 7.4, at 37 °C to fix the tissue. The subjects were then 
rapidly decapitated and skin, muscle, and bottom jaw were 
removed from the skull. The mouse brains intact within the 
skull were immediately postfixed in 4% paraformaldehyde 
in PBS, pH 7.4, at 4 °C overnight. The following day, the 
mouse brains were transferred to storage buffer, PBS pH 7.4, 
with 0.01% sodium azide and kept at 4 °C. The mouse brains 
were transferred to fresh storage buffer four more times dur-
ing the first 48 h after fixation, and then transferred to fresh 
storage buffer and rocked on a nutating rotator for 5 days at 
4 °C to remove any remaining paraformaldehyde. Finally, 
the mouse brains were transferred to fresh storage buffer 
and shipped from the Dulawa Lab, then at the University 

of Chicago, to the California Institute of Technology on ice 
for MRI data collection. All procedures involving animals 
were done in accordance with the ethical standards of the 
institution.

Multi‑shell imaging of mouse brains

Fixed mouse brains intact within the skull were soaked in 
5 mM Prohance® (Bracco Diagnostics, Inc., NJ) for 3 days 
prior to imaging to decrease overall T1 relaxation rates. 
They were then scanned three at a time immersed in Gal-
den® (Solvay Solexis, Inc., NJ, USA) with a 7 T Bruker 
BioSpin MRI scanner at the California Institute of Technol-
ogy. Diffusion-weighted images (DWI) were acquired using 
a four-segment 3D spin-echo echo-planar imaging (SE-EPI) 
sequence: 128 × 110 × 100 matrix; voxel size: 0.2 × 0.2 × 0.2 
mm3, TE = 50 ms; TR = 1000 ms, δ = 9 ms, Δ = 13 ms, band-
width = 303 kHz, double sampling, NA = 1, yielding scan 
time ~ 10 h. (When scaled to the size of an average human 
brain (Nolte 2009), the imaging resolution corresponds to 
an isotropic 2.7 mm which is well within the range of typical 
human dMRI acquisition settings.) 93 separate volumes were 
acquired: 3 T2-weighted volumes (voxel size: 0.1 × 0.1 × 0.1 
mm3) with no diffusion sensitization (B0 image) and 90 
diffusion-weighted images. DWIs were acquired with dif-
ferent angular samplings across three distinct b value shells: 
1000, 3000 and 5000s/mm2 (each b value shell contained 30 
diffusion-weighted images), where the gradient directions 
were generated with optimal distribution across the spheres 
(Caruyer et al. 2013).

Allen Mouse Brain Atlas and selection of injection 
locations

The Allen Mouse Brain Atlas (AMBA) provides detailed 
tracer injection and projection density images from a large 
number of sites covering the mouse brains (Oh et al. 2014). 
All AMBA data were saved in an atlas space with a detailed 
set of anatomical labels (Dong 2007). The AMBA atlas 
was created by registering and averaging serial two-photon 
microscopy (STP) images of 1231 specimens (Kuan et al. 
2015). AMBA provides 10, 25, 50 and 100 µm resolution 
versions of the atlas. In our study, we used the 25 µm resolu-
tion images because they provide a good balance between 
the level of detail and memory required for computation. 
All data from the AMBA are distributed in the NRRD for-
mat and uses the common coordinate framework (CCF) (Oh 
et al. 2014). To utilize conventional neuroimaging tools, we 
wrote a custom script to convert the AMBA data into RAS 
orientation and saved them in the NIFTI format. As of June 
2017, there are 2546 anterograde recombinant adeno-asso-
ciated virus (rAAV) tracer studies shared by the AMBA. 
Tracer studies were done on transgenic mouse lines as well 
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as wild types. Due to the heavy computational load in our 
validation experiments, we limited our study to ten injection 
sites that were done on wild-type mice. These ten injections 
were selected from different parts of the brain to cover a 
large variety of projections. The injection IDs used in this 
article, original injection IDs (given by the AMBA), and 
their anatomical locations are listed in Table 1. 3D visuali-
zations of the injection sites and their projections are shown 
in Fig. 1.

Pre‑processing of MRI data

The skull-stripping tool (BSE) (Shattuck and Leahy 2002) of 
BrainSuite was used to extract masks for individual mouse 
brains from the T2 image. Each brain was carefully extracted 
by manually adjusting BSE parameters. Brain masks were 
then reoriented to the RAS orientation with an in-house 
developed software tool that uses manually annotated land-
marks. Both T2 and diffusion MRI were then warped to align 
with AMBA using the ANTs registration tool (Avants et al. 
2011). Because AMBA is prepared using STP images, we 
used the mutual information similarity metric for all regis-
tration steps. A comparison using a checkerboard pattern 
between AMBA and a registered image is shown on an 
axial slice in Fig. 2a. For each subject, registration error is 
quantitatively measured using the average displacement of 
manually marked landmarks on the AMBA and subject’s T2 
image. For that, we used the landmarks proposed in Serge-
jeva et al. (2015). In this study, 16 landmarks are recom-
mended for the C57BL/6J mouse brain MRI registration: 2 
landmarks are in cerebellum, 1 in middle cortex, 1 in periaq-
ueductal gray, 1 in pontine nucleus, 1 in hippocampus, 3 in 
interpeduncular nucleus, 1 in corpus callosum, 1 in middle 
ventricle, 2 in anterior commissure and 3 in frontal areas. 
Among the 16 landmarks, we did not use the 2 in cerebel-
lum since dorsal sections of AMBA do not include these 

Table 1   List of injection IDs and anatomical locations used in the 
study

Injection ID Original injection ID Injection location

I1 100142569 Anteroventral nucleus of 
thalamus

I2 113887868 Primary visual area
I3 114249084 Cortical amygdalar area
I4 114290938 Primary somatosensory area, 

mouth
I5 180435652 Ectorhinal area
I6 180719293 Primary motor area
I7 127255254 Nucleus accumbens
I8 309385637 Nucleus of the lateral lemniscus
I9 272737914 Gustatory area
I10 112745787 Dentate gyrus

Fig. 1   The top panel shows the 3D volume renderings for the ten tracer projection densities used in Mode-I and Mode-II comparisons. Injection 
sites used in the study are visualized on the bottom panel
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regions. In our dataset, the mean and standard deviations 
of average displacement of all subjects are measured to be 
145.35 ± 29.37 µm, which corresponds to 1.45 ± 0.3 voxels 
in MRI space. This error is comparable to that obtained by 
Sergejeva et al. (2015) which was 134 ± 20 µm (1.54 ± 0.23 
voxels). The nonlinear transforms were saved and used to 
warp the injection sites and tracer projection density maps 
of the AMBA to individual mouse brains for our tractogra-
phy experiments. Additionally, FSL’s eddy_correct tool is 
used to reduce the artifacts in dMRI due to eddy currents 
(Jenkinson et al. 2012).

FOD reconstruction from multi‑shell diffusion MRI

Using the multi-shell diffusion MRI (dMRI) data of mouse 
brains, we applied the novel reconstruction method we 
developed recently in Tran and Shi (2015) and Kammen 
et al. (2016) to compute FODs that are used in our trac-
tography experiments. At each voxel, the FOD is a scalar 
function defined on the unit sphere that represents the prob-
ability of streamlines in each direction (Fig. 2b). Numeri-
cally, each FOD is represented with spherical harmonics 
up to the order of 12 that matches the number of gradient 
directions in our acquisition protocol. For the diffusivity of 
the stick kernel in our computational framework, we used 
0.0008 mm2/s following previous literature on post-mortem 
mouse brain diffusion imaging (Wu et al. 2013, 2014). Note 
that this is smaller than the kernel diffusivity that we typi-
cally use for in vivo human brain imaging data from the 
HCP. Using FOD-based tractography, we can visualize the 
connectivity of mouse brains (Fig. 2c) and study its relation 
to the underlying anatomy.

Tractography technique and parameter values

We used the iFOD2 algorithm of the MRtrix3 software 
(Tournier et al. 2010, 2012) for FOD-based probabilistic 
tractography. Injection density images from the AMBA 

were registered to each mouse brain image and used as seed 
regions for tractography. Because injection density images 
provide a probability density function for the injected tracer, 
we used the -seed_rejection flag of tckgen command of 
MRtrix3. This option generates track seeds proportional 
to the tracer density at each voxel. To thoroughly investi-
gate the impact of tracking parameters, we used nine dif-
ferent values for the following parameters in tractography: 
step, curvature and cutoff (FOD amplitude threshold for 
terminating tracks). Other tractography parameters used in 
the experiments were fixed as minlength = 0.1 mm, max-
length = 50 mm and trials = 1000. The term “curvature” is 
used synonymous to “radius of curvature” and values were 
converted to angle for the tckgen command. We also varied 
the number of total streamlines per each injection site with 
ten different values to examine the convergence of overlap 
with respect to this parameter. For each injection, we overall 
conducted 7290 (= 9 × 9 × 9 × 10) tractography experiments.

The values of the varied tractography parameters are 
listed in Table 2. Because it is common to set step size as a 
fraction of voxel dimensions, this is also listed. Similarly, 
curvature is also commonly set in terms of angular devia-
tions that we also included in the table. Notice that step 
size (with respect to voxel size), curvature (in angles) and 
number of streamlines used in the tests are within the typical 
ranges of tractography experiments done in the literature. 
Cutoff values however are different, since we used post-
mortem mice in our experiments which has much lower dif-
fusivity compared to the in vivo human case.

Quantitative comparison of tractography and tracer 
injections

We used the projection density images provided by the 
AMBA as the ground truth. Projection density is defined as 
the ratio of the number of projection-detected pixels to the 
number of all pixels in the division (Kuan et al. 2015), i.e., 
the maximum projection density value is 1 and it indicates 

Fig. 2   a Visualization for registration accuracy using a checkerboard pattern on an axial slice. b FODs reconstructed from multi-shell mouse 
brain dMRI data are plotted on a coronal slice. c Whole brain tractography results from FOD-based probabilistic tractography
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that all the pixels in the division are projected by the neu-
rons from the injection area. However, the projection density 
values are challenging to use for quantitative analysis due 
to variations among intensity profiles in different sections 
as well as changes in experimental procedures for different 
injection sites such as the tracer dose. Based on these rea-
sons, as the ground truth, instead of considering the amount 
of projections from an injection site to a voxel, we chose 
to consider whether there exists a projection to this voxel 
or not.

We compared the ground truth with tractography results 
by obtaining the voxels that have projections from the 
injection site. For this purpose, we computed track density 
images (TDI) at the same resolution as AMBA (Calamante 
et al. 2012). TDI is obtained using the tckmap command of 
MRtrix3.

To compare tractography results with AMBA’s injec-
tion studies, we used two different modes in our analysis. 
Mode-I and Mode-II separately consider the two common 
applications of tractography. Mode-I comparison aims to 
measure the accuracy of tractography when used for gen-
eral exploration, i.e., identification of all tracks from a given 
seed region. On the other hand, Mode-II comparison aims to 
quantify the accuracy of tractography when used for targeted 
exploration, i.e., extraction of tracks from a given region to 
another. In Mode-I comparison, voxels inside the brain mask 
with non-zero projection density are considered as ‘posi-
tive condition’, otherwise they are ‘negative condition’. In 
Mode-II comparison, we apply constraints on both the pro-
jection density images and tractograms. For tracer projec-
tion maps, all projected voxels ideally should be morpho-
logically connected to the injection site without any gaps. 
However, this is not the case in projection density images 
due to discretization errors and spurious projections. For 
Mode-II comparison, as ground truth, we used the voxels 
that have more than 1% projection density and form a sin-
gle connected component with the injection site. Besides 
using the injection site as the seed ROI for tractography, we 
also apply this connected component as the target (include) 
ROI for the tractography. The use of this additional ana-
tomical constraint in Mode-II experiments is similar to the 

streamline reconstruction protocols in human brain imag-
ing, where multiple ROIs were typically used to identify 
the major fiber bundles. Our goal is to examine the degree 
of improvement that can be achieved with the incorporation 
of additional anatomical constraints. Streamlines for Mode-
II comparisons are obtained using the ones computed for 
Mode-I comparisons by trimming segments from the ends of 
each streamline until a projection site is hit. Figure 1 shows 
volume renderings of Mode-I and Mode-II projections for 
all the injections and Fig. 3 shows a graphical explanation 
for the ground truths and predictions used for Mode-I and 
Mode-II analysis.

To quantitatively evaluate the performance of tractogra-
phy results, we form a predicted projection label image from 
the TDI image and calculate the overlap with ground truth 
labels. To form the predicted projection label image, we 
mark a voxel with the true label if it has a non-zero TDI 
value; otherwise it is marked with the false label. Therefore, 
a true label indicates that we predict the existence of projec-
tions to that voxel, and a false label indicates that no projec-
tion is predicted. The ground truth label image is obtained 
similarly by thresholding the tracer projection density 
images used in either Mode-I or Mode-II comparisons. 
Using the predicted projection label and the ground truth 
label images, we compute the number of voxels belonging 
to true positives (TP), false positives (FP), true negatives 
(TN) and false negatives (FN) (Fig. 3c, d). After that, the 
following measures were calculated to characterize the per-
formance of tractography results: true positive rate 
(

TPR =
TP

TP+FN

)

 , false positive rate 
(

FPR =
FP

FP+TN

)

 and 

DICE coefficient 
(

DICE =
2×TP

TP+FP+ TP+FN

)

 (Dice 1945).

Statistical analysis of variation

We used N-way ANOVA analysis to study the sources of 
variation in our results. Similar to previous studies (Bes-
seling et al. 2012; Dauguet et al. 2007), we focused on the 
variation in DICE measure since it is a one-dimensional 
quantity that measures the overlap quality. By applying 
N-way ANOVA analysis using the DICE measure, we 

Table 2   Tracking parameters 
used in the experiments

Step and curvature are listed with two commonly used units
a Angle is computed for step size of 50 µm
b Cutoff is the FOD amplitude threshold for stopping the tracks

Step (µm) 10 15 20 25 30 35 40 45 50
Step ( ×voxel size) 1/20 1/13.3 1/10 1/8 1/6.6 1/5.7 1/5 1/4.4 1/4
Curvature (µm) 35 39 44 50 59 73 97 144 287
Curvature (angle in º)a 90 80 70 60 50 40 30 20 10
Cutoff (×10−2)b 0.75 1.125 1.5 1.875 2.25 2.625 3 3.375 3.75
Number of streamlines (× 103) 50 100 150 200 250 300 350 400 450 500
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identified the changes in the quality of overlap between dif-
ferent groups as well as the variation within them. As a part 
of the ANOVA analysis, we computed the F-statistic to test 
and quantify the significance of parameters. ANOVA analy-
sis is done using MATLAB (MathWorks 2012). We showed 
that our dataset satisfies the ANOVA requirements in Sup-
plementary Material A.

Results

The overlap between tractography and tracer injection 
experiments changes dramatically with different choices of 
parameter combinations. Before we analyze the sources of 
this variation, in “Examination of overlap measures and vari-
ation across subjects”, we demonstrate how the quantitative 
measures used in this study (TPR, FPR and DICE) visually 
correspond to the overlap. Here we also briefly point out 
the effect of subject variability on the results. In “Examina-
tion of overlap variations due to tractography parameters and 
anatomical constraints”, we extend the results of “Examina-
tion of overlap measures and variation across subjects” by 
varying each of the parameters separately. With this, some 
of the trends due to parameter variations are observable. In 
“Examination of overlap variations due to injection sites”, 
we dig deeper into the trends, by including multiple injec-
tion locations which gives a complete overview of the trends 
in our seven dimensional parameter space. (More detailed 
information and figures on the trends are provided in the 
supplemental materials for interested readers.) In “ANOVA 
analysis and the ranking of variation sources”, we analyze 
the sources of trends and reveal how much each of the 
parameters contribute to the variation in performance.

Examination of overlap measures and variation 
across subjects

Figure 4 visualizes examples for a range of TPR, FPR and 
DICE to establish a visual link between these performance 
measures and the overlap quality. Figure 4 shows the 3D over-
lap between projection density images and tractography results 
for the sixth injection site that we denote as I6. For qualitative 
inspection, we used two subjects, M1 and M2, and considered 
three different sets of parameters represented as Case A, Case 
B and Case C that are listed in Table 3.

I6 projects to a large portion of the brain including soma-
tosensory areas on both hemispheres and dorsal regions such 
as the medullary nuclei. We observed in our experiments 
that most of the parameter combinations were successful in 
obtaining projections to somatosensory areas. Contralateral 
and dorsal connections are more visible for M2. This coincides 
with the values of Dice coefficient, which is an indicator for 
the quality of overlap. Capturing dorsal projections, however, 
required more flexible parameter combinations. Basically, 
Case A, B and C visually show relatively good, moderate and 
bad agreements between the tracer projection and tractogra-
phy. While differences can be observed between the results 
from the two mouse brains, the overall trends for Case A, B 
and C are consistent. Another consistent trend is the improve-
ment of the overlap measures when the anatomical constraint 
was added to obtain Mode-II results. For all cases, the inclu-
sion of prior anatomical knowledge improved the result for 
both subjects.

II-edoMI-edoM
Discretized ground truth Tractogram predictions Discretized ground truth Tractogram predictions

Positive condition
Negative condition

True positive
True negative
False positive
False negative

(b)(a) (c) (d) (e)

Fig. 3   Graphical description of Mode-I and Mode-II analysis. a 
Injection seed and projections are shown with green and yellow, 
respectively. b Mode-I uses the discretized ground that is the exist-
ence of projections to voxels. c Mode-I results are computed using 
the streamlines projecting from the seed location. (d) In Mode-II 

spurious projections are removed from the ground truth. (e) Mode-
II results are computed by trimming the ends of streamlines that are 
outside the ground truth. This presents the case where an anatomi-
cal constraint requires the end points of all streamlines to project to a 
ground truth voxel
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Examination of overlap variations due 
to tractography parameters and anatomical 
constraints

To examine the effect of tractography parameters, we used 
Case A, B and C shown in Table 3 as reference points and 
varied each of the four parameters. The results are shown in 
Fig. 5 as FPR vs TPR plots on the receiver operator char-
acteristic (ROC) plane. Overall, we run 204 tractography 
experiments for each subject. Plots in Fig. 5 can be consid-
ered as samples from ROC curves for the variation of each 
tractography parameter separately. The size of data points 
is in proportion to the corresponding Dice coefficient com-
puted from the same experiment. The results from the refer-
ence parameters listed in Table 3 are marked with an ‘x’ for 
each case. Figure 5 confirms that Mode-II results always 
yield better matches with the injection experiments. It is 
also observed that although step size changes the results, 
compared to other parameters its effect is not as pronounced. 
A large radius of curvature seems to be a strong constraint; 
however, decreasing it does not improve the match for very 
low curvature values. Decreasing the cutoff threshold value 
of the FOD magnitude increases the TPR, but also increases 

the FPR. There is a big difference in overlap quality between 
results generated using low and high number of streamlines. 
Increasing the number of streamlines shows a converging 
pattern for all cases.

Examination of overlap variations due to injection 
sites

To examine the results for different injection sites, we picked 
I1 and I6 for the first subject (M1). For both injection sites, 
we ran tractography experiments with all the possible 
9 × 9 × 9 × 10 = 7290 combinations of parameter choices 
listed in Table 2. Because we conducted both Mode-I and 
Mode-II analysis, there are overall 14580 experiments for 
each injection. The TPR vs FPR values showing the trends 
with respect to the changes in number of streamlines and 
cutoff parameters are plotted in Fig. 6. Notice that all of the 
14580 data points in columns one and three are identical for 
each row, i.e., for each injection site. However they are plot-
ted in different coloring schemes to highlight the trends with 
respect to changes in number of streamlines (first column) 
and cutoff (third column) parameters. Similarly, the data 
points used in the second and fourth columns are identical. 
The second column shows a sub-set of the data points where 
the cutoff value is fixed to 0.75 × 10−2 to further clarify the 
trend with respect to changes in the number of streamlines. 
Similarly in the fourth column, the number of streamlines is 
fixed to 500 K which better exposes the trend due to cutoff 
variation.

Overall, we can see quite dramatic differences between 
the plots for I1 and I6. This shows that anatomy plays a key 
role in determining the performance of tractography experi-
ments in terms of the TPR, FPR and DICE values. It is also 

Fig. 4   3D overlap of the tracer 
projection density for I6 (shown 
in yellow) and tractography 
results (shown in red) using 
two of the eight subjects, M1 
and M2. Top and bottom rows 
show the results for Mode-I and 
Mode-II comparisons, respec-
tively. While Mode-II does not 
noticeably affect the tracer data 
since it only removes spurious 
projections, there are visible dif-
ferences in tractograms (shown 
with blue arrows) due to the 
introduction of anatomical con-
straints. Computed measures are 
listed under each experiment. 
Case A shows better results 
compared to Cases B and C

Table 3   Tracking parameters used for the qualitative examination

Step (µm) Curvature (µm) Cutoff (×10−2) Number of 
streamlines 
(K)

Case A 50 35 1.5 500
Case B 20 39 2.25 500
Case C 10 287 3.75 500
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consistent with the previous experiments where Mode-II 
analysis generated higher agreements between tractography 
and tracer projection density images. From Fig. 6, we can see 
that the data points with different cutoff thresholds are strati-
fied into distinguished bands. Experiments with high cutoff 

thresholds yield lower TPR, FPR and DICE values. Relax-
ing this constraint enables us to obtain higher TPR at the 
cost of higher FPR. On the other hand, the results in Fig. 6 
show that the number of streamlines does not have a similar 
effect on constraining the performance of the tractography 

Fig. 5   Effects of parameter vari-
ations on the overlapping meas-
ures between tractography and 
tracer projection density for I6. 
Top and bottom rows show the 
results for subjects M1 and M2, 
respectively. Reference points 
corresponding to Case A, B 
and C in Table 3 are plotted as 
x. On each column, only one of 
the parameters is varied, i.e., for 
the two plots under curvature, 
only the curvature parameter is 
changed, all other parameters 
are kept same. The size of the 
data points is in proportion to 
the DICE coefficient

Fig. 6   Variability of tractography performances with respect to num-
ber of streamlines and cutoff parameters. The dimensions of data 
points are in proportion to the DICE coefficients. The first and third 
rows show the same data points which are collected from all of the 
experiments using injections I1 and I6 on M1 (14580 experiments = 2 
modes × 9 step sizes × 9 curvatures × 9 cutoff thresholds × 10 num-
ber of streamlines). However, the coloring of points are done with 

respect to the number of streamlines in the first column and cutoff 
in the third to highlight the trends. Cutoff is fixed to 0.75 × 10−2 in 
the second column to clarify the trend with respect to changes in the 
number of streamlines. Similarly in the fourth column, the number of 
streamlines is fixed to 500 K to emphasize the trend with respect to 
cutoff changes
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experiments. It can be observed that both TPR and FPR val-
ues improve almost monotonically with the increase of the 
number of streamlines. Given this observation, we selected 
the data points with the number of streamlines at the maxi-
mum value (500 K) and plotted them separately by coloring 
them according to the cutoff values. These plots more clearly 
illustrate the effect of the cutoff values on the performance 
of tractography. With the change of the cutoff thresholds, we 
can see a wide range of overlapping measures.

To illustrate the effects of the other two parameters, cur-
vature and step, we plotted in Fig. 7 the data points with the 
maximum number of streamlines (500 K) and three repre-
sentative cutoff thresholds, low cutoff (0.75 × 10−2), medium 
cutoff (2.25 × 10−2) and high cutoff (3.75 × 10−2). To have a 
clearer visualization, we only used data points from four rep-
resentative curvature and step values. For the visualization 
of the plots, we used different symbols to indicate different 
curvature values and different colors to indicate different 
step sizes. Similar to the cutoff parameter, curvature imposes 
a strong constraint and in general high curvature values 
yield low TPR and FPR. Relaxing curvature by decreasing 
its value increases both TPR and FPR. On the other hand, 
decreasing the step size has an opposite effect. Smaller step 
sizes in general yield lower TPR and FPR.

More details on the overall overlap variation due to trac-
tography parameters and anatomical constraints are given in 
Supplementary Material B. Also in Supplementary Mate-
rial C, detailed figures are provided of the overall impact of 
injection sites, mouse brains and tractography parameters.

ANOVA analysis and the ranking of variation sources

In the previous sections, we examined several factors that 
affect the performance of tractography results. In this part, 

we perform N-way ANOVA analysis to compare the effects 
of these factors. The top panel of Fig. 8 shows the individual 
group means plotted using MATLAB’s multcompare com-
mand. By checking the means and confidence intervals, we 
determined that only groups with curvature = 287 µm were 
significantly different from all others and have a low mean 
value that is not close to other groups. We marked this data 
point as an outlier, crossed it with dark green and removed it 
from further analysis. (Outlier removal is explained in more 
detail in Supplementary Material D.) Gray and black in 
Fig. 8 show ANOVA results before and after outlier removal, 
respectively. Red data points show results when Mode-I and 
Mode-II are separated. Figure 8 shows that Mode-II gives 
higher DICE coefficients for all groups. Decreasing step 
or curvature increases the quality of overlap for Mode-II; 
however, this trend is opposite for Mode-I. For both modes, 
decreasing the cutoff threshold increases the DICE val-
ues. There is no significant gain below cutoff = 0.015 for 
Mode-II.

In the lower panel of Fig. 8, (a) shows the F-statistics 
belonging to each variation source using all the experiments 
after the outlier group is removed. All groups are found to be 
statistically significant ( p ≪ 0.05 ). Here, we also included 
the results for TPR and FPR. The analysis mode is deter-
mined to be the most significant parameter for all meas-
ures. The order of significance between the other parameters 
changes depending on the measure. For DICE coefficient, 
tractography parameters contribute to the total variation less 
than the injection or the subject for most cases.

Our results show that both the injection and the subject 
used in the experiments are big contributors to the total vari-
ation of the quality of overlap and they are significant. Espe-
cially, when Mode-I and Mode-II are separated, their sig-
nificance becomes clearer; Fig. 8 b, c. For DICE coefficient 

Fig. 7   Variability of tractogra-
phy performances with respect 
to curvature and step size 
parameters. The dimensions of 
data points are in proportion 
to the DICE coefficients. All 
data points are a sub-set of the 
experiments shown in Fig. 6. 
To keep the plots simple, the 
number of streamlines is fixed 
to 500 K and three differ-
ent (fixed) cutoff values are 
shown in each column. Data 
points with respect to varying 
curvature values are shown 
with different symbols, whereas 
different colors are used to show 
the points for varying step size
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injection is the most significant source of variation when 
modes are separated. We observe from Fig. 8a–c that, for 
most cases, the number of streamlines is a more significant 
parameter than both step and curvature. Figure 8d shows that 
most of the variation from the number of streamlines is due 
to low values and the variation decreases with the increase 
in the number of streamlines. We find it interesting to deter-
mine the sources of variation in the case that the experiments 
are performed with a large enough number of streamlines. 
Figure 8d, e shows the F-statistics when modes are separated 
and the largest number of streamlines are used. We observe 
that, in this case, the two most significant sources of varia-
tion in the quality of overlap are the injection location and 
the subject either of which are parameters used to compute 
the tracks. The most significant tractography parameter is 
the cutoff threshold which is followed by curvature and step.

Discussion

Understanding the roots of performance variation in tracto-
grams is important to advance our techniques toward more 
reliable and reproducible results, which are essential for clin-
ical practices. It is well known from earlier studies that due 
to several factors including subject (Heiervang et al. 2006; 
Willats et al. 2014), tractography parameters (Mangin et al. 
2013; Yeh et al. 2016; Thomas et al. 2014; Azadbakht et al. 
2015), anatomical constraints and the fiber system (Smith 
et al. 2012; Donahue et al. 2016), the performance of trac-
tography varies. Although the sources for variability that 
are studied in this work are well known, how much they 

contribute to variability has not been thoroughly studied. 
Learning more about this information is critical in (1) setting 
up protocols for tractography and (2) interpreting results. 
However, studying the coupled effects of factors is challeng-
ing due to the big dimension of affecting parameters. This 
demands a large set of experiments to be performed to cover 
a sufficient subset of the whole parameter space. For the 
validation of tractography, this is an additional challenge on 
top of the lack of ground truth, which we tried to overcome 
in this work.

For our study, we sampled a large portion of the param-
eter space responsible for performance variations in tractog-
raphy, extracted trends and attained a comprehensive under-
standing of the factors within practical ranges of parameter 
choices. We collected results from 1,166,400 experiments: 
8 mouse brains × 10 injections × 2 modes of analysis × 9 
step sizes × 9 curvatures × 9 cutoff thresholds × 10 num-
ber of streamlines. It took about 40 days to complete all 
tractography experiments using 350 nodes in our computer 
cluster. The compressed data take 118 TB of hard drive 
space. Importantly, the large amount of experiments that 
we conducted enabled us to rank the parameters in terms of 
their contribution to the variability using N-way ANOVA 
analysis. In short, by exhaustively studying the sources of 
variation, we obtained an improved understanding on how 
to perform better tractography experiments and interpret 
results.

One notable study addressing the variation in tractograms 
due to a large number of factors is Cote et al. (2013). Here, 
the authors performed over 57,000 experiments to validate 
the results of different tractography experiments with respect 

Fig. 8   Multiple comparison 
plots and F-statistics obtained 
by N-way ANOVA analysis. 
Multiple comparison shows 
a large separation of results 
with respect to mode. Red data 
points on multiple comparison 
plots show ANOVA results 
obtained when modes are 
separated. The outlier curva-
ture = 287 µm group is removed 
from all F-statistic results
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to image acquisition settings, local reconstruction techniques 
(tensor, q-ball, and spherical deconvolution), curvature, step 
size and seeds. However, this study did not quantitatively 
analyze and compare the sources with their contributions 
on the variability. Girard et al. (2014) is another important 
study toward reducing parameter biases. Here, the authors 
studied several factors and suggested optimal parameters for 
obtaining streamlines. However, while optimizing individual 
tractography parameters, they fixed all the other parameters 
and thus did not thoroughly investigate the sources of vari-
ation. One of the main differences between our work and 
earlier validation studies is that we analyzed how several 
factors in combination affect the results.

Our study fundamentally differs from the recent tractog-
raphy validation works that were also based on injection 
experiments as ground truth. In their works (Calabrese et al. 
2015; Chen et al. 2015b; Donahue et al. 2016), the authors 
studied a large number of injections, mainly focusing on the 
connectomics aspect for validation. They investigated how 
well the connections and connectome generated by tracer 
injection experiments match the one generated by tractogra-
phy, whereas in our study we conduct a deeper investigation 
on a limited number of injections and add another dimen-
sion to these works by showing how individual connections 
vary due to several factors. Among the previous validation 
studies with AMBA injection experiments, only Chen et al. 
(2015) tried to investigate how the performance of tractog-
raphy varies with respect to its parameters for individual 
fiber systems. However, they studied only few parameter 
combinations, three different cutoff thresholds and five dif-
ferent curvatures. Keeping in mind that connectomics is only 
one application of tractography and many other studies actu-
ally focus on specific fiber systems (Yamada et al. 2009; 
Mukherjee et al. 2008; Nucifora et al. 2007), we focused 
on studying certain injections. While doing that, we picked 
injections with projections to different areas of the brain to 
check the influence of this factor on the performance.

Anterograde tracers used in the AMBA study only label 
outgoing projections, i.e., projections shown in Fig. 1 are 
from the cell bodies in the injection site to synapses. This 
is a common limitation for tracer injection-based validation 
studies (Heilingoetter and Jensen 2016). On the other hand, 
current tractography algorithms continue to propagate after 
synapses since it is not possible to define stopping conditions 
at these locations using MRI data. Therefore a part of the 
false positive results obtained in this study might be due to 
incoming projections and connections after synapses. For the 
same reason, a part of the false negatives might also be extra. 
For a more thorough comparison in the future, we need more 
comprehensive information about different types of neu-
ronal connections that include incoming, outgoing, recipro-
cal, and intermediate connections, which can be obtained 
using double coinjection tract tracing which comprises both 

anterograde and retrograde agents (Zingg et al. 2014). Also, 
the reliability of the results can be improved by conducting 
the tracer experiments and dMRI-based tractography on the 
same subjects.

One other challenge regarding the injection experiments 
concerns the quantitative use of projection density values. 
Due to the differences in experimental procedures such as 
tracer doses and injection leakages, as well as the variations 
in the intensities during the STP imaging, projection density 
values are prone to variations (Oh et al. 2014; Dong 2007; 
Kuan et al. 2015). Because of these reasons, as ground truth, 
instead of the intensity of projections, we chose to consider 
whether there exists a projection to a voxel or not. However 
even so, due to partial volume effects, discretization errors 
and spurious projections, the ground truth images are still 
not ideal. Therefore, we chose to clean up the projection 
density data for Mode-II analysis where we also enforced 
anatomical constraints. Note that this is a typical step done 
in other AMBA-based validation studies (Chen et al. 2015a, 
b; Keifer et al. 2015). On the other hand, for Mode-I analy-
sis, we did not process the projection density images since 
this would bias the results despite the lack of quantitative 
information regarding the invalidity of the data.

Additional to the parameters that we studied in our work, 
the choice for scanners (Sotiropoulos et al. 2016), image 
acquisition protocols (Daianu et al. 2015) and pre-process-
ing pipelines (Albi et al. 2018) all have prominent effects 
on tractograms. However, for practical reasons, these are 
typically difficult to control or adjust. Results also change 
with respect to the choice of diffusion models (Thomas 
et al. 2014) and tractography algorithms (Azadbakht et al. 
2015). Additionally, the length of connections (Jbabdi et al. 
2015) is shown to be a critical factor as well. This param-
eter, however, is highly dependent on the injection location 
that we used in this study and also the AMBA data does not 
implicitly provide ground truth for the length of connections. 
Although investigation of all sources of variation is valuable, 
this is out of the scope of our work. For our experimental 
setup, among many factors that affect tractograms, we tried 
to pick those that most researchers can easily tune. In recent 
extensive technical validation studies (Maier-Hein et al. 
2017; Neher et al. 2015), the authors tested different diffu-
sion models and representations including tensors (DTI) and 
the FOD. According to their study using 25,000 tractograms, 
it was concluded that the best results obtained with DTI-
based approaches were almost always worse than any FOD-
based technique. The authors concluded that “the scientific 
community needs to move beyond DTI for meaningful fiber 
tractography”. Several other studies conducted earlier on dif-
fusion models and tractography also pointed out the limita-
tions of DTI-based tractography (Neher et al. 2014; Fillard 
et al. 2011; Cote et al. 2013). On the other hand, a significant 
majority of previous validation studies with tracer injections 
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were performed based on this limited approach. Taking into 
consideration the new developments in the field, we chose 
to focus on a popular FOD-based probabilistic tractography 
approach in our experiments (Tournier et al. 2010).

Our work studies different subjects, fiber bundles (injec-
tion locations) and anatomical constraints (mode), which are 
common factors affecting tractography results independent 
of the used diffusion model or tracking algorithm. There-
fore, we expect our conclusions concerning these factors to 
mostly translate to other studies as well, i.e., the fiber bundle 
that is studied is highly likely to be a more important source 
for variation in comparison to differences between subjects 
irrespective of how tracks are obtained. For our study, the 
data points are collected using an FOD-based probabilistic 
tractography technique. We expect our results to translate 
to most similar probabilistic approaches as well, such as the 
iFOD1 algorithm in MRtrix3 (Tournier et al. 2010, 2012). 
Also because step size and curvature parameters are used 
almost exactly in the same way in most tractography algo-
rithms (excluding global approaches), we expect curvature 
to be a more important parameter for variability than the step 
size, regardless of the diffusion model or the tracking algo-
rithm. Additionally, based on the similarities between com-
monly used tracking algorithms, we expect that an increased 
number of streamlines will always show a converging trend. 
On the other hand, the variability introduced by the number 
of streamlines and cutoff parameters is likely to differ with 
respect to the diffusion model and the tractography tech-
nique (deterministic, global).

The parameters for the fixed post-mortem mouse brain 
were chosen based on the study of Wu et al. (2013, 2014). 
The main difference in the reconstruction of the diffusion 
model that affects tractography is the reduced diffusivity 
value (0.0008 mm2/s). On the other hand, Wu et al. (2013) 
report major differences between the in vivo and ex vivo 
imaging cases, such as the 60% reduction in the ventricu-
lar volumes after death and the large deformations nearby, 
accompanied by fixation. However, volumes of major brain 
structures were not found to be significantly different. 
Because the propagation of the tracer occurs over several 
days when the subject is alive and tractography experiments 
are conducted post-mortem, it is possible that the anatomical 
and microstructural changes due to death and fixation of the 
subject introduce a negative bias on the absolute values of 
the overlap quality measures, i.e., if the ground truth could 
be obtained without sacrificing the subject, tractography 
experiment could as well yield a better overlap when con-
ducted in vivo. Additionally, because the FOD representa-
tions are common for both in vivo and ex vivo data, the 
lessons we learned from ex vivo data in our study will be 
valuable for in vivo experiments. While it is challenging to 
directly repeat these tractography experiments in vivo due to 
the lack of ground truth, there is a possibility of examining 

and replicating these findings on specific pathways such as 
optic radiation using the well-known anatomy in retinotopy 
(Benson et al. 2012; Aydogan and Shi 2016). The parameters 
we chose to study in our work are general and operate in 
the same way regardless of the subject being a post-mortem 
mouse or living human. For any tractogram, anatomical con-
straints for any type of subject are applied by defining ROIs 
to avoid or include for certain areas of the brain. Also, the 
tractography algorithms operate with the exact principles 
irrespective of the subject that is studied. However due to 
other sources of variations such as the differences in imaging 
devices and neuroanatomy, our results obtained using mouse 
do not one to one translate to humans. Additionally, there are 
discrepancies in the values of tractography parameters, for 
example the FOD cutoff value used to terminate streamlines 
are significantly lower in mouse subjects compared to the 
values in human studies. On the other hand, in our study 
we did not focus on the actual values of the parameters, we 
instead investigated the variability in performance within 
practical ranges of parameter choices. Therefore, although 
our quantitative results obtained using mouse do not trans-
late to human studies, we believe it is reasonable to expect 
the overall trends and rankings for the sources of variability 
to have parallelism.

Comparison of the overlap between tractograms and 
injection experiments is a widely accepted validation 
approach of connections obtained using dMRI-based trac-
tography (Dauguet et al. 2007; Thomas et al. 2014). This 
was also the choice to rank the performance of tractography 
protocols in the ISBI 2018 tractography challenge (https​://
my.vande​rbilt​.edu/votem​/). In the rat brain, the mean diam-
eters for unmyelinated and myelinated axons are reported 
to be around 0.2–0.6 µm and they vary from 0.02 to 3.0 µm 
(Partadiredja et al. 2003; Barazany et al. 2009). Capturing 
axon-level details requires high-resolution images (< 1 µm) 
which can be used to validate fiber orientations (Budde et al. 
2011; Mollink et al. 2017). Although whole brain AMBA 
projection images are adequate for the validation of dMRI-
based tractography, with a minimum resolution of 10 µm, 
they are not suitable to validate FODs. In our work, we used 
a state-of-the-art multi-shell, multi-compartment model to 
estimate FODs from dMRI, which are validated on simu-
lated data (Tran and Shi 2015). We plan to investigate the 
accuracy of fiber orientations obtained based on this tech-
nique using high-resolution histology images in the future.

DICE measure can be significantly improved 
by focusing on false negatives

Our overall findings summarized in Table 4 show that the 
average overlap measured using DICE coefficient without 
the incorporation of anatomical knowledge is 24.2% and it 
increases to 31.9% when anatomical constraint is applied. 

https://my.vanderbilt.edu/votem/
https://my.vanderbilt.edu/votem/
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Similar to the results from previous studies (Dauguet 
et al. 2007; Calabrese et al. 2015), we find that the over-
laps between tractography and tracer injections are rela-
tively low but significant. Different from previous studies, 
our results additionally show that despite the dramatic 
increase in the overlap with anatomical constraint, a large 
portion of the ground truth projections were still not cap-
tured by tractography—false negatives (FN). In Table 4, 
we separately showed the estimated DICE values when 
false positive (FP) and FN contributions were removed. 
Changes in FP do not alter TP; however, decreasing FN 
to 0, implies perfect TP. For our estimate in the case of 
FN = 0, we conservatively forecasted an increase in FP 
that is proportional to the increase in TP. Our results point 
out that FN is more detrimental to the DICE score than 
the FP. This underlines the other issue with tractograms, 
which is that tractograms not only contain a significant 
amount of false positives, but it is also hard to capture all 
the projections.

Performance variations in tractography follow 
trends over parameter changes

Our results in “Examination of overlap measures and varia-
tion across subjects”, “Examination of overlap variations due 
to tractography parameters and anatomical constraints”, and 
“Examination of overlap variations due to injection sites” 
show that there is no simple way of moving towards the ideal 
FPR = 0 and TPR = 1 corner on the ROC plane. However, 
there are common trends in results with respect to parameter 
changes. Figure 6 shows that cut-off threshold determines 
the upper bounds for TPR and FPR regardless of other trac-
tography parameters. Given a subject and an injection loca-
tion, this implies the best TPR and worst FPR are limited 
once the cut-off is set. Figure 9 shows the overall trends that 
we obtained with respect to tractography parameter choices. 
It is a visual summary of how parameter changes move the 
overlap quality on the FPR vs TPR plane. In order to present 
a cleaner visualization, among the seven variables that are 
considered, plots show average results over all subjects and 
injection sites. On top of each plot, the names of the fixed 
parameters are listed. All unlisted parameters are varied in 

Table 4   Average TPR, TNR, FPR, FNR, ACC and DICE values

TPR (sensitiv-
ity) (%)

TNR (specific-
ity) (%)

ACC (accu-
racy) (%)

FPR (%) FNR (%) DICE (%) DICE
if FP were 0 (%)

DICE
if FN 
were 0 
(%)

Without 
anatomical 
constraint

27.5 85.9 75.3 14.1 72.5 24.2 40.3 46.9

With ana-
tomical 
constraint

32 95.3 89.2 4.7 68 31.9 49.5 58.9

(a) (b) (c) (d) (e)

Fig. 9   Summary of trends in tractography performance with respect to parameter changes. Data points show average values over all subjects and 
injection sites
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the plots. The plots are colored according to the parameter 
listed in the title. For example, Fig. 9d includes data points 
for variable curvature and step size parameters but the colors 
represent results from different curvatures.

Results based on different tractography protocols 
are difficult to relate

Our study has significant conclusions owing to N-way 
ANOVA analysis. The variability in the overlap performance 
between subjects shown in Fig. 7 suggests that subject-wise 
comparisons should be done with caution. Our results show 
that performance variations introduced by different tractog-
raphy parameter choices (for example cutoff) is comparable 
to variations introduced by different subjects. Additionally, 
our analysis indicate that all tractography parameters includ-
ing step size and number of tracks significantly affect the 
performance. We found that varying injection locations and 
subjects affect overlap performance more than cutoff thresh-
old, curvature and step size. Although a part of the associ-
ated differences might be due to registration errors or actual 
differences between subjects, we believe variation due to 
neuroanatomy and subjects is one of the major challenges in 
determining the optimal parameters for tractography.

Improving tractography protocols 
and interpretation of results

Overall, our study points out to consider new practices for 
the application of tractography and how to interpret results:

•	 Our work reveals that neuroanatomy plays the most criti-
cal role in determining the performance of tractography, 
which underscores the importance of employing anatom-
ical information in fiber tracking. This justifies the efforts 
to improve tractography via anatomical constraints 
(Smith et  al. 2012) or atlases (Rojkova et  al. 2016). 
However, even with perfect anatomical constraints, our 
results show that false negatives dominate the overlap 
performance which should be taken into account during 
the interpretation.

•	 The large variability in overlap quality due to injection 
locations shows that tractography techniques might pro-
vide better results if parameters are adjusted according 
to individual fiber bundles or regions of the brain that are 
being processed by the tracking algorithms.

•	 As a corollary to the previous points, we provide evi-
dence that tractograms obtained for specific fiber bun-
dles with optimized parameters and well-built anatomical 
constraints are more reliable compared to whole brain 
tractograms used for connectomics where there are lim-
ited opportunities for parameter optimization and ana-

tomical restrictions. This makes tractography a more reli-
able tool to study certain parts of the brain than others.

•	 Our study heavily underlines the seriousness of docu-
menting the complete list of tractography parameters. 
Because our N-way ANOVA analysis shows that vari-
ations due to subjects and tractography parameters are 
comparable, the motivation to document the complete 
tractography protocol is beyond good practice. It is sim-
ply essential without which comparisons between differ-
ent studies are potentially not meaningful.

•	 Our results showing the importance of all tractography 
parameters have implications in designing tractogra-
phy protocols and how to decide parameters. Because 
results do converge with increasing number of tracks, it 
is good practice to study the convergence with respect 
to this parameter. On the other hand, our results show 
variability with respect to step size, curvature and cutoff 
parameters. Therefore, conventional tractography studies 
that are based on a single set of parameter combination 
are prone to variations with respect to these parameters. 
One way to reduce biases due to fixed parameter choices 
is to repeat the experiments using different parameter 
combinations which would improve the reliability of the 
results.

To conclude, we believe our findings will not only 
contribute to the literature of validation studies, but also 
improve our understanding of how to improve tractography 
experiments and interpret results.
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