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Abstract It has been shown that swallowing involves

certain attentional and cognitive resources which, when

disrupted can influence swallowing function with in dys-

phagic patient. However, there are still open questions

regarding the influence of attention and cognitive demands

on brain activity during swallowing. In order to understand

how brain regions responsible for attention influence brain

activity during swallowing, we compared brain organiza-

tion during no-distraction swallowing and swallowing with

distraction. Fifteen healthy male adults participated in the

data collection process. Participants performed ten 1 ml,

ten 5 ml, and ten 10 ml water swallows under both no-

distraction conditions and during distraction while EEG

signals were recorded. After standard pre-processing of the

EEG signals, brain networks were formed using the time–

frequency based synchrony measure. The brain networks

formed were then compared between the two sets of

conditions. Results showed that there are differences in the

Delta, Theta, Alpha, Beta, and Gamma frequency bands

between no-distraction swallowing and swallowing with

distraction. Differences in the Delta and Theta frequency

bands can be attributed to changes in subliminal processes,

while changes in the Alpha and Beta frequency bands are

directly associated with the various levels of attention and

cognitive demands during swallowing process, and chan-

ges in the Gamma frequency band are due to changes in

motor activity. Furthermore, we showed that variations in

bolus volume influenced the swallowing brain networks in

the Delta, Theta, Alpha, Beta, and Gamma frequency

bands. Changes in the Delta, Theta, and Alpha frequency

bands are due to sensory perturbations evoked by the

various bolus volumes. Changes in the Beta frequency

band are due to reallocation of cognitive demands, while

changes in the Gamma frequency band are due to changes

in motor activity produced by variations in bolus volume.

These findings could potentially lead to the development of

better understanding of the nature of dysphagia and various

rehabilitation strategies for patients with neurogenic dys-

phagia who have altered attention or impaired cognitive

functions.

Keywords EEG � Graph theory � Brain network �
Dysphagia � Swallowing � Attention

Introduction

Deglutition (i.e., swallowing) is an essential neuromuscular

event which provides the transportation of food and liquids

from the oral cavity to the stomach. The process of swal-

lowing has been artificially subdivided into phases to

enable description of the numerous and overlapping
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biomechanical events that occur within the one- to two-

second duration of a typical liquid swallow that does not

involve oral preparation of solid food prior to transport to

the pharynx and esophagus (Ertekin et al. 2003; Stevenson

and Allaire 1991). This process can be divided into four

distinctive phases (i.e., oral preparatory, oral transit, pha-

ryngeal, and esophageal), all of which overlap somewhat in

their sequence of occurrence. The first phase of swallowing

activity consists of primarily voluntary actions, while the

remaining stages are characterized by primarily involun-

tary actions (Dodds 1989). Swallowing under conditions

requiring volitional augmentation of oral activity, posture,

or other swallowing maneuvers alter the intensity of vol-

untary recruitment and are hypothesized to result in chan-

ges on cognitive demands during the different stages of the

swallowing process (Brodsky et al. 2012a).

Dysphagia (swallowing disorders) is caused by either

disruption of the swallowing mechanism itself, or by dis-

ease and brain lesions introduced by conditions such as

stroke, which disrupt sensorimotor function through dam-

age to central neural structures without focally altering the

peripheral aerodigestive mechanism (Cichero and Murdoch

2006). There are a number of causes of dysphagia, but the

most common in adults are neurological conditions such as

stroke (Gottlieb et al. 1996), physical traumatic brain

injuries (Lazarus and Logemann 1987), cerebral palsy

(Rogers et al. 1994), and Parkinson’s or other neurode-

generative diseases (Murray 1999). Dysphagia often leads

to the development of other adverse medical conditions,

such as dehydration (Smithard et al. 1996), malnutrition

(Foley et al. 2009), failure of the immune system (Curran

and Groher 1990), respiratory infection (Marik and Kaplan

2003), and in general, a decreased quality of life

(McHorney et al. 2000).

Although once believed to be mediated purely reflex-

ively at the brainstem level and executed peripherally

without higher level neural input, multiple and bilateral

hemispheric regions have been shown to be activated

before, during, and after swallowing (Hamdy et al. 1997;

Michou and Hamdy 2009; Ertekin et al. 2003; Stevenson

and Allaire 1991). Specifically, large swallowing neural

networks involving bilateral primary motor and sensory

cortices, supplemental and premotor cortices, Heschls gyri,

cingulate gyri, Brocas area and the insula, and superior

temporal gyri have been identified using functional mag-

netic resonance imaging (Mosier et al. 1999). And like-

wise, activation of numerous other anterior frontal and

temporal cortical and subcortical structures have been

observed during swallowing in healthy individuals (Hamdy

et al. 1999).

Many of the cerebral areas activated during swallowing

are responsible for several cognitive functions and are

active during the processing of language; some, when

damaged, have been strongly implicated in impaired cog-

nitive processes such as attention (Corbetta and Shulman

2002). Hence interest in an interaction between cognition,

language, and swallowing has increased speculation that

central neurogenic dysphagia may have a cognitive com-

ponent, has risen in the past decade. During typical swal-

lowing clinical testing using videofluoroscopy or fiberoptic

imaging, patients are instructed to swallow after receiving

a verbal command from an examiner. Several studies have

identified significant differences between swallows

prompted by a verbal instruction compared to spontaneous

swallows in healthy and dysphagic patients (Daniels et al.

2007; Matsuo and Palmer 2008; Nagy et al. 2013; Nonaka

et al. 2009). Similarly, the effect of attention on swallow-

ing function has also been implicated, with significantly

altered reaction times and timing of swallow physiologic

events observed in healthy and dysphagic participants

when challenged by a divided attention task (Brodsky et al.

2012a, b).

Cerebral reorganization after brain damage has received

much attention as it relates to the effects of rehabilitative

efforts after stroke and brain injury. It has been shown that

successful dysphagia rehabilitation is correlated with brain

reorganization following cerebral injury and during the

natural course of other specific neurological disorders

(Hamdy et al. 2000). Whereas in the past dysphagia has

been treated mainly using a bottom-up method of restoring

peripheral function to improve swallow function, plasticity

of swallowing related to reorganization of damaged central

as a construct, a more top-down process, is currently

receiving much attention (Doeltgen and Huckabee 2012;

Robbins 2011). However, most current methods of

observing brain function during swallowing and swallow-

ing rehabilitation rely on bulky, sophisticated, and

impractical instrumentation that, like language and atten-

tional interference, introduce unnatural variables to the

swallowing task. Thus, it is essential to ascertain patterns

of brain activity during swallowing using more practical

and meaningful methods, to provide a better understanding

of neurogenic swallowing difficulties in order to generate

more research into top-down rehabilitation strategies using

swallowing network research that preserves natural swal-

lowing conditions.

One way of analyzing brain activity during swallowing

is to use electroencephalography (EEG) (Jestrović et al.

2014, 2015a). This portable, affordable and non-invasive

technique enables the participant to swallow naturally

without any imposed postural or other conditions. Unlike

functional magnetic resonance imaging or near-infrared

spectroscopy, EEG is characterized by a very good tem-

poral resolution, which enables analysis of brain networks

during both longer and shorter duration swallowing events.

Furthermore, EEG enables simultaneous analysis of the
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relationships and interactions between different brain

regions using statistical methods such as the graph theory

approach. We have previously shown that the graph theory

approach applied to EEG signals during swallowing can

provide important insight into swallowing neurology (Je-

strović et al. 2015b). Moreover, EEG examines the

underlying transit of neural information among brain

regions, rather than just observing the product of that

activation (i.e. areas that are ultimately activated).

Therefore, it is germane to the investigation of neuro-

genic dysphagia and the effects of behavioral treatment of

dysphagia, in which patients must perform volitional aug-

mentation of oropharyngeal activities, to investigate the

effects of external distraction on brain activity during

swallowing, using more practical and less invasive meth-

ods. In this study, we hypothesize that the brain network is

different between no-distraction swallowing and swallow-

ing with distraction. Characterizing the brain networks

during swallowing with distraction could potentially

explain the reason for higher risk of aspiration within some

groups of dysphagic patients (Barrett and Burkholder 2006;

Mattingley et al. 1994) and potentially lead to the devel-

opment of better rehabilitation strategies for dysphagia

patients who also have altered attention or impaired cog-

nitive function resulting from neurological disorders.

Methodology

Data acquisition from participants

Data were collected from 15 healthy male subjects, aged

from 18 to 35. The number of 15 subjects is considered as

a sample of convenience. All participants provided

informed consent, and also age, height, and weight. The

protocol was approved by the Institutional Review Board at

the University of Pittsburgh.

EEG signals were recorded with an array of 64 EEG

electrodes. Electrodes were positioned using the actiCAP

active electrodes (BrainProducts, Germany) EEG cap,

which was positioned according to the 10–20 international

electrode system (Jasper 1958). The EEG signals were

amplified using the actiCHamp amplifier (BrainProducts,

Germany). The P3 electrode was chosen as the reference

electrode. Impedance of all electrodes was below 15 kX.
Data were recorded at a sampling rate of 10 kHz and saved

using PyCorder acquisition software. In order to identify

the presence of occurrence of swallowing events, we con-

currently recorded swallowing vibrations with a dual-axis

accelerometer positioned on the anterior part of the par-

ticipant’s neck. The capabilities of the dual-axis

accelerometer system in the detection of swallowing events

were described in detail in our previous studies (Jestrović

et al. 2013).

After setting up all devices (Fig. 1) participants were

asked to consume ten individual 1 ml water boluses, ten 5

ml water swallows, and ten 10 ml water swallows. Then,

participants were asked to repeat the same sequence while

they watching a video to occupy their attention and present

cognitive demands.

Pre-processing steps

EEGlab MATLAB toolbox (Delorme and Makeig 2004)

was used for pre-processing of EEG signals. First, all sig-

nals were downsampled to 256 Hz. Next, we filtered sig-

nals from 0.1 to 100 Hz using an elliptical infinite impulse

response (IIR) band-pass filter. The same type of filter was

also used for removing the noise from the power supply,

with cut-off frequencies at 58 and 62 Hz. Next, EEG sig-

nals were segmented based on the onset and offset of

separate swallows as determined by accelerometer signals.

In the last step, we removed artifacts from the EEG signals

using the independent component analysis (ICA) algorithm

(Hyvärinen and Oja 2000).

Network constructions

The pre-processed signals were filtered into the commonly

used frequency bands of interest: Delta (\4 Hz), Theta

(4–7 Hz), Alpha (8–15 Hz), Beta (16–31 Hz), and Gamma

([32 Hz). Connectivity networks were constructed with

time-frequency based phase synchrony measures proposed

by Aviyente et al. (2011) applied to the filtered signals.

Network measures

We used the brain connectivity toolbox (BCT) (Rubinov

and Sporns 2010) running in MATLAB to calculate each of

the following network measures:

• The clustering coefficient describes the ratio between

the number of existing edges between the nearest

neighbor of the node and the maximum number of

possible edges (Stam and Reijneveld 2007). In the case

of the weighted network, the clustering coefficient is

calculated as follows:

Ci ¼
1

SiðDi � 1Þ
X

j; k

wij þ wik

2
aijaikajk; ð1Þ

where the parameter SiðDi � 1Þ normalizes the clus-

tering coefficient to be in the range 0\CW
i \1. aij; aik,

and ajk all have a value of one in a case of connection
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between two nodes. The mean clustering coefficient is

defined as follows:

C ¼ 1

N

XN

j¼1

Cj: ð2Þ

• The characteristic path length is the average shortest

path length that connects every pair of nodes. (Strogatz

2001; Achard and Bullmore 2007). The characteristic

path length contains information about connection

strength between node i and node j (Rubinov and

Sporns 2010), and is defined as follows:

Li ¼
1

NðN � 1Þ
X

i; j 2 N; i 6¼ j

di;j; ð3Þ

Furthermore, the mean characteristic path length is

equal to

L ¼ 1

N

X

i2N
Li: ð4Þ

• The small-worldness describes the optimal organization

in the network that would provide the most efficient

communication between nodes (Bassett and Bullmore

2006). The small-world network should satisfy two

conditions:

c ¼ C

Crandom

� 1; ð5Þ

where c is the normalized clustering coefficient, and

k ¼ L

Lrandom
� 1; ð6Þ

where k is the normalized characteristic path length.

Crandom is the mean clustering coefficient of the random

network, and Lrandom is mean characteristic path length

of the random network. Crandom and Lrandom are calcu-

lated as the average mean clustering coefficient and

average mean characteristic path length from the 100

random networks generated using the Markov-chain

algorithm (Sporns and Zwi 2004; Maslov and Sneppen

2002). Finally, we can say that a network has small-

world properties if its ratio,

S ¼ C=Crandom

L=Lrandom
; ð7Þ

is higher than one (S[ 1).

Data analysis

To examine differences in swallowing brain networks

based on volume (1/5/10 ml) and task (neutral/distraction),

we fit a series of linear mixed models with each network

characteristic as the dependent variable (i.e. volume, task

and volume by task interaction) as fixed effects of interest,

and a participant random effect to account for multiple

measurements from the same participant. We appropriately

constructed means contrasts to make pairwise comparisons

between different volumes for a given task, and between

different tasks for a given volume. Next, to examine

whether participant age was associated with network

characteristics, we fit another set of linear mixed models

stratified by task and volume. We used each network

characteristic as the dependent variable, and we used age as

the fixed-effect independent variable, and a participant

random effect to account for multiple trials of the same

participant. We used SAS� version 9.3 (SAS Institute, Inc.,

Cary, NC, USA) for all statistical analysis.

Results

We analyzed 900 swallows of various volumes in the no-

distraction condition and during the distraction. Results of

the network measures are presented with the mean values

Fig. 1 The experimental procedure used in this study
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(± standard deviation) of the network measure on the

vertical axis, and the frequency bands on the horizontal

axis. Results are presented in colored bars that are paired

based on bolus volume (blue = 1 ml, red = 5 ml, green = 10

ml) and experimental conditions (left bar = no-distraction

condition, right bar = distraction condition). Black dots on

the plots represent statistically significant differences

between no-distraction condition swallowing and swal-

lowing with distraction within the frequency bands of

interest.

Distraction effects on brain networks

Figure 2 summarizes the mean value of the clustering

coefficient for various bolus volumes consumed during the

two different states. No-distraction swallowing of all bolus

sizes (1, 5, and 10 ml) exhibited a higher clustering coef-

ficient than swallowing with distraction in the Theta,

Alpha, and Beta frequency bands ðp\0:03Þ. Also, 10 ml

no-distraction swallowing had a higher clustering coeffi-

cient than 10 ml swallowing with distraction in the Gamma

frequency band ðp\0:01Þ.
Figure 3 summarizes the mean value for characteristic

path length for various bolus volumes consumed during the

two different states. The no-distraction swallowing showed

significantly higher characteristic path length than did

swallowing with distraction during 5 ml swallowing within

the Delta, Theta, and Beta frequency bands ðp\0:02Þ.

Also, the no-distraction swallowing showed higher char-

acteristic path length than did swallowing with distraction

during 10 ml swallowing within all frequency bands of

interest.

Figure 4 summarizes the mean value for the small-world

parameter for various bolus volumes consumed during the

two different states. Swallowing with distraction for the all

bolus volumes (1, 5, and 10ml) showed a higher small-world

parameter than did no-distraction swallowing in the Beta

frequency band ðp\0:03Þ. In the Delta frequency band, 5ml

swallowing with distraction had a higher small-world

parameter than did 5 ml no-distraction swallowing

ðp\0:01Þ. Also, in the Alpha frequency band 10 ml swal-

lowing with distraction had a higher small-world parameter

than did the 10 ml no-distraction swallowing ðp\0:01Þ.

Volume effects on brain networks

In the Beta frequency band during no-distraction swal-

lowing, 1 ml swallowing showed a higher clustering

coefficient than did the 5 ml swallowing ðp ¼ 0:04Þ. Dur-
ing swallowing with distraction, 1 ml swallowing showed a

higher clustering coefficient than did the 5 ml swallowing

within all frequency bands of interest ðp\0:05Þ. Also,

during swallowing with distraction, 1 ml swallowing

showed a higher characteristic path length than did 5 ml

swallowing within the Delta, Theta, and Alpha frequency

bands ðp\0:05Þ.

Fig. 2 The value of mean clustering coefficient, C, for different bolus volumes and for different frequency bands. The black dots show whether

there is significant statistical difference between no-distraction swallowing and swallowing with distraction
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The 1-ml swallowing with distraction showed a higher

clustering coefficient than did the 10-ml swallowing with

distraction within all frequency bands of interest, while the

1-ml no-distraction swallowing had a lower clustering

coefficient than did the 10-ml no-distraction swallowing

ðp\0:05Þ. The 1-ml no-distraction swallowing showed a

Fig. 3 The value of mean characteristic path length, L, for different bolus volumes and for different frequency bands. The black dots show

whether there is significant statistical difference between no-distraction swallowing and swallowing with distraction

Fig. 4 The value of mean small-worldness, S, for different bolus volumes and for different frequency bands. The black dots show whether there

is significant statistical difference between no-distraction swallowing and swallowing with distraction
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lower characteristic path length than did 10 ml no-dis-

traction swallowing within the Beta and Gamma frequency

bands ðp\0:01Þ. The 1-ml swallowing with distraction

showed a higher characteristic path length than did the

10-ml no-distraction swallowing within the Theta and

Alpha frequency bands ðp\0:01Þ. Furthermore, in the

Gamma frequency band during the no-distraction swal-

lowing and the swallowing with distraction, the 1-ml

swallowing showed a higher small-world parameter than

did the 5-ml swallowing ðp\0:01Þ. Also, 1 ml swallowing

with distraction had a lower small-world parameter than

did 10 ml swallowing with distraction in the Theta fre-

quency band ðp ¼ 0:02Þ.
During no-distraction swallowing, 5 ml swallowing had

a lower clustering coefficient and characteristic path length

than did 10 ml swallowing within the Alpha, Beta, and

Gamma frequency bands ðp\0:05Þ. Also, during no-dis-

traction swallowing 5 ml swallowing had a lower small-

world parameter than did the 10-ml swallowing within the

Theta and Gamma frequency bands ðp\0:01Þ.

Age effects on brain network

Last, we investigated age dependence on the swallowing

characteristics during both no-distraction swallowing and

swallowing with distraction. Results did not depend on the

subject’s age in any of the frequency bands of interest for

both swallowing conditions.

Discussion

Our hypothesis, that the brain network is different for no-

distraction swallowing compared with the brain network

constructed during swallowing with distraction, was sup-

ported by our results. The significant statistical differences

between no-distraction swallowing and swallowing with

distraction are described for each frequency band of interest:

• Delta and Theta: Our results showed differences in the

Delta and Theta frequency bands between no-distrac-

tion swallowing and swallowing with distraction for the

clustering coefficient and characteristic path length.

Changes in the lower EEG frequencies (i.e. Delta and

Theta) have been previously reported as important in

the process of selective attention to both auditory and

visual stimuli (Lakatos et al. 2008). Also, one EEG

study combined with fMRI confirmed that sensory

cortices such as the auditory and visual cortices are

associated with the activation of the Delta and Theta

EEG frequency bands (Jann et al. 2010). This means

that changes in the Delta and Theta frequency bands

(i.e, higher clustering coefficient, higher characteristic

path length, and lower small-worldness for no-distrac-

tion swallowing in comparison with swallowing with

distraction) can be attributed to the changes in the

sensory cortices produced by auditory and visual

stimulation during swallowing with distraction task.

Furthermore, our results also showed changes in the

Delta and Theta frequency bands between the swal-

lowing of various bolus volumes. Previous studies have

shown that the Delta and Theta frequency bands are

activated during sensory stimulation (Yagyu et al.

1998). The swallowing process involves different types

of sensory stimulation such as smell, taste, and touch in

the oral areas, all of which have been shown to lead to

subsequent alterations in swallowing motor activation

patterns (Bastian and Riggs 1999). The various bolus

volumes used in this study differently affected sensory

receptors responsible for touch, kinesthesia, and pro-

prioception in the oral cavity. Therefore, changes in the

Delta and Theta frequency bands between swallowing

of the various bolus volumes may be attributable to the

effects of altered afferent activity entering the swal-

lowing brain networks caused by variations in bolus

volume.

• Alpha: The Alpha frequency band is the most dominant

EEG component for the conscious person. Studies

showed that the activity of the Alpha frequency band is

less prominent when visual stimulation is present

(Klimesch 1999). Furthermore, previous studies have

reported differences in the Alpha waveforms between

attended and unattended stimuli (Marrufo et al. 2001;

Yamagishi et al. 2003). Our results are in agreement

with these findings by showing significant differences

between no-distraction swallowing and swallowing

with distraction for the characteristic path length and

the small-world parameter in the Alpha frequency band.

Thus, we can attribute these statistical differences to the

different attentional demands of the no-distraction and

distraction conditions while swallowing. In addition,

our results showed significant statistical differences in

the Alpha frequency band between swallowing of

various bolus volumes. Studies have shown that EEG

waveforms also exhibit changes in the Alpha frequency

band during sensory stimulation (Klemm et al. 1992;

Lorig et al. 1991). Therefore, changes between swal-

lowing of different bolus volumes can be attributed to

the changes in the activation of the sensory, kinesthetic,

and proprioceptive receptors and pathways introduced

by the variously sized stimuli employed.

• Beta: Several previous studies have suggested that the

Beta EEG frequency band is directly related to attention

during sensorimotor tasks (Murthy and Fetz

1992, 1996; Feige et al. 2000; Sanes and Donoghue

1993; Kristeva-Feige et al. 1993). Our results
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demonstrated changes in the Beta frequency band

between no-distraction swallowing and swallowing

with distraction for the small-world parameter. Swal-

lowing is a complex process that involves activation of

a number of sensory receptors, as well as muscle

activity in both the head and neck. Therefore, changes

in the Beta EEG frequency band during swallowing

with the distraction could be attributed to the realloca-

tion of cognitive sources during this task (Sanes and

Donoghue 1993; Kristeva-Feige et al. 1993).

• Gamma: A number of studies reported changes in the

Gamma EEG frequency band during various motor

activities and muscle recruitment (Herrmann and

Mecklinger 2001; Niedermeyer and da Silva 2005;

Kristeva-Feige et al. 2002). Brodsky et al. (2012b)

showed that consumption of stimuli during distraction

may alter swallowing activity. Naturally, altered swal-

lowing neural activity may also cause changes in the

muscular recruitment involved in performing the swal-

lowing act (Milnik et al. 2013). Therefore, changes in

the Gamma EEG frequency band during swallowing

with the distraction could be attributed to motor

changes introduced by compromised attention. In

addition, we found significant differences in the

Gamma frequency band between the swallowing of

the various bolus volumes. Alteration of bolus volume

influences the kinematics of oral and pharyngeal

activity, upper esophageal sphincter opening, and

hyolaryngeal excursion during swallowing, all of which

are motor events (Logemann 2006; Perlman et al. 1993;

Massey 2006). Therefore, changes in the Gamma

frequency band can be attributed to the changes in

motor activity in response to manipulation of bolus

volume that various bolus volumes produce.

• Limitations of the present study: A limitation of this

study is that the order of consumed stimuli was

specified (i.e., 1 ml first, 5 ml second, 10 ml third), as

well as the order of conditions (i.e. no-distraction

swallowing first, then swallowing with the distraction).

In order to overcome this limitation, future studies

could randomize the order of the various manipulations

of swallowing conditions. Furthermore, future studies

could also investigate the influence of distraction on the

swallowing of the different stimuli (i.e. nectar-thick

apple juice, or solid food).

Conclusion

In this study we investigated the differences between the

brain networks formed during swallowing of three bolus

volumes in a no-distraction condition and during

distraction. Swallowing EEG signals were collected from

15 healthy male adults aged 18–35. Each participant per-

formed ten 1 ml swallows, ten 5 ml swallows, and ten 10

ml swallows in both conditions. Our results showed a

difference between no-distraction swallowing and swal-

lowing with distraction in all frequency bands of interest

(i.e., Delta, Theta, Alpha, Beta, and Gamma). In addition,

our results showed differences in the swallowing of boluses

of various volumes in all frequency bands of interest.
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