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Abstract Convergent evidence from task-based func-

tional magnetic resonance imaging (fMRI) studies sug-

gests a posterior-to-anterior shift as an adaptive

compensatory scaffolding mechanism for aging. This

study aimed to investigate whether brain functional

dynamics at rest follow the same scaffolding mechanism

for aging using a large Chinese sample aged from 22 to

79 years (n = 277). We defined a probability of brain

regions being hubs over a period of time to characterize

functional hub dynamic, and defined variability of the

functional connectivity to characterize dynamic functional

connectivity using resting-state fMRI. Our results revealed

that both functional hub dynamics and dynamic functional

connectivity posited an age-related posterior-to-anterior

shift. Specifically, the posterior brain region showed

attenuated dynamics, while the anterior brain regions

showed augmented dynamics in aging. Interestingly, our

analysis further indicated that the age-related episodic

memory decline was associated with the age-related

decrease in the brain functional dynamics of the posterior

regions. Hence, these findings provided a new dimension

to view the scaffolding mechanism for aging based on the

brain functional dynamics.

Keywords Brain functional dynamics � Functional
connectivity � Brain functional network � Scaffolding
mechanism � Resting-state functional magnetic resonance

imaging

Introduction

The Scaffolding Theory of Aging and Cognition (STAC)

posits that age-related brain functional alternations operate

under a compensatory mechanism, that is, less engagement

of posterior (i.e., occipital and temporal) brain regions but

greater involvement of anterior (i.e., frontal) brain regions

when performing tasks (Goh and Park 2009; Park and

Reuter-Lorenz 2009; Reuter-Lorenz and Park 2014; Sala-

Llonch et al. 2015). Indeed, it is observed that task-induced

functional activation shifts from occipitotemporal to frontal

brain regions in aging population, suggesting the presence

of adaptive scaffolding for aging brain in the posterior-to-

anterior direction (Cabeza et al. 2004a; Davis et al. 2008;

Ansado et al. 2012; Alperin et al. 2015). Specifically,

during the encoding or retrieval stage of episode memory

tasks, older subjects as compared to young subjects

demonstrate decreased activation in the occipitotemporal

region but increased activation in the frontal region

(Cabeza et al. 2004a; Park et al. 2013). Furthermore, an

age-related increase of frontal activation is positively cor-

related with episodic memory performance (Davis et al.

2008), suggesting that the aging brain attempts to recruit

additional anterior neural substrates to alleviate episodic

memory decline in aging.
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Complementary to task-based functional magnetic res-

onance imaging (fMRI), resting-state fMRI (rs-fMRI) has

increasingly been used in aging studies to further under-

stand complex functional organization of aging brain via

synchronization of resting-state blood-oxygen-level-de-

pendent (BOLD) signals among brain regions (Buckner

et al. 2009; Ferreira et al. 2015; La Corte et al. 2016).

BOLD signal during rest or passive fixation has the

advantage of minimizing task-evoked BOLD fluctuations,

in the sense that brain regions with activation signal during

tasks would have deactivation signal during rest (Van Dijk

et al. 2010). Hence, it is not surprising that rs-fMRI studies

reveal age-related brain functional connectivity alterations

in the opposite direction as seen in task-fMRI studies, that

is, an anterior-to-posterior direction (Sala-Llonch et al.

2015). Specifically, decreasing functional connectivities

among frontal regions, and increasing functional connec-

tivities among occipitotemporal regions and between the

occipitotemporal and frontal regions are all as a function of

age (Onoda et al. 2012; Ferreira et al. 2015; Lee et al.

2015). Beyond the examination of functional connectivity

in aging, increasing studies have focused on brain hubs for

understanding aging brain functional organization, mainly

because they are densely connected with other brain

regions. They form a central backbone of brain functional

networks for global brain communication and play a crit-

ical role in the brain’s integrative processes supporting fast

and efficient communication across brain regions (Buckner

et al. 2009; van den Heuvel and Sporns 2013; Dai et al.

2014; Wang et al. 2015; Lee et al. 2016). Similar to the

pattern of age-related alteration in the functional connec-

tivity, degree centrality of hubs in the frontal region also

shows a reduction in aging (Drzezga et al. 2011; Tomasi

and Volkow 2012; Agosta et al. 2013). Importantly, both

the anterior-to-posterior shift of the resting brain and the

posterior-to-anterior shift of the task-functional brain

reflect consistency of the complementary mechanisms for

aging (Buckner et al. 2008, 2009). To compensate for aging

neurodegeneration, the frontal region is more widespread

engaged in performing tasks partly because of the reduc-

tion in its centrality (Grady 2012; Lee et al. 2015). In

contrast, increased functional connectivities between pos-

terior and prefrontal brain regions are detrimental to epi-

sodic memory in older adults (Gardini et al. 2015; Zhang

et al. 2016). These findings further suggest for compen-

satory mechanisms of the resting brain in aging.

However, the brain is not static even at rest, but

undergoes rapid fluctuation between different functional

states (Allen et al. 2014; Hansen et al. 2015). Brain

dynamics during rest are related to processing efficiency

(de Pasquale et al. 2016) and cognitive demand (Cole et al.

2013, 2016). Dynamic functional connectivity in the rest-

ing brain reflects the switching of real-time cognitive states

associated with neurophysiology (Kucyi and Davis 2014;

Calhoun et al. 2014; Wilson et al. 2015). Rapidly switching

functional connections is beneficial for cognitive func-

tioning (Cocchi et al. 2013; Cole et al. 2013; Armbruster-

Genc et al. 2016). As such, the longer the rs-fMRI acqui-

sition is, the more the brain should be treated as dynamic,

which is a current limitation of most rs-fMRI studies in

aging (Hutchison et al. 2013a, b; Calhoun et al. 2014).

Accordingly, based on the STAC model, one would expect

that the frontal region becomes more flexible to compen-

sate for less flexibility of the posterior region and cognitive

functioning in aging. It is, therefore, important to under-

stand the role of brain functional dynamics and its contri-

bution to cognitive functioning in aging.

The present study aimed to study functional dynamics of

aging brain using a large Chinese sample aged from 22 to

79 years (n = 277). Given the aforementioned importance

of hubs and functional connectivity in aging, this study

aimed to examine dynamics of these brain functional net-

work measures in relation with age, which could poten-

tially provide a new dimension to view the STAC model.

For this, we defined the probability of a brain region being

a hub in a certain period of time to assess hub dynamic, and

defined the variability of functional connectivity over a

period of time to assess dynamic of the functional con-

nectivity. Based on the compensatory idea of the STAC

model, we expected that as age increased, frontal brain

hubs would lose their central and stable roles, which would

then be compensated by engaging more brain regions as

hubs in the occipital region. This could be reflected by a

decreased hub probability in the frontal region and an

increased hub probability in the occipital lobe. This could

also be reflected by more variability of the functional

connectivity in the frontal regions to adapt to neuronal

challenges in aging. We further tested our hypothesis by

examining the relationship between episodic memory per-

formance and the brain functional dynamics for the inter-

pretation of brain functional dynamics in aging, since

decreased episodic memory is a well-known marker for

aging (Lee et al. 2013; Pudas et al. 2013; Salami et al.

2016; Zhang et al. 2016).

Methods

Subjects

This study was approved by the National University of

Singapore Institutional Review Board and all participants

provided written informed consent prior to participation.

Three hundred and forty-three healthy Singaporean Chi-

nese volunteers aged 21–80 years were recruited (173

males, 170 females). Volunteers with the following
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conditions were excluded: (1) major illnesses/surgery

(heart, brain, kidney, and lung surgery); (2) neurological or

psychiatric disorders; (3) learning disability or attention

deficit; (4) head injury with loss of consciousness; (5) non-

removable metal objects on/in the body such as cardiac

pacemaker; (6) diabetes or obesity; and (7) Mini-Mental

State Examination (MMSE) score less than 24 (Ng et al.

2007). In addition, this study also excluded subjects who

showed large head motion during rs-fMRI scanning with

framewise displacement greater than 0.5 mm (Power et al.

2012). This resulted in the inclusion of 277 subjects from

22 to 79 years (132 males, 145 females). The demographic

information is reported in Table 1.

MRI acquisition and pre-processing

All subjects were scanned using a 3T Siemens Magnetom

Trio Tim scanner with a 32-channel head coil at the

Clinical Imaging Research Centre of the National Univer-

sity of Singapore. The image protocols were: (1) high-

resolution isotropic T1-weighted Magnetization Prepared

Rapid Gradient Recalled Echo (MPRAGE; 192 slices,

1 mm thickness, sagittal acquisition, field of view

256 9 256 mm, matrix 256 9 256, repetition time

2300 ms, echo time 1.90 ms, inversion time 900 ms, flip

angle 9�); (2) isotropic axial rs-fMRI imaging protocol

(single-shot echo-planar imaging; 48 slices with 3 mm

slice thickness, no inter-slice gaps, matrix 64 9 64, field of

view 192 9 192 mm, repetition time 2300 ms, echo time

25 ms, flip angle 90�, scanning time 8 min). During the rs-

fMRI scan, the subjects were asked to close their eyes.

For the T1-weighted images, gray matter (GM), white

matter (WM), and cerebral spinal fluid (CSF) were auto-

matically segmented using FreeSurfer (Fischl et al. 2002).

The T1-weighted image was then transformed to the

Automated Anatomical Labelling (AAL) atlas (Tzourio-

Mazoyer et al. 2002) via large deformation diffeomorphic

metric mapping (LDDMM) (Du et al. 2011; Tan and Qiu

2016). The parcellation information of the AAL atlas (90

cerebrum and 26 cerebellum regions) was used as regions

of interest (ROIs) in the resting-state fMRI analyses below.

The rs-fMRI data were pre-processed with slice timing,

motion correction, skull stripping, band-pass filtering

(0.01–0.08 Hz), and grand mean scaling of the data (to

whole brain modal value of 100). Framewise displacement

(head motion characteristics) was computed, and subjects

with rs-fMRI data of framewise displacement greater than

0.5 mm were excluded from this study as mentioned above

(Power et al. 2012). Then, the six parameters from head

motion, CSF, and WM signals were regressed out from the

rs-fMRI signal. Temporal band-pass filtering

(0.01–0.08 Hz) was applied. Finally, the rs-fMRI data were

transformed to the AAL atlas based on the LDDMM

transformation between the corresponding T1-weighted

image and the AAL atlas (Du et al. 2011; Tan and Qiu

2016).

Functional network construction and its dynamics

To construct brain network graphs, the AAL atlas was

employed to parcellate the brain into 90 cerebrum and 26

cerebellum regions (n = 116). Dynamic functional net-

work analysis was performed for each subject using a

sliding-time window approach with the window size of 15

TR (34.5 s) (Kucyi et al. 2013; Zalesky and Breakspear

2015). The time interval of the two subsequent time win-

dows was 1 TR, resulting 192 time windows for each

subject. Comparisons between window sizes suggest that

cognitive states can be correctly identified with as short as

30–60 s of data (Shirer et al. 2012), with topological

assessments estimated to stabilize for window lengths

greater than 30 s (Jones et al. 2012). Variation in window

size between 30 s and 2 min had little effect on functional

brain dynamics (Allen et al. 2014). Within each window, a

116 9 116 weighted brain network graph matrix was built

using Pearson correlation analysis on the time series of two

Table 1 Participant demographics

20 s (n = 35) 30 s (n = 22) 40 s (n = 24) 50 s (n = 33) 60 s (n = 96) 70 s (n = 67)

Age (years) 25.63 ± 2.21 33.45 ± 2.20 44.04 ± 2.77 54.85 ± 3.00 64.54 ± 2.45 73.07 ± 2.63

Gender (M/F) 16/19 11/11 9/15 12/21 45/51 39/28

Education 4.60 ± 0.55 4.82 ± 0.39 3.54 ± 1.14 3.33 ± 0.89 2.74 ± 1.32 2.48 ± 1.58

MMSE 29.17 ± 1.01 28.68 ± 0.95 27.96 ± 1.43 28.18 ± 1.42 27.00 ± 1.51 26.67 ± 1.69

Education levels were quantified in a scale from 0 to 5. 0 = no education; 1 = primary school level; 2 = secondary school level; 3 = Sin-

gapore-Cambridge General Certificate of Education Ordinary Level (‘O’ level)/Singapore-Cambridge General Certificate of Education Normal

(Academic) Level (‘N’ level); 4 = Pre-University/Diploma/ITE/Certificate; 5 = Degree and above. For age, education level and MMSE score,

the mean ± SD was shown

MMSE Mini-Mental State Examination, SD standard deviation
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brain regions. We preserved only positive correlations in

each network graph (Fair et al. 2009), and only considered

the network graphs with sparsity ranging from 0.1 to 0.4

for the following analysis (Achard and Bullmore 2007).

Functional hub probability (dynamics)

Hubs in individual graphs were identified using degree-

based approach (Sporns et al. 2007; van den Heuvel and

Sporns 2011; Zuo et al. 2012; Power et al. 2013). The

degree centrality of each region in a single graph was

computed as the number of edges connected to the region

using brain connectivity toolbox (Rubinov and Sporns

2010). Under each time window, hubs were identified as

brain regions with degree centrality greater than one stan-

dard deviation above the mean value (Buckner et al. 2009).

Functional hub probability was evaluated by the percent-

age of brain region acting as a hub over time and it was

used to indicate functional hub dynamics. Thus, brain

regions with a lower hub probability suggest less stability

(or more dynamic) of being a hub.

Functional connectivity

We evaluated both static and dynamic functional connec-

tivity. Static functional connectivity between each pair of

regions was computed as the functional connectivity of

these two regions averaged over time (Allen et al. 2014).

Its variance over time (coefficient of variation, CV = SD/

mean), dynamic functional connectivity, was computed to

indicate the temporal fluctuation of functional connectivity

between two brain regions (Shen et al. 2015).

To provide threshold-independent assessment on the

hub probability as well as static and dynamic functional

connectivity, area under curve (AUC) was computed as a

sum of each measure over the network sparsity ranging

from 0.1 to 0.4 (He et al. 2009; Wang et al. 2011). In

addition, to streamline the number of statistical analyses

needed to investigate aforementioned hypothesis, we

grouped the anatomical regions of our network into a

coarser level of anatomical groups. The 116 brain regions

were classified into 12 anatomical groups (see the grouping

in Fig. 1 and column 2 of Table S1 in the Supplementary

Material) that have been suggested as major structures with

greater age-related effects (Andrews-Hanna et al. 2007;

Vergun et al. 2013; Geerligs et al. 2014; Lee et al. 2015).

The network metrics were averaged across the brain

structures in each anatomical group for statistical testing

below.

Cognitive tasks

The computerized language-independent cognitive tests of

the Cambridge Neuropsychological Test Automated Bat-

tery (CANTAB, Cambridge Cognition, Cambridge, UK)

(Luciana and Nelson 2002) were employed to test episodic

memory function. Participants were screened on two motor

and learning tasks to verify the ability to follow simple

instructions. As ours and other previous studies showed

prominent age-related decline in the performance of Paired

Associates Learning (PAL) task (Egerházi et al. 2007;

Junkkila et al. 2012; Lee et al. 2013, 2016), this study,

therefore, focused on this episodic memory task to examine

the relationship between cognitive performance and func-

tional brain dynamics.

In detail, PAL is a visuospatial associative learning task

(Egerházi et al. 2007). Participants are presented with six

white squares arranged in a circle. Patterns are sequentially

presented in each of the six squares for 3 s in a random

order. Subsequently, the same patterns are represented in

the center of the screen in a different order. Participants are

instructed to select the square indicating the original

location of the pattern. No time limit is enforced. The

number of patterns presented increases if participants cor-

rectly locate the original location of every pattern on the

first attempt. In the first stage, only one pattern is

Fig. 1 Anatomical parcellation. DLPFC dorsolateral prefrontal cor-

tex, MPFC medial prefrontal cortex, ACC anterior cingulate cortex,

PCC posterior cingulate cortex, PCu precuneus, SMC sensorimotor

cortex, LPC lateral parietal cortex, LOC lateral occipital cortex, MOC

medial occipital cortex, LTL lateral temporal lobe, MTL medial

temporal lobe

3668 Brain Struct Funct (2017) 222:3665–3676

123



presented, increasing to two patterns in stage 2, three pat-

terns in stage 3, six patterns in stage 4, and finally eight

patterns in stage 5. If participants fail to recall the locations

correctly, the patterns in that stage are represented for up to

ten attempts per stage. Failure to recall the correct order

after ten attempts results in the termination of the task. To

evaluate participant’s episodic memory ability, the first

trial memory score was utilized. The first trial memory

score was calculated as the number of objects correctly

associated with their locations in the first attempt for each

trial, summed across the stages completed. The full score

for the task is 26 points. A higher score indicates better

episodic memory ability.

Statistical analysis

Multiple regression models were employed to examine age

effects on the hub probability of 116 AAL regions. In the

full regression model, linear and quadratic terms of age

were entered as main factors and the hub probability as the

dependent variable. If the quadratic term was not signifi-

cant, a reduced regression model was employed with only

the linear term of age as main factor. Gender and education

level were considered as covariates. False discovery rate

(FDR) was carried out for correcting the multiple com-

parisons of the 116 brain regions. Second, the same

regression model was performed to the hub probability, and

static and dynamic functional connectivity at the level of

the 12 anatomical groups (see grouping in Fig. 1 and col-

umn 2 of Table S1 in the Supplementary Material). FDR

was carried out for correction for multiple comparisons at

the level of the 12 anatomical groups.

To determine the relationship between the brain network

measures and episodic memory performance, the age effect

was examined on episodic memory using linear regression

analysis between age and the first trail memory score of

PAL, while controlling for gender and educational level.

Subsequently, the same analysis was employed to assess

the association between brain network measures and the

first trail memory score of PAL. To reveal the neural

substrates shifting from posterior to anterior regions in

cognitive aging, the hub probability was averaged over the

posterior regions (i.e., LTL, MTL, LOC, and MOC) or the

anterior regions (i.e., DLPFC, MPFC, ACC/Insula, PCC/

PCu, SMC, and LPC). Here, the grouping of the anterior

and posterior regions was based on evidence of the pro-

posed posterior-to-anterior shift in aging model (Davis

et al. 2008) and on the similarity of age-related brain

functional adaptation in these regions (Sala-Llonch et al.

2015). Likewise, the averaged values in the anterior and

posterior regions were also computed for the static and

dynamic functional connectivity.

Results

Age effects on functional hub probability

Figure 2a shows an example of the functional hub proba-

bility for individual subjects under the sparsity of the

functional network of 0.2. Figure S1 in the Supplementary

Material illustrates similar examples when the sparsity of

the functional network is at 0.1, 0.15, 0.25, 0.3, 0.35, and

0.4. Figure 2b illustrates examples of the functional hub

probability on the three-dimension brain atlas.

For the hub probability of 116 individual brain

regions, no quadratic age effects were identified. How-

ever, linear regression analysis revealed a significant

age-related decrease of the hub probability in the ante-

rior brain regions, including bilateral superior, middle

and inferior frontal gyrus, precentral gyrus, supplemen-

tary motor area, anterior and middle cingulate gyrus, as

well as right insula, inferior parietal lobule, supra-

marginal gyrus, etc. (see details in Table S2 of the

Supplementary Material and Fig. 3; p\ 0.05, FDR cor-

rected). Regions located in the posterior brain regions,

on the other hand, showed a significant age-related

increase of hub probability, including bilateral superior,

middle, and inferior occipital gyrus, cuneus, calcarine

sulcus, middle temporal gyrus, as well as left inferior

temporal gyrus, fusiform gyrus, parahippocampus, mid-

dle temporal pole, etc. (see details in Table S2 of the

Supplementary Material and Fig. 3; p\ 0.05, FDR cor-

rected). These results suggest that the frontal regions are

more flexible for being hubs and are dynamically

changing over time in aging, which is in contrast of the

posterior brain regions.

The statistical analysis was further simplified by

grouping into 12 brain regions (see the brain structure

grouping in column 2 of Table S1 in the Supplementary

Material) for examining the STAC model. Our results

revealed linear age effects but not quadratic age effects

(p\ 0.05, FDR corrected). Linear effects showed a

decreased hub probability (an increased functional hub

dynamic) in the anterior brain region and an increased hub

probability (a decreased functional hub dynamic) in the

posterior brain regions as age increases. Specifically, sig-

nificant negative effects of age were observed on functional

hub probability of the anterior brain regions, including

DLPFC, ACC/Insula, PCC/PCu, LPC, and SMC, as well as

subcortical regions (see Table 2; p\ 0.05, FDR corrected).

In contrast, significant positive effects of age on the

functional hub probability were revealed in the posterior

brain regions, including LTL, MTL, LOC, and MOC (see

Table 2; p\ 0.05, FDR corrected). Again, these findings

showed more flexibility of the anterior regions but less
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flexibility of the posterior regions in aging, supporting the

idea of the posterior-to-anterior shift in aging.

Age effects on static functional connectivity

To examine age effects on static functional connectivity,

regression analysis revealed 34 out of 66 functional con-

nections (i.e., according to the 12 anatomical groups) that

exhibited significant linear age effects but no significant

quadratic age effects. Among these 34 functional connec-

tions, 28 of them showed age-related decreases in static

functional connectivity, while 6 of them showed age-re-

lated increases in static functional connectivity (see

Fig. 4a; p\ 0.05, FDR corrected). Specifically, static

functional connectivities with age-related decreases were

predominantly within the anterior brain regions (within

DLPFC, PCC/PCu, SMC, and between DLPFC–ACC/

Insula, DLPFC–PCC/PCu, DLPFC–LPC, ACC/Insula–

PCC/PCu, ACC/Insula–SMC, ACC/Insula–LPC, PCC/

PCu–SMC), between anterior and posterior regions (be-

tween DLPFC–LTL, DLPFC–MTL, PCC/PCu–LTL,

SMC–LTL, SMC–MTL, SMC–MOC, LPC–LTL, and

LPC–MTL), as well as between anterior and subcortical/

cerebellar regions, which is in line with existing literature

(Onoda et al. 2012; Ferreira et al. 2015; Lee et al. 2015).

Moreover, static functional connectivities with age-related

decreases were also identified in connections within MOC,

within subcortical, and between subcortical and cerebellar

regions. On the other hand, age-related increase of static

functional connectivity was located within the posterior

regions (between LTL–MTL and MTL–MOC), between

MPFC and posterior regions (LOC and MOC), as well as

between posterior and cerebellar regions. These findings

are consistent with literature, suggesting that static resting

Fig. 2 Functional hub probability of individual subjects. a Functional
hub dynamics of individual subjects at the sparsity level of the brain

functional network of 0.2. x-axis represents age of individual subjects,

while y-axis represents individual anatomical structures. Color

encodes the hub probability. The higher probability indicates that

the node more frequently plays a role of a functional hub over time,

which is a stable hub. b Functional hub dynamics of selected subjects

mapped on the three-dimension brain atlas. The nodes are located

according to their centroid stereotaxic coordinates. The color of each

node represents its hub probability
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brain shows the anterior-to-posterior shift in aging (Onoda

et al. 2012; Ferreira et al. 2015; Lee et al. 2015).

Age effects on dynamic functional connectivity

In examining age effects on dynamic functional connec-

tivity, quadratic age effects was revealed in 5 out of 66

connections (Figure S2 in the Supplementary Material).

These were the dynamic functional connectivities between

MTL and DLPFC (b = -0.239; p = 0.030, FDR cor-

rected), between MTL and SMC (b = -0.215; p = 0.050,

FDR corrected), between subcortical and SMC

(b = -0.245; p = 0.031, FDR corrected), between cere-

bellum and PCC/PCu (b = -0.219; p = 0.045, FDR cor-

rected), as well as between cerebellum and SMC

(b = -0.284; p\ 0.001, FDR corrected). Figure S2 in the

Supplementary Material illustrates the scatter plots of these

dynamic functional connectivities in relation with age.

Moreover, regression analysis also found linearly increased

age effects on 9 of 66 dynamic functional connectivities

within the anterior regions (within DLPFC, SMC, and

between DLPFC–ACC/Insula, DLPFC–LPC, ACC/Insula–

PCC/PCu, ACC/Insula–SMC), as well as between SMC

and LTL, within MOC, and between ACC/Insula and

Fig. 3 Age effects on functional hub probability. Nodes are located

according to their centroid stereotaxic coordinated. The color of each

node represents its standardized b value from the linear regression

analysis, and the range of b value is from -0.46 to 0.36. The nodes

revealed that significant age effects are shown in bigger size

(p\ 0.05, FDR corrected)

Table 2 Age effects on

functional hub probability
Regions Standardized b value (p value)

Dorsolateral prefrontal cortex (DLPFC) -0.324 (0.000)**

Medial prefrontal cortex (MPFC) 0.095 (0.195)

Anterior cingulate cortex/Insula (ACC/Insula) -0.264 (0.000)**

Posterior cingulate cortex/precuneus (PCC/PCu) -0.203 (0.005)**

Sensorimotor cortex (SMC) -0.327 (0.000)**

Lateral parietal cortex (LPC) -0.180 (0.015)*

Lateral temporal lobe (LTL) 0.228 (0.002)**

Medial temporal lobe (MTL) 0.163 (0.026)*

Lateral occipital cortex (LOC) 0.360 (0.000)**

Medial occipital cortex (MOC) 0.230 (0.002)**

Subcortical region -0.184 (0.012)*

Cerebellar lobe 0.038 (0.608)

The results were based on the linear regression model, with gender and education as covariates. The

positive coefficient (i.e., b value) shows age-related increase of hub probability, indicating that hubs in

posterior regions become more stable in aging. However, the negative coefficient shows age-related

decrease of hub probability, indicating that hubs in anterior and subcortical regions become more flexible in

aging

* p\ 0.05 (FDR corrected); ** p\ 0.01 (FDR corrected)
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subcortical regions. In contrast, linearly decreased age

effects were observed on 27 of 66 dynamic functional

connectivities (see Fig. 4b; p\ 0.05, FDR corrected)

within the posterior regions (between LTL–LOC, MTL–

LOC, and MTL–MOC), between posterior and anterior

regions (between LTL–MPFC, MTL–PCC/PCu, MTL–

SMC, MTL–LPC, LOC–DLPFC, LOC–MPFC, LOC–

ACC/Insula, LOC–PCC/PCu, LOC–SMC, LOC–LPC,

MOC–DLPFC, MOC–MPFC, and MOC–LPC), between

posterior and subcortical/cerebellar regions, between

MPFC and SMC, and between anterior (PCC/PCu and

SMC) and cerebellar regions. These findings further sup-

port the idea of the posterior-to-anterior shift of dynamic

aging brain.

Relationship between functional brain dynamics

and episodic memory performance

The first trial PAL memory score showed a negative rela-

tionship with age (b = -0.254, p\ 0.002), suggesting an

age-related decline of episodic memory performance.

For the functional hub dynamics, the first trial PAL

memory score was negatively associated with the func-

tional hub probability of the posterior regions

(b = -0.195, p = 0.018), suggesting that the decreased

functional hub dynamics of posterior regions was associ-

ated with reduced episodic memory performance in aging.

However, no significant result was revealed between the

functional hub probability of the anterior regions and the

first trial PAL memory score (b = 0.084, p = 0.312).

For the functional connectivity, no significant results

were found between static functional connectivity and the

first trial PAL memory score (among anterior regions:

b = 0.017, p = 0.838; among posterior regions:

b = -0.074, p = 0.371; between anterior and posterior

regions: b = -0.093, p = 0.263). However, positive cor-

relation was revealed between dynamic functional con-

nectivity in the posterior region and PAL memory score

(b = 0.186, p = 0.025), suggesting that age-related

decrease in dynamic functional connectivity within the

posterior region was consistent with age-related decrease in

episodic memory performance. No significant result was

found between the first trial PAL memory score and

dynamic functional connectivity in the anterior regions

(b = 0.009, p = 0.913), as well as between anterior and

posterior regions (b = 0.055, p = 0.506).

Discussion

This study examined age effects on brain functional

dynamics using a large Chinese sample aged from 22 to

79 years. Consistent with most of existing literature (On-

oda et al. 2012; Ferreira et al. 2015; Sala-Llonch et al.

Fig. 4 Age effects on functional connectivity. Each line indicates

significant age effect on static (a) and dynamic (b) functional

connectivity. Each circle represents 12 brain regions and significant

age-related increasing (red lines) and decreasing (green lines)

connections between regions. The width of the line indicates p values.

The thicker the line is, the smaller p value is. *p\ 0.05, FDR

corrected and **p\ 0.01, FDR corrected
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2015; Lee et al. 2015), the static functional connectivity

manifested an anterior-to-posterior shift in aging; that is,

the posterior brain regions showed an age-related increase

in the functional connectivity while the anterior brain

regions demonstrated an age-related decrease in the func-

tional connectivity in aging. This study provided new

evidence on brain functional dynamics in aging that is

consistent and complementary to the static resting brain in

aging. In detail, our results revealed that both functional

hub probability and dynamic functional connectivity pos-

ited an age-related posterior-to-anterior shift. Specifically,

the posterior brain regions showed attenuated dynamics,

while the anterior brain regions showed augmented

dynamics in aging. Interestingly, our analysis further

indicated that the age-related episodic memory decline was

associated with the age-related decrease in brain functional

dynamics of the posterior regions. Hence, these findings

provided a new dimension to view the STAC model based

on the brain functional dynamics, further suggesting that

adaptive posterior-to-anterior shift of the brain functional

dynamics occurs in response to aging.

Our study revealed a posterior-to-anterior shift of the

brain functional dynamics in aging. This was supported by

both the dynamics of hubs and functional connectivity. The

frontal region in general has a less chance to be hubs in

aging brain, implicating an age-related attenuated central

role of the frontal region in the brain functional network

architecture. This is congruent with the idea of the STAC

model on more frontal region engaged to perform tasks as

one ages (Cabeza et al. 2004b; Davis et al. 2008; Ansado

et al. 2012). This is also in line with the frontal regions

attempt to compensate for the loss of functional specificity

in the occipital region during tasks (Park and Reuter-Lor-

enz 2009; Reuter-Lorenz and Park 2014). Our study addi-

tionally provided a new dimension of the compensatory

mechanism of the frontal region in aging. The frontal

region increased its flexibility to switch on and off its

functional connections as reflected by an increase in the

variability of its functional connectivity in aging. In con-

trast, the influence of aging on the functional dynamics of

the posterior region was opposite to that in the anterior

region. Interestingly, the attenuation of brain functional

dynamics in the posterior regions was associated with poor

episodic memory function in aging. Recent studies suggest

that rapidly switching functional connectivities is benefi-

cial for cognitive functioning (Cocchi et al. 2013; Cole

et al. 2013; Armbruster-Genc et al. 2016). An increase in

brain dynamicity promotes the flexibility of the brain in

configuring its functional architecture to adapt to cognitive

need (Cole et al. 2013). On the other hand, being less

dynamic reflects that the brain’s functional architecture is

less adaptive or un-refreshed, which subsequently leads to

poor cognitive ability in aging (Turner and Spreng 2015).

Our results implicated that the posterior region of aging

brain could operate under a less adaptive functional

architecture, which accounted for poor episodic memory in

aging. Moreover, there is evidence indicating that the brain

functional dynamics are dependent on the underlying

structural connections (Shen et al. 2015). Using the same

sample, we previously found a posterior-to-anterior shift of

the structural connectivity in aging, which was assessed

using high angular resolution diffusion imaging (HARDI)

(Lee et al. 2015). Taken together, these findings underscore

the importance of the posterior-to-anterior shift in adap-

tiveness of brain functional architecture in aging brain,

which provided an additional view on the STAC model for

aging brain (Park and Reuter-Lorenz 2009; Reuter-Lorenz

and Park 2014).

Our study revealed that static functional connectivity

of the resting brain shows an anterior-to-posterior shift in

aging, which is also supported by substantial existing

literature (Onoda et al. 2012; Geerligs et al. 2014; Fer-

reira et al. 2015; Lee et al. 2015). This finding is in line

with the posterior-to-anterior shift of the brain functional

dynamics in aging. Less frontal functional connectivity of

the stationary brain in aging partially reflects that frontal

brain regions reduce their connection strength with other

brain regions and hence play a less central role in the

brain functional architecture, which is consistent to a

reduction in the frontal hub probability in aging. Like-

wise, the occipital lobe increases its connectivity with

other brain regions, which corresponds to an increase in

the occipital hub probability in aging. Importantly, our

study provided additional information on the variability of

the functional connectivity that implicated the temporal

dynamics of the brain. Interestingly, a recent study

demonstrated that an increased static functional connec-

tivity was accompanied by a decreased variability of the

functional connectivity (Demirtaş et al. 2016), which

reflects the correspondence between the static and

dynamic brains. Hence, both static and dynamic aspects

of the resting brain support the idea of the STAC model.

Furthermore, Jockwitz and colleagues (2017) recently

provided a structural correlate for the functionally estab-

lished STAC theory, focusing on the default mode net-

work (DMN), which is complementary to our study from

the structural network point of view. This finding sug-

gested that the aging brain might follow the posterior-to-

anterior shift pattern even within one specific brain net-

work (Buckner et al. 2008; Jones et al. 2011; Mormino

et al. 2011). Hence, this warrants future investigation of

age effects on the temporal variability in specific func-

tional networks to detail the STAC model.

Our study also showed that a few of dynamic functional

connectivities followed the inverted U-shape relationship

with age. These were the dynamic functional connectivities
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of the anterior regions (e.g., DLPFC, SMC, etc.) with the

posterior and subcortical regions. First, these findings are

beyond evidence derived from task-based fMRI on the

posterior-to-anterior shift in aging, since our study reported

the functional connectivity between the anterior and pos-

terior regions rather than functional activity in an anterior

or posterior region in aging. Second, inverted U-shape

effects of age were also shown on the functional and

structural connectivity in the frontal cortex (Wang et al.

2012; Cao et al. 2014; Zhao et al. 2015). These findings

may provide additional dimension of the STAC model, that

is, brain functional dynamics in the frontal cortex may not

always be reorganized in the monotonous direction of age-

related increase/decrease.

This study is best considered as exploratory using a

Chinese sample and intends to provide a new measure that

quantifies the brain functional dynamics. While prelimi-

nary, our findings suggest convincing evidence on a pos-

terior-to-anterior shift of the brain functional dynamics in

aging, which is consistent with the STAC model. In con-

structing the dynamic brain functional networks, this study

employed parcellations from the AAL atlas that was further

grouped into 12 large regions (Tzourio-Mazoyer et al.

2002) for the convenience of the examination of our

hypothesis. This may not be the best atlas for studying the

STAC model based on the brain functional dynamics in

aging. The choice of brain parcellations for rs-fMRI studies

remains a challenging question (Wang et al. 2009). Nev-

ertheless, this study mainly focused on the anterior and

posterior regions as a whole in the sense that our findings

may not be sensitive to the choice of the brain atlas.

Moreover, the rs-fMRI data in this study were acquired

with long TR (2.3 s), which may not be desirable for

analyzing brain functional dynamics. However, Liao and

colleagues (2017) employed rs-fMRI data from the Human

Connectome Projects with TR of 0.72 s and showed that

brain modular patterns were highly variable within each

subject. This finding is in line to ones observed based on

our data with long TR, e.g., high variabilities in terms of

hub probability and dynamic functional connectivity, pro-

viding the support on the feasibility of using rs-fMRI data

with long TR to study brain functional dynamics. More-

over, we noticed that the orbital cortex (superior frontal

gyrus, orbital part in Table S2) showed positive age effects,

which was contradictory to the findings of the other frontal

regions. This was perhaps because of fMRI signal loss in

the orbital frontal region due to its surrounding air and

bone. Finally, this study used a cross-sectional design.

Future research with longitudinal data is needed to inves-

tigate age-related trajectory of brain functional dynamics

and its relation to cognitive performance for further

understanding the STAC model.

In sum, this study provided new evidence on the

dynamics of the brain functional architecture in relation

with age by introducing the hub probability and variability

of the functional connectivity, which was associated with

age-related episodic memory decline. A posterior-to-ante-

rior shift of the brain functional dynamics in aging was in

line with that of the static brain functional architecture at

rest and individual brain activations in tasks, which thus

provided a new dimension to view the STAC model by

emphasizing the compensatory mechanisms of the brain

functional dynamics in aging.
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