
REVIEW

Oxidative and nitrosative stress pathways in the brain of socially
isolated adult male rats demonstrating depressive- and
anxiety-like symptoms

Dragana Filipović1
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Abstract Various stressors may disrupt the redox

homeostasis of an organism by causing oxidative and

nitrosative stress that may activate stressor-specific path-

ways and provoke specific responses. Chronic social iso-

lation (CSIS) represents a mild chronic stress that evokes a

variety of neurobehavioral changes in rats similar to those

observed in people with psychiatric disorders, including

depression. Most rodent studies have focused on the effect

of social isolation during weaning or adolescence, while its

effect in adult rats has not been extensively examined. In

this review, we discuss the current knowledge regarding

the involvement of oxidative/nitrosative stress pathways in

the prefrontal cortex and hippocampus of adult male rats

exposed to CSIS, focusing on hypothalamic-pituitary-

adrenocortical (HPA) axis activity, behavior parameters,

antioxidative defense systems, stress signaling mediated by

nuclear factor-kappa B (NF-jB), and mitochondria-related

proapoptotic signaling. Although increased concentrations

of corticosterone (CORT) have been shown to induce

oxidative and nitrosative stress, we suggest a mechanism

underlying the glucocorticoid paradox whereby a state of

oxidative/nitrosative stress may exist under basal CORT

levels. This review also highlights the differential suscep-

tibility of prefrontal cortex and hippocampus to oxidative

stress following CSIS and suggests a possible cellular

pathway of stress tolerance that preserves the hippocampus

from molecular damage and apoptosis. The differential

regulation of the transcriptional factor NF-jB, and the

enzymes inducible nitric oxide synthase (iNOS) and

cyclooxygenase-2 (COX-2) following CSIS may be one

functional difference between the response of the pre-

frontal cortex and hippocampus, thus identifying poten-

tially relevant targets for antidepressant treatment.
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Introduction

Living organisms in today’s environment are repeatedly

exposed to stressors of various origins, which lead to

activation of the sympatho-adrenomedullary system and

hypothalamic-pituitary-adrenocortical (HPA) axis, result-

ing in the release of catecholamines and glucocorticoids

(GCs) from the adrenal gland (McEwen 2008). The effects

of GCs in acute stressful situations can be classified as

adaptive (De Kloet et al. 2005; McEwen 2008), while

chronic stress, especially chronic psychosocial stress, can

be maladaptive. During the acute stress response, physio-

logical processes divert mobilized energy from reserves

among various organs, such that the body is again prepared

for future events. In contrast, elevated levels of GCs

released during chronic stress may lead to an increase in

the generation of reactive oxygen species (ROS) and

reactive nitrogen species (RNS) that can directly induce

mitochondrial dysfunction (Papadopoulos et al. 1997),
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suppression of hippocampal synaptic plasticity (Joëls et al.

2004), and trigger proapoptotic signaling that results in

apoptotic cell death (Cregan et al. 2002).

Various chronic stressors can disrupt redox homeostasis

of the organism, causing oxidative/nitrosative stress that

leads to the activation of intracellular signaling pathways

involved in psychiatric disorders (Maes et al. 2011). Par-

ticularly interesting are those stressors with a psychosocial

component, as it is known that chronic psychosocial stress

in adulthood modulates brain structure and function,

resulting in cognitive deficits and an increased risk for

psychiatric disorders (De Kloet et al. 2005; Lupien et al.

2009). The most common stressors reported as risk factors

for psychiatric disorders, such as depression, are of a social

nature in humans (Brown and Prudo 1981; House 2001)

and in social animals (Fuchs 2005). For example, the lack

of social stimuli associated with social isolation precludes

the ability to modulate adaptive responses to new situations

(Ishida et al. 2003). In experimental animals, social isola-

tion may be achieved by keeping animals individually

housed, with normal auditory and olfactory experiences,

but no visual or tactile contact with other animals in the

colony (Garzón and Del Rı́o 1981). Since rats naturally live

in groups, chronic social isolation (CSIS) is continuous and

qualitatively different from other types of chronic stress.

Most changes induced by chronic stress are observed in

the hippocampus and prefrontal cortex, brain regions

related to the pathophysiology of depression that play a

role in mediating the effects of stress on GC regulation

(Joëls and Baram 2009; Maes et al. 2011). For example,

changes in gray matter volume and reduced neurogenesis

in the hippocampus identified in post-mortem studies of

patients with depression (Wainwright and Galea 2013) can

be induced in adult rats by CSIS (Stranahan et al. 2006).

Moreover, stress-induced impairment in prefrontal cortex

function and plasticity is thought to be a core pathological

feature of several neuropsychiatric disorders (Goto et al.

2010). Stress-induced alterations in HPA axis activity and

their relation to oxidative stress may be caused by

increased levels of GCs (McIntosh et al. 1998a, b). Given

that GCs accomplish their functions via glucocorticoid

receptors (GR), dysregulation (hyper- or hypo-activity) of

the HPA axis induced by chronic stress may result from

altered negative feedback control in the higher centers of

the axis, i.e. the hippocampus and prefrontal cortex (Mi-

zoguchi et al. 2003; Filipović et al. 2005). Furthermore,

alterations in GCs play a key role in the development of

depressive disorders (De Kloet et al. 1998; Holsboer and

Ising 2010).

Chronic stress may impair antioxidant defenses, leading

to oxidative damage (Liu and Mori 1994), whereby the

extent of stress-triggered effects is related to the duration

and type of stress (Pacak et al. 1998). The defense

mechanisms against oxidative stress include a cascade of

antioxidant enzymes such as cytosolic (but not exclusively)

copper-zinc superoxide dismutase (CuZnSOD) (Chang

et al. 1988) and mitochondrial manganese superoxide dis-

mutase (MnSOD), which catalyzes the dismutation of

superoxide anion (O2
�-) to oxygen and hydrogen peroxide

(H2O2), which is further detoxified by the enzymes catalase

(CAT) and glutathione peroxidase (GPx) (Chelikani et al.

2004). CAT (primarily localized in peroxisomes) reduces

H2O2 into molecular oxygen and water (Halliwell 2011).

GPx is localized in the mitochondria and cytosol and per-

forms a reduction of H2O2 to water and organic

hydroperoxides to their corresponding alcohols in the

presence of glutathione (GSH) which is oxidized to glu-

tathione disulfide (GSSG) (Dringen 2000). The reduction

of GSSG back to GSH is catalyzed by glutathione reduc-

tase (GLR) using reduced nicotinamide adenine dinu-

cleotide phosphate (NADPH) (Andreyev et al. 2005; Couto

et al. 2013). GSH is a non-enzymatic component of

antioxidant defense that plays a central role in maintaining

physiological redox status, of which the GSH/GSSG ratio

within cells is an indicator of cellular oxidative stress. It

has been shown that chronic stress may affect levels of

GSH (Madrigal et al. 2001b; Ahmad et al. 2010), and some

psychiatric disorders are characterized by GSH depletion

(Gawryluk et al. 2011). In addition, the NADPH oxidase

(NOX) family, which transfers electrons across biological

membranes to catalyze the reduction of molecular oxygen

and generate O2
�-, has also been implicated in psychiatric

disorders (Sorce and Krause 2009), and previous studies

have shown that NOX2-derived oxidative stress is involved

in the development of anxiety-like symptoms following

social isolation in rodents (Schiavone et al. 2009).

In addition to ROS, the exposure of organisms to

stressors may lead to the overproduction of nitric oxide

(NO). Although NO is necessary for the function of the

nervous system, including roles in synaptic plasticity,

neuromodulation and other physiological roles, if present

in high concentrations, it can combine with O2
�- and form

the highly reactive and toxic peroxynitrite (ONOO-) (Patel

and Darley-Usmar 1996), which is powerful tyrosine-ni-

trating agent (Schliess et al. 2002) and may also lead to

nitrosylation of antioxidant enzymes (Anand and Stamler

2012). The concentration of NO within biological systems

is regulated by the activity of nitric oxide synthase (NOS)

isoforms: constitutively expressed neural (nNOS),

endothelial (eNOS) and inducible (iNOS) forms. The NOS

enzymes are widely distributed within the mammalian

brain, and NOS-positive neurons are located in the hip-

pocampus and cerebral cortex (Olivenza et al. 2000).

Although nNOS is a constitutive enzyme responsible for

producing the NO that can act as a neurotransmitter, its

expression is also influenced by certain stressors and may

2 Brain Struct Funct (2017) 222:1–20

123



be involved in depressive-like behavior in rodents

(McLeod et al. 2001). In contrast, persistent activation of

iNOS, mainly regulated at the transcription level, is asso-

ciated with pathological inflammatory processes (Brown

2007) and may also be responsible for stress-induced

depression (Haroon et al. 2012).

One factor that may link oxidative stress and brain

damage is the redox-sensitive transcription factor nuclear

factor-kappa B (NF-jB) (Jin et al. 2008). NF-jB is local-

ized in the cytoplasm as an inactive form through its

interaction with the inhibitory protein I-kappa B (IjB)
(Muriach et al. 2010). It can be activated by ROS (Li and

Karin 1999), resulting in the proteolytic degradation of IkB

with concomitant nuclear translocation of the p50 and p65

heterodimer of NF-jB, which then acts on NF-jB target

genes (Senftleben et al. 2001). Stress activates NF-jB in

brain cells as early as 4 h after the onset of stress in rats

(Madrigal et al. 2006), stimulating the expression of a

variety of genes responsible for cell injury or cell protec-

tion. Genes which in their promoters contain NF-jB
binding sites that contribute to the activation of oxidative/

nitrosative and inflammatory mediators are iNOS (Xie

et al. 1994), nNOS (Hall et al. 1994; Li et al. 2007), and

cyclooxygenase-2 (COX-2) (Plummer et al. 1999; Maes

et al. 2007b), while genes with NF-jB binding sites that

protect cells include CuZnSOD (Meyer et al. 1993; Kim

et al. 1994), MnSOD (Xu et al. 1999), and B cell lym-

phoma (Bcl) family genes such as Bcl-2 and Bcl-xL (Ta-

matani et al. 1999; Chen et al. 1999). Moreover, ROS/RNS

and GSH levels may be critical determinants of NF-jB
activation (Mihm et al. 1995).

In addition, to adapt to environmental changes and

survive injury, cells synthesize heat shock proteins (HSPs).

While HSP70 is involved in cellular repair and protective

mechanisms (Georgopoulos and Welch 1993; Morimoto

and Tissieres 1994), the degree of HSP70i inducible form

depends on the type and duration of exposure to stressors

(Kiang 2004). The expression of HSP70i blocks NF-jB
activation and NF-jB-dependent gene expression (Malho-

tra and Wong 2002). Moreover, HSP70i induction protects

neurons from apoptosis (Arieli et al. 2003) and also sup-

presses microglial activation (Heneka et al. 2000), which

upon chronic stress exposure represents a significant source

of ROS (Tynan et al. 2010; Hinwood et al. 2012). In

addition to HSP70i, the small HSP27 exerts its antiapop-

totic effect at the level of the mitochondria via a series of

signal transduction events, such as the phosphorylation and

inactivation of Bad (Bcl-xL/Bcl-2 associated death pro-

moter) (Datta et al. 1997), the inhibition of Bax-mediated

mitochondrial membrane injury (Havasi et al. 2008), and

the inhibition of caspases and cytochrome c release (Gar-

rido et al. 1999; Charette et al. 2000). Furthermore, the

heme oxygenase (HO) system, consisting of constitutive

HO-2 and the inducible isoform HO-1(HSP32), also has a

protective role against ROS damage in rat brain (Sca-

pagnini et al. 2002; Muñoz-Sánchez and Chánez-Cárdenas

2014). These isozymes catalyze the NADPH- and cyto-

chrome P450 reductase-dependent degradation of heme to

carbon monoxide, ferrous iron and biliverdin, which in the

presence of biliverdin reductase is reduced to the antioxi-

dant bilirubin (Maines et al. 1996) that counteracts NO and

RNS activity (Mancuso et al. 2006). HO-2 is the predom-

inant HO isoenzyme in the adult rodent brain and is reg-

ulated entirely by adrenal GCs (Raju et al. 1997), while the

transcription factors AP-1, NF-jB, and mitogen-activated

protein kinases have been implicated in HO-1 regulation

(Ryter et al. 2006).

Compromised HPA axis functioning in socially
isolated adult male rats

Regulation of the HPA system, which may be responsible

for individual differences in susceptibility to stress, is

highly effected by social isolation. Relatively few studies

have investigated the effect of social isolation in adult rats.

The effects of this psychosocial stress on corticosterone

(CORT) levels in adult male rats have been inconsistent

among studies (Table 1). Increased CORT levels have been

reported (Ferland and Schrader 2011), whereas other

groups observed no changes (Scaccianoce et al. 2006;

Filipović and Pajović 2009) or reduced CORT levels

(Miachon et al. 1993). This inconsistency may arise due to

differences in the nature and/or length of the social isola-

tion, as well as in the age of animals at its onset (Serra et al.

2007). The duration of isolation between studies varies

from 2 to 13 weeks. Miachon et al. (1993) showed that

13 weeks of social isolation produced a significant increase

in catecholamine turnover in the hippocampus, cortex and

cerebellum, accompanied by increased adrenocorticotropic

hormone (ACTH) and decreased basal plasma CORT

levels. Filipović and Pajović (2009) showed that 3 weeks of

social isolation resulted in CORT levels similar to basal

values in adult male Wistar rats. However, decreased

responsiveness of the HPA axis of socially isolated rats in

response to novel acute immobilization or cold stressors

relative to those acute stressors alone indicates compro-

mised HPA axis activity, as reflected by a lesser increase in

CORT levels (Filipović and Pajović 2009). As GR shut-

tling between the cytoplasm and nucleus is essential for

proper HPA axis activity, an unchanged CORT response

during CSIS resulted from reduced nuclear translocation of

cytosolic GR and increased cytosolic retention in the hip-

pocampus and prefrontal cortex, suggesting diminished

GR-negative feedback control (Mizoguchi et al. 2003;

Dronjak et al. 2004; Filipović et al. 2005) (Fig. 1). The
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Table 1 Effects of chronic social isolation on corticosterone (CORT) levels in adult male rats

References Species Age at

isolation

Duration of isolation Basal

CORT

CORT levels in response to stress

Ferland and

Schrader

(2011)

Male Wistar

rats

Adult

(56 days)

Chronic variable stress including social

isolation, overnight for 14 consecutive

nights

: CORT in response to separation

with or without chronic variable

stress

Filipović and

Pajović

(2009)

Male Wistar

rats

Adult

2 months

3 weeks followed or not by 2 h of

immobilization or cold stressors

No

changes

; CORT in isolation ? acute

stressors relative to acute stressors

alone

Miachon et al.

(1993)

Male Wistar

rats

Adult 13 weeks ; plasma

CORT

Scaccianoce

et al. (2006)

Male

Sprague–

Dawley rats

Adult

(2 months)

8 weeks No

changes

Fig. 1 Effect of chronic social

isolation (CSIS) on

hypothalamic-pituitary-

adrenocortical (HPA) axis

functioning. The physiological

response to stress involves the

activation of HPA axis.

Paraventricular nuclei of the

hypothalamus secrete

corticotropin releasing hormone

(CRH), which stimulates the

pituitary gland to secrete

adrenocorticotropic hormone

(ACTH) which acts on adrenal

gland stimulating the secretion

of corticosterone (CORT). In

turn, CORT acts back on the

hypothalamus, pituitary glands,

prefrontal cortex and

hippocampus limiting the

activity of the HPAaxis (a).
Compromised HPA axis

functioning of adult male

socially isolated rats may be a

consequence of incomplete

nuclear translocation of

cytosolic glucocorticoid

receptor (GR) and its cytosolic

retention in the hippocampus

and prefrontal cortex. This

suggests that dysregulation of

the HPA axis induced by stress

results from a partial disruption

of GR negative feedback control

in the higher centers of the rat

brain (b). GRE glucocorticoid

response element

4 Brain Struct Funct (2017) 222:1–20

123



retention of cytosolic GR and disabling of its translocation

to the nucleus, where it functions as a transcription factor,

may lead the body into a state in which there is no cessa-

tion of the transmission of stress signals and thus induce an

allostatic load. Moreover, a decreased secretion of corti-

cotrophin-releasing hormone (CRH) following long-term

isolation (Sánchez et al. 1998) may also result in unaltered

CORT levels. Serra et al. (2005) showed that an

intraperitoneal injection of dexamethasone (a synthetic

GC) caused a decrease in CORT levels, but this decrease

was significantly lower in isolated relative to control rats,

suggesting that social isolation impairs the glucocorticoid

negative feedback regulation of CORT secretion. This

study also demonstrated that reduced efficacy of this reg-

ulatory system may be a consequence of an isolation-in-

duced decrease in GR in the pituitary, the hypothalamus

and the hippocampus.

Chronic social isolation provokes depressive-
and anxiety-like behaviors in adult male rats

The concept of isolation ‘‘stress’’ in rats is derived from

studies in the early 1960s that reported social isolates as

abnormally reactive to handling, anxiogenic, and overly

emotional (Wiberg and Grice 1963; Hatch et al. 1965),

which led to the term ‘‘isolation-induced stress syndrome’’

(Holson et al. 1991). CSIS is a variety of chronic mild

stress that represent a more natural stressor in rodents, as it

has been shown to evoke a variety of neurobehavioral

changes in rats similar to those changes observed in

humans with psychiatric disorders, including depression

(Heim and Nemeroff 2001; Heinrich and Gullone 2006).

Although it is apparent that depressive symptoms such as

suicidal tendencies and recurrent thoughts of death cannot

be modeled in rats, it is possible to study specific behav-

ioral domains in relation to psychiatric endophenotypes

such as anxiety, anhedonia, sleep disturbances, and hor-

monal dysregulation (Gould and Gottesman 2006). Depri-

vation of social interaction in rats causes aggressiveness,

(Serra et al. 2005; Sandi and Haller 2015), cognitive

impairments as evidenced by spatial memory deficits,

impaired maze learning (Einon 1980), and hyper-reactivity

to novel environments (Lapiz et al. 2003; Zlatković et al.

2014b). A lack of social interaction in adult rats results in a

reduced number of specific subpopulations of hippocampal

neurons, such as parvalbumin-positive neurons (Harte et al.

2007; Filipović et al. 2013). Enhanced anxiety-like

behavior in socially isolated rats has been observed using

open field and elevated plus maze testing (Hall 1998;

Weiss et al. 2004). For example, 3 weeks of social isolation

in adult male Wistar rats resulted in a reduction in the

percentage of open arm entries and a general decrease in

locomotion (total number of arm entries) in the elevated

plus maze, indicative of anxiogenic behavior (Djordjevic

et al. 2015), and after only 2 weeks of social isolation,

adult rats spent less time in the light compartment of the

light–dark box, again indicating anxiety-like behavior

(Carrier and Kabbaj 2012). Furthermore, Spasojevic et al.

(2007) showed that 3 weeks of CSIS in adult male rats led

to anxiety behavior, a reduced duration of grooming, more

defecations and urinations, increased reluctance to step

down to a test platform, and an increased number of ver-

tical rears. A recent study reported that 6 weeks of social

isolation resulted in spatial memory deficits in middle-aged

rats, as indicated by a significantly increased latency to find

a hidden platform in the Morris water maze test relative to

controls (Ren et al. 2015). Moreover, 3 weeks of social

isolation in adult male Wistar rats led to depressive-like

behaviors, including increased immobility and less time

swimming and climbing in the forced swim test, indicating

despair behavior, and reduced sucrose preference, indica-

tive of an impaired sensitivity to reward and anhedonia

(Zlatković et al. 2014b) (Fig. 2). These results are in

agreement with findings from Brenes and Fornaguera

(2009), who also reported despair behavior in isolated rats

in the forced swim test, and Carrier and Kabbaj (2012),

who demonstrated that 3 weeks of CSIS induced depres-

sive-like symptoms, such as anhedonia, in adult male rats.

A notable effect of CSIS was observed in the marble

burying test, in which socially isolated rats displayed

anxiety-like behaviors and neophobia, assessed by an

increase in burying behavior, an active effort of rodents to

hide unfamiliar objects (Fig. 2). Although this test is pri-

marily used to test potential antidepressant treatments

(Borsini et al. 2002), increased burying behavior in

chronically stressed animals may indicate a heightened

anxiety (Farley et al. 2010). CSIS-induced behavioral

despair, anhedonia and anxiety have been identified as a

correlate of depression (Sandi and Richter-Levin 2009).

Fig. 2 Social isolation in adult male Wistar rats for 3 weeks causes

anxiety-like behavior, including an increase in the number of marbles

buried, despair behavior (increased immobility time in forced swim

test) and increased depressive-like behavior (reduced sucrose

preference)
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Compromised brain SOD activity in socially
isolated adult male rats

In addition to compromised HPA axis activity, CSIS causes

brain oxidative stress and leads to dysregulation of

antioxidative enzymes that may contribute to psychiatric

disorders (Colaianna et al. 2013). A previous study has

shown that increased CORT levels during chronic stress

decreased the activity of antioxidative enzymes in rat brain,

indicating a direct effect of CORT on the induction of

oxidative stress (Zafir and Banu 2009). High levels of GCs

may increase glutamate release and calcium mobilization

in neurons leading to the calcium-dependent activation of

NOS, and the subsequent production of toxic NO levels

and mitochondrial dysfunction. Moreover, GCs may induce

neuronal oxidative stress directly through enhanced mito-

chondrial respiration and oxidative phosphorylation (Spiers

et al. 2015). In addition, the NOX2 enzyme is considered a

major source of ROS in the central nervous system that

may be responsible for CSIS-induced oxidative stress

(Schiavone et al. 2009). In fact, the earliest neuropatho-

logical alterations in socially isolated rats were increased

expression of NOX2 and signs of oxidative stress in the

prefrontal cortex. The NOX2-derived oxidative stress led

to increased glutamate levels and a reduced the number of

parvalbumin-positive inhibitory neurons. The application

of the antioxidant/NOX inhibitor apocynin during 7 weeks

of CSIS prevented development of the signs of oxidative

stress, such as oxidized nucleic acid 8-hydroxy-20-deox-
yguanosine, redox-sensitive transcription factor c-fos, and

hypoxia-inducible factor-1alpha, which have been found to

be increased in the prefrontal cortex and nucleus accum-

bens of socially isolated rats. Also, in these brain regions,

apocynin treatment prevented a CSIS-induced decrease in

parvalbumin immunoreactivity, as well as behavioral

changes associated with CSIS, such as increased sponta-

neous locomotor activity in the open field test and a

decreased discrimination index in the novel object recog-

nition test (Schiavone et al. 2009). It was also revealed that

the application of apocynin for 3 weeks fully reversed

CSIS-induced behavioral alterations when applied after

4 weeks (from week 4 to week 7 of CSIS), but only par-

tially when administered after 7 weeks of post-weaning

isolation (from week 7 to week 10 of CSIS) (Schiavone

et al. 2012). An excessive increase in ROS production can

inhibit antioxidative activity of CAT by oxidizing the heme

group in its active site (Spiers et al. 2015), where high

levels of H2O2 may inactivate CuZnSOD activity by oxi-

dizing its thiol groups (Halliwell and Gutteridge 1989).

Additionally, it is known that CuZnSOD expression is

regulated by GCs (Kim et al. 1994) via the GR, which acts

as a hormone dependent transcriptional factor (McKay and

Cidlowski 2000; Gass et al. 2001) that traffics continuously

between the cytoplasm and nucleus when liganded to GCs,

thus mediating the final effects of GCs (Madan and

DeFranco 1993). Accordingly, although CuZnSOD activity

is primary protective, a lack of coupling with respective

peroxidase activity of CAT and GPx (McIntosh et al.

1998a) may result in an SOD-driven accumulation of toxic

H2O2, which further negatively modulates GR function

(Okamoto et al. 1999; Zhou et al. 2011), causing a decrease

in glucocorticoid-inducible gene expression (Makino et al.

1996) and consequent CuZnSOD expression. Moreover,

GCs also regulate the expression of HO-2, as the promoter

region of the gene encoding HO-2 contains a glucocorti-

coid response element (Muñoz-Sánchez and Chánez-

Cárdenas 2014). Although there are no published data

pertaining to the effect of social isolation on this enzyme,

Chen et al. (2005) demonstrated that a chronic restraint

stress-induced increase in plasma CORT levels decreased

HO-2 protein levels in hippocampal neurons, likely a

consequence of incomplete nuclear translocation of

cytosolic GR. Furthermore, venlafaxine, an antidepressant,

and quetiapine, an atypical antipsychotic, effectively pre-

vented the decrease in HO-2 protein in hippocampal neu-

rons of stressed rats (Chen et al. 2005).

Adult male Wistar rats that exhibited CORT levels

similar to basal values following 3 weeks of social isola-

tion did not show changes in cytosolic CuZnSOD and

mitochondrial MnSOD protein levels in the hippocampus

(Filipović et al. 2009). Interestingly, an acute stressor (2 h

of immobilization) that caused a significant increase in

serum CORT levels and CuZnSOD mRNA in the hip-

pocampus failed to activate the transcription of CuZnSOD

gene when applied in combination with CSIS, despite the

fact that CORT levels were increased compared to CSIS

alone (Filipović and Pajović 2009).This lack of upregula-

tion of CuZnSOD protein expression partly resulted from a

compromised HPA axis, i.e. impaired nucleo-cytoplasmic

GR shuttling (Dronjak et al. 2004; Filipović et al. 2005),

which likely prevented activation of the SOD promoter and

caused a lack of significant upregulation of SOD, as well as

ROS defense inefficiency (Fig. 3). Concurrently, the total

SOD activity in the hippocampal cytosolic fraction of

socially isolated rats was unchanged (Zlatković et al.

2014b). Moreover, there are different findings related to

SOD activity following CSIS stress in rat brain. Social

isolation for 8 weeks decreased the activities of CAT, GPx,

SOD, and the total antioxidant capacity, but increased

levels of H2O2, in the prefrontal cortex and hippocampus of

rats (Shao et al. 2015). In addition, CuZnSOD expression is

under the control of NF-jB (Meyer et al. 1993; Kim et al.

1994), which can be activated by H2O2 (Bowie and O’Neill

2000). H2O2 may trigger a positive feed-forward cycle with

6 Brain Struct Funct (2017) 222:1–20
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NF-jB, causing the accumulation of toxic H2O2 and thus

diminishing CuZnSOD activity. Möller et al. (2011)

reported that post-weaning social isolation for 8 weeks

increased SOD activity, increased the GSH/GSSG ratio,

and increased lipid peroxidation in striatal and frontal

cortical tissue while application of the antipsychotic

clozapine reversed the behavioral changes and cortico-

striatal redox disturbances associated with social isolation.

Isolation stress in the prepubertal period led to increased

SOD and complex IV activities in the prefrontal cortex of

male rats, effects still observed in adulthood (Krolow et al.

2012). These alterations in brain oxidative stress parame-

ters are paralleled by deficits in prepulse inhibition and

social and self-directed interactive behaviors (Schiavone

et al. 2013).

In addition, CSIS acting either directly or indirectly may

shift the antioxidant/prooxidant balance toward a more

prooxidant state, with more oxidative stress produced in

mitochondria in the prefrontal cortex (Filipović et al. 2011).

The fact that CSIS resulted in no change in serum CORT

levels relative to controls suggests a mechanism underlying

the glucocorticoid paradox whereby a state of oxidative

stress may also exist under CORT levels similar to basal

values. Furthermore, overexpression of nNOS and iNOS

with a concomitant increase in NO in the prefrontal cortex of

socially isolated rats (Filipović et al. 2013) caused nitrosa-

tive stress during chronic stress (Leza et al. 1998; Olivenza

et al. 2000). Concurrently, a significant decrease in mito-

chondrial MnSOD activity was found, suggesting that its

detoxifying capacity was compromised by nitrosative stress

(Filipović et al. 2011). Decreased mitochondrial MnSOD

activity could be due to high levels ofNOandONOO-which

have been shown to inhibit MnSOD activity, typically via

nitration of the tyrosine residue at the enzyme active site

(Lawler and Song 2002; Stojanović et al. 2005), resulting in

dityrosine formation that may lead to the amplification of

oxidative stress by allowing the accumulation of O2
�- and

subsequently trigger apoptosis (Radi et al. 2002). A corre-

sponding decrease in the MnSOD activity may be regulated

at the posttranslational level by lysine acetylation (Tao et al.

2010; Ozden et al. 2011), independent of regulation of its

protein synthesis (Hopper et al. 2006). Nonetheless, mito-

chondrial MnSOD activity may be regulated via mitochon-

drial-localized p53 by its physical interaction with

p53,which inhibits its activity (Candas and Li 2014), in

accordance with data from Filipović et al. (2011). Accord-

ingly, compromised mitochondrial MnSOD activity may

lead to increased oxidant production within mitochondria,

causing nitration of other mitochondrial proteins (Cruthirds

et al. 2003). A significant decrease inmitochondrial MnSOD

protein levels and reciprocal increase in the cytosolic frac-

tion of the prefrontal cortex of socially isolated rats exposed

to novel acute immobilization or cold stress has been

reported (Filipović et al. 2009). Given that MnSOD is

encoded in the nuclear chromatin, synthesized as a precursor

in the cytoplasm, and transported to mitochondria via the

mitochondria targeting sequence may assembling into an

active enzyme with the incorporation of a manganese ion in

the mitochondrial matrix, increased cytosolic MnSOD pro-

tein levels may be derived from its translocation from

mitochondria and/or the inappropriate transport of newly

synthesized MnSOD into mitochondria (changes in the

Fig. 3 Possible mechanism that

explains the lack of

upregulation of copper-zinc

superoxide dismutase

(CuZnSOD) protein expression

in the hippocampus of socially

isolated adult male Wistar rats

for 3 weeks. Protein expression

of the CuZnSOD is under

glucocorticoid receptor (GR)

regulation (left). Incomplete

nuclear translocation of

cytosolic GR in socially isolated

rats exposed to an acute stressor

and its cytosolic retention is

partially unable to activate the

CuZnSOD promoter, leading to

a lack of significant

upregulation of CuZnSOD and

ROS defense inefficiency

(right). GRE glucocorticoid

response element
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mitochondrial targeting domain) (Cruthirds et al. 2003).

Regardless of the mechanisms, the appearance of MnSOD

protein in the cytosolic fraction clearly indicates a loss of

mitochondrial membrane integrity (Jin et al. 2005). At the

same time, the presence of cytochrome c protein in the

cytosol fraction of the prefrontal cortex following 3 weeks of

social isolation in adult male rats indicates a loss of mito-

chondrial membrane integrity, a hallmark of mitochondrial

dysfunction (Jin et al. 2005), and further ROS production by

inhibition of the mitochondrial respiratory chain (Cai and

Jones 1998). Moreover, ROS generated under chronic stress

has been shown to contribute to the release of cytochrome

c into the cytosol following opening of the permeability

transition pore (Petrosillo et al. 2001).

These data indicate that following 3 weeks of social

isolation in adult male Wistar rats, the prefrontal cortex is a

target of the maladaptive response to stress (Cerqueira

et al. 2007). In contrast, no change in the hippocampal

protein levels of MnSOD following CSIS indicates pre-

served integrity of the mitochondrial membrane, and

greater resistance to oxidative stress compared to the pre-

frontal cortex.

Compromised brain glutathione antioxidant
defenses in socially isolated adult male rats

An important component of the non-enzymatic antioxidant

system is GSH. GSH is the major redox buffer (Giustarini

et al. 2004) and an essential cofactor for a number of

enzymes, playing a role in protecting cells from oxidative

stress and xenobiotics, as well as maintaining the thiol redox

state (Dringen 2000;Aoyama et al. 2008). It also functions as

a storage and transport form of cysteine (Janáky et al. 2000)

and can serve as neuromodulator/neurotransmitter (Janáky

et al. 1999). Changes in GSH and the enzyme activity of GPx

and GLR may indicate a deficit in antioxidative defense.

Three weeks of social isolation in adult male rats caused a

significant decrease of GSH content in the prefrontal cortex

(Zlatković et al. 2014b) (Fig. 4). This GSH depletionmay be

a consequence of its oxidation during the detoxification of

H2O2 and/or lipid peroxides (Gupta et al. 2005), its partici-

pation in the maintenance of non-GSH sulfhydryl proteins in

a reduced state, its increased consumption via increased

glutathione S-transferase activity (Tew and Ronai 1999) or

increased GPx activity that uses GSH for the catalytic

reduction of H2O2. Increased GPx protein expression and its

activity in CSIS rats is likely the result of an elevated pro-

duction of lipid peroxides (Zlatković et al. 2014b). Intensi-

fied GSH consumption during CSIS and unchanged protein

expression and activity of GLR likely diminishes GSH

recycling due to the inability of GLR to compensate for

increased GSH consumption by GPx. Moreover, unchanged

GLR may indirectly cause an increase in H2O2 production,

which may activate NF-jB signaling (Kobayashi et al.

2008). Hence, increased activity of GPx associated with

unchanged activity of GLR may shift redox balance GSH/

GSSG towards a more prooxidant state. Moreover, an

impaired peroxidase-reductase system resulting in decreased

GSH content may lead to the accumulation of peroxidizable

products related to the initiation of proapoptotic signaling in

the rat prefrontal cortex (Filipović et al. 2011). However,

Möller et al. (2011) reported that 8 weeks of post-weaning

social isolation increased GSH/GSSG ratio in the rat frontal

cortex, and elevated levels of malondialdehyde, a lipid per-

oxidation product, suggesting CSIS-induced oxidative cell

damage. These inconsistenciesmay be attributable to species

differences, the age at which the animals were isolated (adult

versus post-weaning), and/or the duration of the social iso-

lation (3 versus 8 weeks). In both cases, the presence of

oxidative stress was found, but stress-induced changes in the

antioxidative defense system were likely age- and time-de-

pendent. Treatment with N-acetyl cysteine, the GSH pre-

cursor and antioxidant, during the last 2 weeks of the 8-week

long social isolation effectively reversed the bio-behavioural

effects of CSIS (Möller et al. 2013).

Interestingly, in contrast to the prefrontal cortex, 3 weeks

of social isolation in adult male rats resulted in a decrease in

GSH content and reduced protein level and activity of GPx

andGLR in the hippocampus (Todorović et al. 2014) (Fig. 4).

These results indicate that CSIS compromised the GSH-de-

pendent defense system, promoting a prooxidative state in the

hippocampus.Moreover, compromisedGSHcontent has been

associated with stress-induced behavioral depression and

cognitive impairments (Dean et al. 2009). Given that GSSG is

converted back to GSH by GLR using NADPH as a reducing

power, decreased hippocampal GLR activity in socially iso-

lated rats may result from an NADPH deficiency (Singh et al.

2008) or increasedH2O2 concentration (Gutierrez-Correa and

Stoppani 1997). In addition, compromised GPx activity has

also been associated with stress-induced behavioral depres-

sion in animal models (Eren et al. 2007). Nonetheless, a

decrease in GLR activity may result in further deterioration

during a state of oxidative damage, compromising GSH

restoration. These results suggest that the GPx/GLR cycle in

the prefrontal cortex and hippocampus is compromised fol-

lowing CSIS stress (Todorović et al. 2014).

CSIS-induced nitrosative stress by NF-jB
activation and iNOS protein expression
in the prefrontal cortex of adult male rats

In biological tissue, NO is generated by specific NOS

isoforms and plays a role in synaptic plasticity, neuro-

modulation and other physiological functions. However,
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the overproduction of NO, as a result of nNOS and iNOS

overexpression (Ridnour et al. 2004), is caused by pro-

longed activation of the glutamate receptor during stress

(Musazzi et al. 2011), together with an increased ROS

formation due to NOX activation and mitochondrial res-

piration. In addition, the regionally selective activation of

microglia by chronic stress in rats (Tynan et al. 2010)

results in the release of high concentrations of NO, pro-

moting nitrosative stress (Cassina et al. 2002). Increases in

nNOS and iNOS protein expression in the prefrontal cortex

of adult male rats exposed to 3 weeks of social isolation

has been shown to cause nitrosative stress (Zlatković and

Filipović 2012). One explanation for nitrosative stress

following CSIS may be the activation of NF-jB (Maes

et al. 2007a, b) (Fig. 5). As NO can upregulate NF-jB
(Connelly et al. 2001), the induction of both NOS protein

expression isoforms in CSIS likely causes persistent NO

production that may mediate NF-jB activation. Accord-

ingly, activated NF-jB in the nucleus may interact with

kappa B elements in the NOS2 50 flanking region,

triggering iNOS gene transcription (Davis et al. 2005). This

has been confirmed with the use of pyrrolidinedithiocar-

bamate, an inhibitor of NF-jB activation, which decreased

the activity and expression of iNOS in stressed animals

(Madrigal et al. 2001a). Given that NO functions as a

proapoptotic molecule, primarily activating the mitochon-

drial apoptotic pathway (Pacher et al. 2007), increased

iNOS levels associated with increased NO following CSIS

may be related to the activation of proapoptotic signaling

in the prefrontal cortex of adult male rats (Filipović et al.

2011; Zlatković and Filipović 2012). Considering that

CSIS increases the expression of both NOS isoforms in the

prefrontal cortex of adult male rats, whereby oxidative

stress and glutamate can increase NF-jB activation (Pizzi

et al. 2005), a positive feedback loop between glutamate,

NF-jB and NOS changes in the prefrontal cortex may be

involved in the behavioral consequences of stress.

Moreover, a stress-induced shift of redox balance

toward a prooxidant state may activate NF-jB, which

translocates into the nucleus and induces the transcription

Fig. 4 Possible mechanisms that lead to increased oxidative stress in

the hippocampus and prefrontal cortex of adult male rats exposed to

chronic social isolation (CSIS) stress. In the prefrontal cortex, CSIS

causes decreased glutathione (GSH) and manganese superoxide

dismutase (MnSOD), increased glutathione peroxidase (GPx), and

unchanged glutathione reductase (GLR) causing oxidative stress.

Hence, a CSIS-induced shift in the prooxidant-antioxidant balance

toward prooxidant state activates nuclear transcription factor-kappa B

(NF-jB), which stimulates the expression of a variety of genes that

contribute to activation of oxidative/nitrosative and inflammatory

mediators. In contrast, an increase of inducible heat shock protein 70

(HSP70i) in the rat hippocampus indicates a protective effect by

attenuation of the nuclear translocation of NF-jB, suggesting cellular

pathways of stress tolerance that preserve the hippocampus from

molecular damage
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of cyclooxygenase-2 (COX-2), an inflammatory marker.

Our group reported that 3 weeks of social isolation

increased COX-2 protein expression in the prefrontal cor-

tex of adult male rats (Zlatković et al. 2014b). Increased

COX-2 and iNOS protein expression are caused by an

upregulated production of NF-jB (Maes et al. 2007b). The

activation of COX-2 may cause the release of additional

free radicals and inflammatory cytokines (Arimoto and

Bing 2003), as well as the biosynthesis of prostaglandins,

that further contribute to the cellular prooxidant state.

Furthermore, prostaglandin itself may also cause cell

damage by inducing glutamate release from astrocytes or

apoptosis (Vesce et al. 2007). Once expressed, iNOS and

COX-2 may generate large amounts of ROS that mediate

the oxidation of cellular components (Madrigal et al. 2003)

and are involved in the activation of proapoptotic signaling

in the prefrontal cortex. The activation of NF-jB can also

upregulate HO-1 expression (Muñoz-Sánchez and Chánez-

Cárdenas 2014), which may either confer cytoprotection by

converting the prooxidant heme and hemoproteins to the

antioxidants biliverdin and bilirubin, or conversely, pro-

duce carbon monoxide and ferrous iron, which may rein-

force oxidative stress (Song et al. 2012). Prabakaran et al.

(2004) demonstrated that HO-1 was upregulated in the

prefrontal cortex of patients suffering from schizophrenia.

In coculture paradigms, overexpression of glial HO-1

enhanced the vulnerability of nearby neuronal constituents

to oxidative insult (Song et al. 2007). In addition, mito-

chondria have been identified as a selective target for the

protective effects of HSP70 against oxidative injury (Cal-

abrese et al. 2000). The lack of initiation of HSP response

during 3 weeks of social isolation may be a factor of the

Fig. 5 Schematic representation of iNOS-mediated release of NO

and its downstream effects in the cytoplasm of the prefrontal cortex of

socially isolated adult male Wistar rats. In an environment of

oxidative stress, the activation of nuclear factor-kappa B (NF-jB)
leads to increased production of the inducible isoform of nitric oxide

synthase (iNOS), neural isoform of nitric oxide synthase (nNOS), and

proinflammatory mediator cyclooxygenase-2 (COX-2). The increase

in COX-2 expression results in an increase of prostaglandins (PGE)

and inflammatory cytokines, causing inflammation. High concentra-

tions of NO produced by increased iNOS can then interact with the

superoxide anion radical (O2
�-), resulting in the formation of the

neurotoxic radical peroxynitrite (ONOO-). Increased NO can also

covalently bond to protein thiol groups, causing S-nitrosylation of

proteins such as S-nitrosoglutathione. Increased ONOO- is capable of

causing oxidation, hydroxylation and nitration, as well as macro-

molecule damage together with hydroxyl radicals (OH-). Superoxide

is degraded by manganese superoxide dismutase (MnSOD) and then

by catalase and glutathione peroxidase (GPx) with concomitant

oxidation of GSH to GSSG. Glutathione reductase (GLR) catalyzes

the reduction of GSSG back to GSH using reduced nicotinamide

adenine dinucleotide phosphate (NADPH). In the prefrontal cortex of

socially isolated adult male rats, decreased activity of MnSOD may

result in increased O2
�- levels and reinforce oxidative stress
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mitochondria-related proapoptotic cascade and apoptosis in

the prefrontal cortex of adult rats (Filipović et al. 2011).

In contrast to the prefrontal cortex, 3 weeks of social

isolation results in no activation of NF-jB and unaltered

COX-2 protein expression in the hippocampus of adult

male Wistar rats (Zlatković et al. 2014b). Protective

responses triggered in the hippocampus may be mediated

by increased HSP70i protein expression (Zlatković et al.

2014a), which likely keeps NF-jB in an inactive state and

partially prevents greater damage, such as that observed in

the prefrontal cortex (Fig. 4). Previous data have shown

that the overproduction of NO and a depleted redox GSH

status are critical factors in the induction of cytoprotective

HSP70 (Hao et al. 1999; Calabrese et al. 2000). HSP70i

upregulation likely stabilizes the cytoplasmic NF-jB/IjB
complex (Malhotra and Wong 2002) and prevents NF-jB
translocation into the nucleus (Zheng et al. 2008), resulting

in decreased iNOS protein expression (Heneka et al. 2000).

A lack of activated NF-jB levels following CSIS have

been demonstrated to be due to unaltered CORT levels or a

feedback loop of the HSP70i pathway in the chronic stress

state that stabilizes NF-jB. Although nNOS protein

expression has been shown to be upregulated following

3 weeks of social isolation, increased HSP70i showed anti-

apoptotic effects as evidenced by the absence of cleaved

caspase-3 and apoptosis (Kiang 2004), findings also

demonstrated in the hippocampus (Filipović et al. 2011).

Nevertheless, despite a lack of neurotoxicity, an observed

increase in hippocampal NO levels that most likely origi-

nates from nNOS may still be involved in depressive-like

behavior in socially isolated rats (Zhou et al. 2007).

Mitochondria-related proapoptotic signaling
in the prefrontal cortex but not in hippocampus
of socially isolated adult male rats

Chronic stress may induce apoptosis via genomic and non-

genomic actions of elevated GCs, as well as affecting

mitochondrial functions (Zhang et al. 2006). Oxidative

stress is a known initiator of apoptotic signaling, whereby

ROS generated from mitochondria may cause p53-medi-

ated apoptotic signaling independently of its transcriptional

activity (Mihara et al. 2003). p53 is a tumor suppressor

protein and transcription activator that modulates the

expression of numerous target genes that control apoptosis

(Morselli et al. 2008). After activation, p53 may rapidly

translocate from the cytoplasm to mitochondria (de-

tectable at 30 min–1 h) (Moll et al. 2005), where ROS

plays a signaling role in the mitochondrial migration of p53

(Nithipongvanitch et al. 2007). Its translocation causes

permeabilization of the outer mitochondrial membrane by

forming an inhibitory complex with protective Bcl-2

family proteins, resulting in mitochondrial cytochrome

c release to the cytoplasm and caspase activation, trigger-

ing apoptotic cell death (Mihara et al. 2003; Chipuk et al.

2004). Bcl-2 family proteins, whose members may be

antiapoptotic (Bcl-2) or proapoptotic (Bcl-2-associated X

protein, Bax), regulate mitochondrial membrane perme-

ability during apoptosis (Shimizu et al. 1999). Moreover,

an increase in the prosurvival molecule Bcl-2 in neurons

and inhibition of p53 translocation has been linked to

overexpression of HO-1 (Panahian et al. 1999). Specifi-

cally, the interaction between Bcl-2, p53 and HO-1 may

involve the heme-regulating motifs of HO-2 (McCoubrey

et al. 1997). Bax is a soluble protein present predominantly

in the cytosol that, during the induction of apoptosis, shifts

to mitochondrial membranes, causing the release of cyto-

chrome c preceding caspase activation (Kroemer and Reed

2000), while Bcl-2 is present in mitochondria and functions

as a repressor of apoptosis (Reed et al. 1998). The ratio of

Bcl-2/Bax in mitochondria determines the cellular response

to cell death signals transmitted by mitochondria (Desagher

and Martinou 2000). While overexpression of Bcl-2 (a

higher Bcl-2/Bax ratio) protects cells from apoptosis, the

translocation of Bax to the mitochondria induces cyto-

chrome c release that can trigger apoptosis (Hsu et al.

1997). Moreover, sustained NO overproduction via iNOS

can induce apoptosis via mitochondrial Bax translocation

(Ghatan et al. 2000).

Three weeks of CSIS in adult male Wistar rats caused an

increase in protein levels of cytosolic cytochrome c and

cleaved caspase-3 activation, leading to apoptotic cell

death in the prefrontal cortex (Filipović et al. 2011) (Fig. 6,

left part). These results suggest that CSIS compromised

mitochondrial membrane integrity and caused a loss of

mitochondrial function (Cruthirds et al. 2003). Moreover,

proapoptotic signaling initiated by CSIS in the adult male

rat prefrontal cortex enhanced the proapoptotic response to

subsequent acute immobilization or cold stressors by sus-

tained NO overproduction, accompanied by the transloca-

tion of cytosolic p53 and proapoptotic Bax protein to

mitochondria. Also, mitochondrial membrane antiapoptotic

Bcl-2 protein translocation to cytoplasm, mitochondrial

cytochrome c release into the cytoplasm, and caspase-3

activation occurred, causing apoptosis (Filipović et al.

2011). Interestingly, the effects of CSIS following expo-

sure to a subsequent acute stressor were not mediated by

the regulation of Bax as a proapoptotic factor, but rather by

increased cytosolic antiapoptotic Bcl-2 protein, resulting

from its translocation from mitochondria in the prefrontal

cortex (Cao et al. 2001). Given that the Bax/Bcl-2 ratio was

unchanged in the hippocampus and upregulated in the

prefrontal cortex, it is likely that CSIS exerts opposing

actions on Bax and Bcl-2 in a tissue-specific manner

(prefrontal cortex versus hippocampus), indicating that the
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prefrontal cortex is a key target of the maladaptive

response to stress (Cerqueira et al. 2007). In addition,

HSP70i induction in the hippocampus of socially isolated

rats protects neurons from apoptosis (Belay and Brown

2003; Arieli et al. 2003) through its ability to inhibit NF-

jB activation (Malhotra and Wong 2002) (Fig. 6, right

part), increase the Bcl-2 stability during oxidative stress

(Jiang et al. 2009), inhibit translocation of Bax into mito-

chondria, and suppress mitochondrial cytochrome c release

(Didelot et al. 2006). Furthermore, HSP70i interferes with

the formation of the apoptosome (Beere et al. 2000; Saleh

et al. 2000) by preventing apoptosomal caspase activation.

Nonetheless, direct interaction of HSP27 with one or more

components of the permeability transition pore on the

mitochondrial outer-membrane prevents the release of

cytochrome c (Stetler et al. 2008). HSP70i may also inhibit

apoptosome formation and/or the recruitment of caspase-9

to the complex by binding to cytochrome c or Apaf-1

(Bratton and Salvesen 2010). A recent study showed that

oxidative stress increased protein levels of HSP27 only

after 24 h in cultured rat hippocampal neurons (Bartelt-

Kirbach and Golenhofen 2014). Unfortunately, at this time

point, there are no data concerning the role of HSP27 in

CSIS-induced alterations, but this issue should be addres-

sed in future studies.

Beyond the prefrontal cortex and hippocampus

Although this review has focused on the effect of CSIS

on oxidative and nitrosative stress pathways in the pre-

frontal cortex and hippocampus, stress-induced alterations

in other brain regions likely also serve to impair adaptive

stress responses. For example, the amygdala also plays an

important role in social behaviors (Sandi et al. 2008).

Given that the prefrontal cortex has robust projections to

Fig. 6 Schematic representation of p53-mediated mitochondrial

proapoptotic signaling in response to 3 weeks of chronic social

isolation (CSIS) stress and subsequent acute stressors (2 h of

immobilization or cold) in brain regions of adult male Wistar rats.

In the prefrontal cortex (left part), CSIS induces activation of nuclear

factor-kappa B (NF-jB) that translocates to the nucleus followed by

protein expression of cyclooxygenase-2 (COX-2) and inducible nitric

oxide synthase (iNOS) that leads to an overproduction of nitric oxide

(NO), causing oxidative/nitrosative state. Moreover, CSIS in the

prefrontal cortex reinforced the proapoptotic response to

aforementioned subsequent acute stressors via p53 mitochondrial

translocation, which is followed by translocation of cytosolic Bcl-2-

associated X protein (Bax) to mitochondria and B-celllymphoma-2

(Bcl-2) from the mitochondrial membrane to the cytoplasm, mito-

chondrial cytochrome c release into the cytoplasm, and caspase-3

activation. In contrast, the upregulation of inducible heat shock

protein 70 (HSP70i) inhibits NF-jB activation that may provide

cellular protection against CSIS-induced oxidative/nitrosative stress

in the rat hippocampus (right part), as well as apoptosome formation,

preventing caspase-3 activation and apoptosis
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the amygdala (Del Arco and Mora 2009), initiating a

glucocorticoid cascade through the HPA axis (Jankord

and Herman 2008), dysregulation of amygdalar function

may also be associated with anxiety and mood disorders.

For example, increases in anxiety-like behavior are

associated with a loss of GABAergic interneurons in the

basolateral amygdala (Truitt et al. 2009) and reduced

inhibitory synaptic transmission (Chen et al. 2013). In

fact, hyperactivity of the amygdala has been observed in

patients with social anxiety disorder (Phan et al. 2006).

The entorhinal cortex, which has extensive reciprocal

connections with the hippocampus and amygdala (Pitkä-

nen et al. 2000), has also been demonstrated to play a role

in psychosocial stress (Blanchard et al. 1991; Lucassen

et al. 2001) and the regulation of HPA axis activity

(Umegaki et al. 2006; Zhu et al. 2008), though its specific

function during social isolation has only been addressed

in a few studies. For example, in mice, 4 weeks of social

isolation significantly lowered serotonin (5-HT1A) post-

synaptic receptor densities in the frontal and entorhinal

cortex, as well as in limbic regions (Schiller et al. 2003).

Interestingly, the amygdala and entorhinal cortex are

necessary for the processing of complex constructs such

as emotional learning (Sah et al. 2003; Green and

McCormick 2013) and spatial cognition (Burgess 2008;

Kunz et al. 2015), respectively, which are altered fol-

lowing exposure to chronic stress (Avital et al. 2006;

Green and McCormick 2013) and may be relevant to

CSIS. Thus, further studies characterizing the role of

pathways mediating CSIS in these and other brain regions

Fig. 7 Maladaptive stress response in the prefrontal cortex of

chronically isolated rats. Chronic social isolation stress compromises

hypothalamic-pituitary-adrenocortical (HPA) axis functioning and

causes oxidative and nitrosative stress, likely triggered by nuclear

factor-kappa B (NF-jB) activation and concomitant inducible nitric

oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) upregulation,

which results in increased NO and prostaglandin (PGE) production. In

addition, NADPH oxidase (NOX)-derived reactive oxygen species

(ROS), together with a compromised antioxidative defense contribute

to a cellular prooxidant state. Superoxide anion radical (O2
�-) may

either react with NO and form radical peroxynitrite (ONOO-), which

negatively affects the activity of manganese superoxide dismutase

(MnSOD), or may be processed by copper-zinc superoxide dismutase

(CuZnSOD) or MnSOD and be converted to hydrogen peroxide

(H2O2). A social isolation-induced decrease in catalase (CAT)

activity contributes to H2O2 accumulation. A prooxidant environment

causes depletion of glutathione GSH, a major redox buffer, which

together with an impared peroxidase-reductase system exacerbates the

difficulty in responding to prooxidative insult and causes accumula-

tion of peroxidizable products promoting apoptotic signaling.

Increased levels of NO promote mitochondrial Bcl-2-associated X

protein (Bax) and p53 translocation; ROS and p53 cause mitochon-

drial membrane permeabilization which leads to cytochrome c release

in the cytoplasm, apoptosome formation, and caspase-3 activation.

Finally, all described changes may be manifested as changes in

behavior, such as depressive- and anxiety-like behavior and behav-

ioral despair. Numbers indicate proposed inducible heat shock protein

70 (HSP70i)-mediated protection in the hippocampus: 1inhibition of

NF-jB activation and NF-jB-dependent gene expression; 2inhibition

of Bax translocation into mitochondria, cytochrome c release in the

cytoplasm, and prevention of apoptosomal caspase activation
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will complement the findings discussed here in the pre-

frontal cortex and hippocampus.

Conclusion

Exposure of an organism to chronic psychosocial stress

may lead to activation of the HPA axis and increased

release of GCs, causing oxidative stress that is impli-

cated in several mental disorders, including depression

and anxiety. However, adult male Wistar rats exposed to

CSIS for 3 weeks showed unchanged serum CORT

levels that may illustrate the mechanism underlying the

glucocorticoid paradox, in which a state of oxidative

stress might also exist under CORT levels similar to

basal values. Moreover, a prooxidant state may, at least

in part, result from the sustained overproduction of NO

and increased iNOS protein expression. Furthermore,

CSIS-induced oxidative and nitrosative stress in the rat

prefrontal cortex was mediated by NF-jB activation

accompanied by an increased iNOS protein expression

which compromised antioxidative enzyme activity.

Mitochondrial proapoptotic signaling initiated by CSIS

in the prefrontal cortex was reinforced by subsequent

acute stressor via p53 mitochondrial translocation, Bax

and Bcl-2 proteins redistribution between mitochondrial

and cytoplasmic compartments, mitochondrial cyto-

chrome c release into the cytoplasm, and the activation

of caspase-3, causing apoptosis (Fig. 7). In contrast, the

upregulation of HSP70i protected rat hippocampus from

CSIS-induced neurotoxicity. The differential regulation

of NF-jB, iNOS and COX-2 following CSIS may be one

functional difference between the prefrontal cortex and

hippocampus, as well as an indicator of differential

sensitivity of these rat brain structures to oxidative

stress. The observed different thresholds for stress sus-

ceptibility of the prefrontal cortex and hippocampus may

also be due to alternative signaling pathways operating

in these brain regions (Mizoguchi et al. 2003). All

aforementioned conditions may compromise the adaptive

stress responses in the hippocampus and prefrontal cor-

tex of adult male rats that are closely related to behav-

ioral depressive- and anxiety-like symptoms. Hence,

oxidative and nitrosative mechanisms may be potential

targets for therapeutic strategies and the development of

drugs for the treatment of stress-induced depressive/

anxious states.
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glucocorticoid receptor and heat shock protein 70 levels in rats

exposed to acute, chronic or combined stress. Neuropsychobi-

ology 51:107–114. doi:10.1159/000084168
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Muñoz-Sánchez J, Chánez-Cárdenas ME (2014) A review on

hemeoxygenase-2: focus on cellular protection and oxygen

response. Oxid Med Cell Longev 2014:604981. doi:10.1155/

2014/604981
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