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Abstract The coupling of anatomical and functional

connectivity at rest suggests that anatomy is essential for

wake-typical activity patterns. Here, we study the devel-

opment of this coupling from wakefulness to deep sleep.

Globally, similarity between whole-brain anatomical and

functional connectivity networks increased during deep

sleep. Regionally, we found differential coupling: during

sleep, functional connectivity of primary cortices resem-

bled more the underlying anatomical connectivity, while

we observed the opposite in associative cortices. Increased

anatomical–functional similarity in sensory areas is con-

sistent with their stereotypical, cross-modal response to the

environment during sleep. In distinction, looser coupling—

relative to wakeful rest—in higher order integrative cor-

tices suggests that sleep actively disrupts default patterns of

functional connectivity in regions essential for the

conscious access of information and that anatomical con-

nectivity acts as an anchor for the restoration of their

functionality upon awakening.

Keywords Sleep � Consciousness � Anatomical

connectivity � Functional connectivity

Introduction

The brain guarantees efficient and flexible behavior by a

dynamic functional interplay of neurons fixed in an

anatomical network structure. The interaction between

structure and function successfully responds to immediate

environmental demands as well as chronic challenges

including physical damage (Park and Friston 2013). A

functional reorganization occurs during the steps from

awake conscious awareness to reduced consciousness

during deep sleep—including its spontaneous reversal.

What are some principles of such adaptive behavior?
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Recently, we introduced the hypothesis that the

anatomical connectivity of the brain influences functional

patterns of activity from wakefulness to sleep (Tagliazuc-

chi et al. 2013b), precluding a more complete breakdown

of connectivity during states of deep unconsciousness

(Boly et al. 2008). Indeed, it is well established that

functional connectivity during wakeful rest can be pre-

dicted by the underlying anatomical connections (Hag-

mann et al. 2008; Greicius et al. 2009). Simple dynamical

models unfolding on realistic anatomical connectivity can

produce connectivity patterns with high resemblance to

empirical observations (Honey et al. 2009; Haimovici et al.

2013; Deco et al. 2014; Stam et al. 2015). Modifications of

this anatomical–functional interplay from wakefulness to

deep sleep remain to be demonstrated empirically, as well

as its relationship with the loss and recovery of conscious

awareness we experience daily.

It is becoming increasingly apparent that the difference

between anatomical and functional connectivity is crucially

important to understand the context-sensitive and dynamic

aspect of self-organised neuronal fluctuations. We used

sleep to study state-dependent divergence between

anatomical and functional connectivity. In other words, we

measured the difference between anatomical and functional

connectivity as a function of different brain states (depth of

sleep as measured electrophysiologically). We hoped to see

a global loss (sparsification) of functional connectivity

during sleep converging towards the sparse connectivity

embodied by anatomical connections. This would be con-

sistent with a loss of (de-synchronised) complex dynamics

associated with conscious wakefulness.

For the assessment of this hypothesis in human subjects,

we took advantage of the combination of three in vivo non-

invasive imaging techniques. Blood-oxygen-level depen-

dent (BOLD) functional magnetic resonance imaging

(fMRI) facilitated the study of inter-regionally correlated

brain activity throughout the brain. Simultaneous elec-

troencephalography (EEG) was used for the detection of

different stages of sleep (AASM 2007). Diffusion weighted

imaging (diffusion tensor imaging, DTI) allowed the

identification of anatomical connections in the brain

enabling the in vivo examination of structural networks.

Based on this data, we studied the development of

anatomical–functional similarity from wakefulness to deep

sleep in 15 healthy participants exhibiting sufficient

amounts of wakefulness and all NREM sleep stages. We

first analyzed this similarity on a global basis; we then

moved towards a regional characterization aiming to

evaluate system-specific behavior.

Materials and methods

DTI connectivity network

To construct the DTI network with 401 nodes, we

obtained diffusion tensor imaging data from 56 healthy

subjects (mean age 32 years, 18 female) and performed

whole brain deterministic tractography. First, we divided

cortical and sub-cortical grey matter into 401 even-sized

regions of interest following the method presented in

Zalesky et al. (2010), consisting of the homogenous

subdivision of regions in the AAL template (Tzourio-

Mazoyer et al. 2002), thus resulting in a less coarser

parcellation that still respects anatomical landmarks.

Afterwards, we constructed a network by creating a link

between two regions in this parcellation if the number of

streamlines between them was significantly greater than

zero across the group of subjects (p\ 0.01, rank sum test,

FDR-corrected). Further details on DTI acquisition, pre-

processing and network construction can be found in

Crossley et al. (2014).

Participants and sleep statistics

71 healthy and non-sleep deprived participants (written

informed consent, approval by the local ethics committee,

participants not suffering from psychiatric or neurological

conditions, or sleep disturbances) took part in the study.

Afterwards a sub-sample of 15 subjects was selected based

on the presence of at least 100 fMRI volumes (208 s) of

wakefulness and each sleep stage, thus allowing for paired

comparisons. The total time spent in each sleep stage

within this subset was as follows (mean ± SD):

Wake = 11.8 ± 6.2 min, N1 sleep = 8.5 ± 2.6 min, N2

sleep = 14.5 ± 5.9 min, N3 sleep = 17 ± 8.3 min. The

mean sleep epoch durations were as follows:

Wake = 3.9 ± 2.5 min, N1 sleep = 2.8 ± 2.7 min, N2

sleep = 4.3 ± 2.3 min, N3 sleep = 10.4 ± 7.5 min. For

each sleep stage, fMRI data were concatenated along all

sleep epochs for the functional connectivity analyses.

Within this sub-sample, 9 female and 6 male partici-

pants were included (23 ± 3 years, all right handed, not

taking medications including stimulants and sedatives).

The day of the study all participants reported a waking time

between 5:00 AM and 11:00 AM (median: 8:00 AM). The

day before the study, participants reported a sleeping time

between 10:00 PM and 2:00 AM (median: 11:30 PM).

These values remained similar throughout the 6 days prior

to the experiment, as reported by the participants.
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EEG-fMRI acquisition

Scanning sessions took place during the evening (the

experimental sessions started at 7:00 PM, functional MRI

scanning started between 8:00 PM and 9:00 PM). We

instructed subjects to close their eyes and lie still and

relaxed. EEG via a cap (modified BrainCapMR, Easycap,

Herrsching, Germany) was recorded during fMRI

acquisition (1505 volumes of T2*-weighted echo planar

images, TR/TE = 2080/30 ms, matrix 64 9 64, voxel

size 3 9 3 9 2 mm3, distance factor 50 %; FOV

192 mm2) at 3 T (Siemens Trio, Erlangen, Germany)

with an optimized polysomnographic setting [chin and

tibial EMG, ECG, EOG recorded bipolarly (sampling

rate 5 kHz, low pass filter 1 kHz), 30 EEG channels

recorded with FCz as the reference (sampling rate 5 kHz,

low pass filter 250 Hz), and pulse oxymetry, respiration

recorded via sensors from the Trio (sampling rate

50 Hz)] and MR scanner compatible devices (BrainAmp

MR?, BrainAmp ExG; Brain Products, Gilching, Ger-

many). In order to reduce EEG artifacts due to vibrations,

the scanner helium pump was turned off during the

experiments.

MRI and pulse artifact correction were performed based

on the average artifact subtraction (AAS) method (Allen

et al. 1998) as implemented in Vision Analyzer2 (Brain

Products, Germany) followed by objective (CBC parame-

ters, Vision Analyzer) ICA-based rejection of residual

artifact-laden components after AAS resulting in EEG with

a sampling rate of 250 Hz. EEG was sleep staged by an

expert following AASM criteria (AASM 2007).

fMRI data pre-processing

Using Statistical Parametric Mapping (SPM8, www.fil.ion.

ucl.ac.uk/spm) EPI data were realigned, normalized (MNI

space) and spatially smoothed (Gaussian kernel, 8 mm3

full width at half maximum). Data were re-sampled to

4 9 4 9 4 mm resolution to facilitate further processing.

Cardiac, respiratory [both estimated using the RETRO-

ICOR method, (Glover et al. 2000)] and head motion

realignment time series (3 head displacement parameters, 3

head rotation parameters and their first three derivatives,

resulting in a total of 24 motion realignment regressors)

were partialled out via linear regression. Finally, data were

band-pass filtered in the range 0.01–0.1 Hz (Cordes et al.

2001) using a sixth-order Butterworth filter. The frame-

wise displacement (Power et al. 2012) and the variance

explained by the RETROICOR regressors were not found

to be significantly different between wakefulness and

NREM sleep stages (see the supplementary information for

details).

Functional network construction

We constructed functional networks by extracting average

BOLD signals from regions of interest and computing the

linear correlation values among all pairs of signals. This

procedure results in the correlation matrix Cij, given by,

Cij ¼
\ðxi �\xi [ Þðxj �\xj [ Þ[

rirj
ð1Þ

where xi;j are BOLD signals at ROIs i and j, ri;j are the

standard deviations of the signals and \, [ is temporal

averaging. We defined our functional adjacency matrix

based on positive correlations; since we did not regress the

global fMRI signal, we precluded strong negative func-

tional connectivity (Murphy et al. 2009). In this work, the

ROIs were those used in the parcellation leading to the

construction of the DTI network.

For comparisons with anatomical connectivity networks,

the correlation matrices Cij were thresholded to yield bin-

ary adjacency matrices Aij such that Aij ¼ 1 if Cij [ q and

Aij ¼ 0 otherwise. The parameter q was chosen to fix the

ratio of present connections in the network (given by
P

i[ j Aij) to the total possible number of connections. This

ratio is termed link density. It is important to fix the link

density when comparing two networks (or in this case, their

similarity with a third network, i.e. the anatomical con-

nectivity network) since otherwise differences could arise

because the means of the respective Cij are different (and

therefore the number of non-zero entries in Aij) and not

because connections are re-organized.

Since the link density is a free parameter, we repeated

the analyses for a range of link densities (between 0.01 and

0.2 in steps of 0.01 for the global network similarity

between anatomy and function). When comparing func-

tional networks to their anatomical counterparts, the chosen

link density ranges always included the link density of the

DTI network.

Similarity measures between functional

and anatomical connectivity

We applied two different metrics to measure the similarity

between functional and anatomical networks. For binary

adjacency matrices we computed the linear correlation (R)

between them. R[ 0 is obtained if the matrices are cor-

related (i.e. the presence of a link in one network predicts

the presence of the same link in the other network and vice

versa). R\0 is obtained if the matrices are anti-correlated

(i.e. the presence of a link in one network predicts the

absence of the same link in the other network and vice

versa). For binary vectors, the linear correlation is formally

equivalent to the Phi coefficient /, which is understood in
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terms of a contingency table. For two binary signals xi and

yi, there are four possible combinations: ðxi ¼ 0; yi ¼ 0Þ,
ðxi ¼ 1; yi ¼ 0Þ, ðxi ¼ 0; yi ¼ 1Þ, ðxi ¼ 1; yi ¼ 1Þ. If N00,

N10, N01, N11 denote the number of times each of these four

possibilities occur then,

R ¼ / ¼ N11N00 � N10N01P
i xi

P
ið1 � xiÞ

P
i yi

P
ið1 � yiÞ

ð2Þ

The second similarity metric between functional and

anatomical networks was based on comparing the modular

decomposition of networks. Intuitively, a module is a

group of nodes having denser within-group connections

compared to the connections with other modules. A pos-

sible way to obtain the modular structure of a network is to

maximize the modularity Q, which estimates the difference

between the number of intra-module links and the expected

number (for the same partition) in a random network of the

same size (Newman and Girvan 2004). Given a partition of

the nodes into subsets, Q is defined as,

Q ¼ 1

2L

X

i;j

dði; jÞ Aij �
kikj

2L

� �

ð3Þ

In this equation the sum comprises all nodes in the

network, L equals the total number of links (
P

i[ j Aij),

ki ¼
P

i Aij is the degree (number of links attached to each

node) and d i; jð Þ ¼ 1 if nodes i and j belong to the same

subset of the partition, and 0 otherwise. We applied a

modularity maximization algorithm by Newman (2006)

based on the eigenspectrum of the modularity matrix, as

implemented in the Brain Connectivity Toolbox (Rubinov

and Sporns 2010).

Once we identified the modular structure of anatomical

and functional networks, we compared them using the

corrected-for-chance Rand Index (Rand 1971), a measure

of modular decomposition (or clustering) similarity rang-

ing between 0 (no agreement in the modular structure) and

1 (complete agreement).

Similarity between functional and anatomical

connectivity neighborhoods

For a given link density we define the connectivity

neighborhood of node i as nj ¼ Aij. According to this

definition, the jth entry of nj is 1 if nodes i and j share a

direct connection in the network and is zero otherwise.

This definition is motivated by the concept of a ‘‘connec-

tivity fingerprint’’ associated with each brain area, intro-

duced by Passingham and colleagues (Passingham et al.

2002).

We obtained the connectivity neighborhood for each

node in the anatomical network as well as in the individual

functional connectivity networks across all conditions, and

did this for a range of local link densities of the connec-

tivity of each node with the network. To estimate the

similarity between anatomical and functional connectivity

neighborhoods we computed the Hamming distance

between the respective binary vectors ni, normalized by

their length. The Hamming distance is defined as the

number of substitution of symbols (in this case 0 or 1)

needed to transform one sequence into another and vice

versa. In this case, the Hamming distance equals twice the

number of connections that must be re-wired to transform

one connectivity neighborhood into the other (since re-

wiring a link can be achieved by two symbol substitutions).

We demonstrate a schematic of this procedure in Fig. S5.

Thus, high Hamming distances imply a stronger departure

from the underlying anatomical connectivity.

Statistical testing

We performed paired t test comparisons between wake-

fulness and all NREM sleep stages. In the analysis of

regional function-anatomy differences results were repor-

ted at p\ 0.05 FDR, corrected for multiple comparisons

separately for each contrast (Storey 2002).

Visualization

3D renderings of network nodes and surface data were

performed using the BrainNet software (Xia et al. 2013).

Results

Throughout the following sub-sections we present results

derived from metrics of global and local similarity of

functional connectivity with the underlying anatomical

network. We first establish the preservation of global

anatomical–functional similarity during light sleep [N1

sleep (AASM 2007)] and the increase of global anatomi-

cal–functional similarity in deeper sleep stages (N2, N3)

compared to wakefulness. We then move from whole-brain

networks to a finer (local) characterization of the regions

involved and demonstrate differential regional behavior.

Similarity between global functional and anatomical

connectivity networks

The correlation matrices between the BOLD signals from

all 401 regions of interest are shown in Fig. 1 for wake-

fulness and all sleep stages. The binary adjacency matrix of

the anatomical connectivity network is shown below the

diagonal of the wakefulness correlation matrix. These

matrices display in the intersection of the ith row and jth

column whether a connection between the ith and jth nodes
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exists (adjacency matrix) or the functional connectivity

between the associated BOLD time series (correlation

matrix). The significant functional connectivity differences

between wakefulness and sleep (and whether they occur in

the presence or absence of anatomical connectivity) are

presented below the diagonal of the remaining matrices in

Fig. 1.

Based on this information, we first studied the similarity

between whole-brain anatomical and functional connec-

tivity networks across wakefulness and all NREM sleep

stages. Two (potentially simultaneous) scenarios will

increase global similarity between functional connectivity

and the underlying anatomical backbone: firstly, a decrease

of functional connectivity between regions not directly

connected anatomically and secondly an increase in func-

tional connectivity between regions sharing a direct

anatomical link, as illustrated in Fig. 2a. We tested for this

effect by calculating the probability of finding decreased

functional connectivity during sleep conditional to the lack

of anatomical connectivity; P(decrease|uncon-

nected) = 0.023 and 0.154 for N2 and N3 sleep, respec-

tively. This was indeed 28 and 18 % (N2 and N3 sleep,

respectively) greater than that of finding decreased func-

tional connectivity conditional to the presence of an

anatomical connection; P(decrease|connected) = 0.016

and 0.125 for N2 and N3 sleep, respectively; see Fig. 2a. In

addition to this effect of pruning the functional network

towards anatomical links, the probability of sleep increas-

ing functional connectivity given anatomical links was

P(increase|connected) = 0.0108 and 0.0078 (for N2 and

N3 sleep), 118 and 192 % higher than that of finding

connectivity increases in the absence of anatomical links,

P(increase|unconnected) = 0.0052 and 0.0012 for N2 and

N3 sleep; see Fig. 2a.

Fig. 1 Functional connectivity changes during sleep in relation to

anatomical connectivity. Average correlation (R) matrices between

the BOLD signal time series of all 401 regions of interest. Results are

presented for wakefulness and all sleep stages. The adjacency matrix

of the anatomical connectivity network is shown below the diagonal

of the wakefulness correlation matrix. Significant differences between

sleep and wakefulness are shown below the diagonal of the other

matrices (p\ 0.05, paired t test, false discovery rate (FDR) controlled

for multiple comparisons) and color-coded depending on the presence

of underlying anatomical connectivity
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To further quantify these observations we introduced a

metric of network similarity given by the correlation

coefficient between binarized functional and anatomical

adjacency matrices and analyzed link densities of the

functional connectivity network ranging from 0.01 to 0.2 in

steps of 0.01. This range included the (fixed) density of the

anatomical network. Results are plotted in Fig. 2c. Con-

sistent with our previous observations, we observed an

increase in global functional–anatomical connectivity

coupling relative to wakefulness only in the two deepest

sleep stages (N2 and N3) but not in N1 sleep. This result

held for all link densities under consideration.

Similarity between the modular structure

of functional and anatomical networks

Both anatomical and functional networks are modular, with

groups of nodes having dense connections between them

and sparser connections with other, similarly well-

connected groups of nodes. We applied a module detection

algorithm to functional and anatomical networks and

studied the similarity of the resulting modular structure

across wakefulness and all NREM sleep stages. To com-

pare the overlap between different partitions of a network

into modules we employed the corrected-for-chance Rand

Index, which reaches the maximum value of 1 for equal

partitions.

Figure 3a shows the modular decompositions of average

functional connectivity networks during wakefulness and

all sleep stages. In this visualization, the adjacency matri-

ces were thresholded to match the link density of the

anatomical connectivity network.

The Rand index between the modular structure of

functional and anatomical networks is shown in Fig. 3b as

a function of link density for wakefulness vs. all NREM

sleep stages. We found an increased Rand Index in N2 and

N3 sleep (i.e. better structure–function match) compared to

wakefulness; we observed this for almost all the explored

Fig. 2 Deep sleep increases the

similarity between global

functional and anatomical

connectivity networks.

a Illustration of how the

selective breakdown of

functional connections, which

are not associated with

structural links, and the

strengthening of those, which

are associated with such leads to

increased similarity of

anatomical and functional

connectivity networks during

deep sleep. b Probability of

finding functional connectivity

(FC) decreases and increases

(sleep vs. wakefulness) given

the presence or absence of

anatomical connectivity.

c Similarity (Pearson’s

correlation coefficient between

binary adjacency matrices)

between functional and

anatomical connectivity

matrices as a function of link

density, plotted for N1, N2 and

N3 sleep. Error bars are ±SEM.

We observed significant

increases only for N2 and N3

versus wakefulness
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link densities. Differences were present in N1 sleep vs.

wakefulness, too, also in the form of increased similarity

between functional and anatomical connectivity networks

but with a lower likelihood and for fewer link density

values.

Similarity between local functional and anatomical

connectivity

We can obtain a more detailed picture of the brain regions

associated with increased or decreased function-anatomy

similarity by studying the local connectivity of single

nodes in the network. For a given link density within the

neighborhood, the connectivity neighborhood of a node is

defined as a binary vector representing those nodes directly

connected with it. This local connectivity description of a

single node can be obtained both in terms of anatomical

and functional connections. Then, the similarity between

the functional and anatomical connectivity neighborhoods

can be measured by computing the Hamming distance

between both binary vectors: the larger the distance, the

less similar the functional neighborhood to the anatomical

neighborhood. The Hamming distance is the number of

symbol substitutions required to transform one vector into

Fig. 3 The modular organization of functional connectivity networks

is reshaped towards that of anatomical connectivity networks during

deep sleep. a The modular structure of average functional connec-

tivity matrices obtained from wakefulness, N1, N2 and N3 sleep.

Different colors of nodes and links code for module membership

(inter-modular links are shown in grey). b Similarity between the

modular decomposition of functional and anatomical connectivity

networks (quantified by the corrected-for-chance Rand Index) as a

function of link density. Results are plotted separately for wake vs.

N1, N2 and N3 sleep. Error bars are ±SEM
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the other. In this case, it equals twice the number of con-

nections that must be re-wired to transform one connec-

tivity neighborhood into another (we show a schematic of

the procedure followed to compute the Hamming distance

in Fig. S5).

We present the results of this analysis in Fig. 4 for

wakefulness vs. N2 sleep and in Fig. 5 for wakefulness vs.

N3 sleep. Statistical comparisons (at a level of p\ 0.05,

paired t test, FDR-controlled for multiple comparisons) did

not reveal any significant difference for wakefulness vs. N1

sleep, but widespread changes appeared in comparison to

N2 sleep (Fig. 4) and N3 sleep (Fig. 5). To visualize the

anatomical areas where these differences were located, we

mapped the nodes to the brain parcellation serving as the

basis for the anatomical connectivity network. Figures 4a

and 5a report increases in the anatomical–functional dis-

tances, Figs. 4b and 5b decreases (for any link density in

both cases). Panel D of Figs. 4 and 5 shows a summary of

AAL regions (Tzourio-Mazoyer et al. 2002) where changes

were observed, ranked by percentage of nodes within each

region presenting statistically significant differences. We

found decreases in the anatomical–functional Hamming

distance, i.e. increased similarity in nodes comprising the

sensorimotor, visual and auditory networks. Interestingly,

we also revealed a set of regions with increased Hamming

distance (i.e. decreased similarity); these regions did not

reside inside specific RSN but comprised mostly midline,

inferior temporal, frontal and parietal areas. However, they

overlapped with the default mode and executive control

networks in N3 sleep. The patterns of nodal average

Euclidean distance to all other nodes in the network

(Fig. S2) do not resemble the results in Figs. 4 and 5,

suggesting that the region-specific distribution of nodal

distances does not drive these results.

Result robustness against subcortical influence

and motion-induced variance

Extensive changes in subcortical neuromodulatory drive to

cortical sites might induce artifactual changes in functional

connectivity during sleep (Lee and Dan 2012). We exclu-

ded the possibility that an interaction between sleep stage

and such subcortically modulated connectivity induced

shifts in anatomical–functional coupling (Fig. S3). For this,

we reproduced our core results computing functional con-

nectivity via partial correlations including left and right

thalamus (from the AAL template) and brainstem [MNI

coordinates (0, -22, -34)] time series as partial regressors.

In addition, we assessed whether our main results

exhibited correlations with individual frame-wise dis-

placement (FD) values, as well as with the variance

explained by the RETROICOR regressors. We present the

results in Figs. S6 and S7 of the supplementary informa-

tion. Not any significant correlations between FD values

and anatomical–functional coupling (for all link densities)

and anatomical–functional neighborhood similarities were

present. For the variance explained by the RETROICOR

regressors, few and isolated nodes presented correlations

with their anatomical–functional neighborhood similari-

ties; however, these were not widespread enough to explain

the patterns presented in Figs. 4 and 5 and comprised dif-

ferent anatomical nodes.

Finally, the main results were reproduced after erasing

volumes associated with relatively large ([0.4 mm)

framewise displacement values (Power et al. 2012). Results

are shown in Fig. S4. There were not any significant dif-

ferences between wakefulness and all NREM sleep stages

in terms of the number of erased volumes (see supple-

mentary methods section).

Discussion

We investigated the relationship between the brain’s

anatomical connectivity and functional connectivity in the

context of different degrees of conscious awareness. For

this purpose we adopted deep NREM sleep as a model of a

reversible and physiological unconscious state and exam-

ined the similarity between functional and anatomical

connectivity networks across all NREM sleep stages vs.

wakefulness. Globally, we found a correspondence

between anatomical and functional connectivity during

wakefulness, which on average increased with deepening

sleep. Supporting the connection of our results to dimin-

ished conscious awareness, differences were predominantly

observed during deep (N2 and N3) sleep, but not during

light (N1) sleep, the latter being characterized by richer

conscious experiences (see Tagliazucchi et al. 2013a for a

discussion). These results are in line with a recent study in

monkeys also showing that structure–function similarity

was higher in the state of reduced conscious awareness

(anesthesia) than during wakeful rest (Barttfeld et al.

2015). Our study reaches further in that we identify dif-

ferential regional behavior: compared to wakefulness, pri-

mary auditory, sensory, motor and visual cortices showed

an increased functional–structural coupling during the

sleep stages N2 and N3 while deeper midline and frontal-

parietal regions exhibited a dissociation of function from

structure.

Our observations link longstanding views on develop-

ment and consciousness (Herrick 1893) with modern con-

cepts of structure–function interaction (Park and Friston

2013) and their relationship with brain dynamics (Chialvo

2010; Haimovici et al. 2013).
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Fig. 4 Differential coupling

between functional and DTI

connectivity networks in

sensorimotor regions and

frontal, midline, parietal and

associative cortices during N2

sleep vs. wakefulness.

a Rendering of the nodes for

which a significant (p\ 0.05,

paired t test, FDR corrected for

multiple comparisons) increase

(red) in the Hamming distance

between anatomical and

functional connectivity

neighborhoods was found. The

outlines of five canonical RSN

from Beckmann et al. (2005) are

superimposed onto the

renderings. b The same

information as in panel B but for

decreases (blue) in the

Hamming distance between

anatomical and functional

connectivity neighborhoods.

c AAL nodes (see Table S1 and

Fig. S10 for region locations)

ranked for the percentage of the

nodes they contain with a

Hamming distance above the

threshold of statistical

significance. Vertical bars are

color-coded for the RSN

membership (DMN and

executive control for

wake\sleep and sensorimotor

RSN for wake[sleep; in both

cases grey for none) of the

corresponding AAL region (see

Table S1 for abbreviations), as

determined by the position of its

center of mass
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Fig. 5 Differential coupling

between functional and DTI

connectivity networks in

sensorimotor regions and

frontal, midline, parietal and

associative cortices during N3

sleep vs. wakefulness.

a Rendering of the nodes for

which a significant (p\ 0.05,

paired t test, FDR corrected for

multiple comparisons) increase

(red) in the Hamming distance

between anatomical and

functional connectivity

neighborhoods was found. The

outlines of five canonical RSN

from Beckmann et al. (2005) are

superimposed onto the

renderings. b The same

information as in panel B but for

decreases (blue) in the

Hamming distance between

anatomical and functional

connectivity neighborhoods.

c AAL nodes ranked for the

percentage of the nodes they

contain with a Hamming

distance above the threshold of

statistical significance (same as

in Fig. 4c)
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Developmental considerations on structure

and function

The human brain distinguishes itself from that of close

relatives like macaques or chimpanzees in its unique size

and in its costly brain wiring (Bullmore and Sporns 2012;

Hofman 2014; Rilling 2014). Another unique characteristic

is its degree of gyrification, with high levels of connectivity

suggested as one driving force of increased cortical folding

(Van Essen 1997; Zilles et al. 2013). The regionally dif-

ferential behavior of the structural–functional interplay we

observed in primary cortices versus higher cerebral asso-

ciative cortices parallels development. Phylogenetically,

the associative parietal cortex has developed later than the

primary motor, sensory and prefrontal cortices, and is

estimated to have expanded by an order of magnitude in the

human lineage compared to the macaque. In contrast, early

sensory areas expanded far less. Ontogenetically, fiber

tracts in the regions of high evolutionary expansion con-

tinue to grow into the third decade of life, and this postnatal

human maturation of connectivity may further cortical

folding (Kaas et al. 2013; Van Essen 2013; Zilles et al.

2013). In humans and the great apes, the early sensory and

motor areas are heavily myelinated, in contrast to lateral

temporal, parietal, and prefrontal regions (Van Essen

2013). Hence, primary cortices are phylogenetically old,

have fast conducting fiber tracts and conclude their matu-

ration prenatally. Such features reflect the evolution of a

long-preserved efficient system with a finite number of

degrees of freedom. At the same time, the mentioned

properties contrast those of brain regions supporting cog-

nitive functioning with a much less constrained functional

repertoire which cannot be hard-wired (Bullmore and

Sporns 2012).

We found that functional connectivity in sensory(-mo-

tor) cortices during wakefulness is less bound to anatomy

than during sleep, which might reflect the integration of

primary sensory input and the planning of motor output

during wakefulness. This could augment the range of the

sensory-motor operations beyond those already mapped out

anatomically, thus driving functional connectivity away

from the basic structural connections per se providing mere

essential functionality. Vice versa, with ceasing conscious

awareness, higher order processing is reduced including

frontal-parietal feedback to primary cortices (Boly et al.

2011), and functional activity falls back towards the

anatomical web like we observed during sleep. Although

hardwiring also exists for the associative cortices (Greicius

et al. 2009), it is phylogenetically and ontogenetically more

dynamic than that of the sensory-motor systems. This

diversity might allow for human individuality and the

variety of subjective conscious experiences shaping further

throughout one’s lifetime, ranging from deep

unconsciousness to their expansion in the psychedelic state

(Tagliazucchi et al. 2014). Still, only a functional structure

superseding, i.e. departing from, the underlying anatomy

guarantees conscious processing (Tagliazucchi et al.

2013a). However, why then, did we observe a further

deviation of functional from structural connectivity in

associative cortices during deep sleep compared to

wakefulness?

Conscious by default?

Let us assume that the high similarity of the functional to

the structural connectivity represents a rather basic, or

‘‘default’’ state of a system’s activity as we argued in the

context of the primary sensory-motor regions. Accordingly,

the functional connectivity of the associative midline,

inferior temporal, frontal and parietal cortices being closer

to structural connectivity during wakefulness than during

sleep would suggest that for these regions the default state

is wakefulness, i.e. conscious awareness. This in turn

would imply reduced conscious awareness as an actively

induced condition—even during sleep—during which the

system is driven beyond the connectivity repertoire inher-

ent to anatomy. We previously demonstrated activity in a

most similar set of regions mediating sleep protection

versus arousal during K-complexes (KC), an electrophys-

iological hallmark of deeper sleep (Jahnke et al. 2012).

Connectivity analysis revealed primary sensory cortex as

the first region influenced during KC and that midline

regions activated in association with the sleep protecting

part of the KC. We concluded that KC-associated activa-

tions in sensory areas suggest the existence of low level

information processing in sleep during KC interacting with

the anterior insula reflecting periodical monitoring of the

environment with basic information processing facilitating

either an arousal (to environmental threat) or sleep pro-

tection (Jahnke et al. 2012). This would be one example of

how an active process originating in the primary sensory

cortices drives activity in higher order brain regions during

sleep.

The concept of an active process inhibiting conscious

awareness could explain how consciousness can be

regained spontaneously: suspension of this active process

would yield a fallback of connectivity towards the under-

lying anatomical network, i.e. a state of connectivity closer

to that observed during wakefulness. In the context of

disease, if the condition having led to the reduction in

consciousness ceases to exist, the natural state of wakeful

awareness can be regained unless co-existing brain injury

induced structural damage in the anatomical network sub-

serving consciousness to a degree impossible to compen-

sate for.

Brain Struct Funct (2016) 221:4221–4234 4231

123



Brain dynamics and the dissociation of function

from structure

Our results fit with modeling studies suggesting that during

NREM sleep different cortical areas adopt different

dynamical regimes: In a system below its critical point

perturbations die down quickly, while above the critical

point they expand in an uncontrolled fashion. Only at or

near criticality, a controlled and efficient one to one

propagation occurs, which is also when structural and

functional connectivity match best (Deco et al. 2014) and

the reactivity or susceptibility to perturbations is maxi-

mized. Using realistic anatomical connectivity (Hagmann

et al. 2008), Haimovici and colleagues (Haimovici et al.

2013) modelled brain activity and found that near the

system’s critical point functional connectivity achieved

maximal concordance with empirical data, arising in sets of

brain regions described as ‘‘resting state’’ (or intrinsic

connectivity) networks (Beckmann et al. 2005). Accord-

ingly, high structure–function similarity in sensory net-

works during deep sleep suggests operation of the sensory

networks closer to the critical point. In contrast, during

wakefulness, lower structure–function correlations are

consistent with a subcritical state of the sensory networks

when input load is high, such that self-dampening activity

could reduce the risk of over-excitation. Activity in asso-

ciative midline, frontal and parietal regions shows an

inverse behavior, i.e. high structure–function coupling

during conscious wakefulness suggestive of optimal

exploration of the underlying anatomical connectivity near

the critical point (Deco and Kringelbach 2014; Deco et al.

2014; Stam et al. 2015) and departure from criticality

during deep sleep when consciousness is strongly reduced.

Since cortical activity is non-vanishing during sleep—in-

deed, increased activity levels have been reported (Gabbott

and Rolls 2013)—this departure could be towards a super-

critical state when system excitation is not self-limited.

Future modeling efforts should study the link between

different states of consciousness and the dynamical regime

of cortical activity (critical and sub/supercritical).

Relating functional changes to individual anatomy

Across scales and species past efforts mainly focused either

on network function (Kandel et al. 2013) or structure

(DeFelipe 2010). However, cognition and behavior result

from dynamic neuronal interactions on anatomically fixed

connectivity (Park and Friston 2013). The repertoire of

functional networks is interlinked with the structural

architecture of connections but with a dynamic divergence

(Honey et al. 2009; Skudlarski et al. 2008). Our results

extend these observations by revealing system-specific

regional variations of the structure–function relationship

and call for a reconsideration of the standard methodology

of resting state analyses: an assessment of the re-organi-

zation of functional connectivity relative to the backbone

of anatomical connections.

Just like the structure–function interaction gives rise to

cognition and behavior, an alteration in the liaison can

yield pathology. Given our data and the empirical and

modelling studies discussed above (Barttfeld et al. 2015;

Haimovici et al. 2013; Honey et al. 2009; Park and Friston

2013; Skudlarski et al. 2008) it is conceivable that a system

at rest behaves functionally normal, but when perturbed

reacts in a pathological manner if structural connectivity is

not normal. It follows that in-born, degenerative or trau-

matic brain injury immediately affecting structure at the

same time will affect function. A crucial step is hence to

understand when and how the structure-dependent function

compensates for the structural pathology (plasticity) and

when it does not. Such knowledge will promote the

development of beneficial behavioral, pharmacological,

neuromodulatory or even surgical interventions.

Limitations

Diffusion imaging may be prone to inaccuracies when esti-

mating long-range connections (Reveley et al. 2015), in

particular, interhemispheric connections between homolo-

gous brain regions (Messé et al. 2014). However, we first

observed (Fig. S8) that homotopic functional connectivity

increased (relative to wakefulness) in primary sensory areas

(N1, N2 and N3 sleep) and decreased in higher-level asso-

ciative cortices (N3 sleep). This strongly suggests that

underestimation of homotopic anatomical connections does

not drive our results, since in this case the opposite effect is

expected. Second, following Messé et al. (2014), we repeated

all computations adding anatomical connections between

homologous brain regions, and our results persisted (Fig. S9).

We used DTI from a different cohort of subjects to

investigate the relationship between functional and

anatomical connectivity. While this approach did not allow

us to study the effects of variability at a single subject

basis, the employed network was derived from a relatively

large number of healthy participants and thus we take it as

a representative average anatomical network.

Conclusion

Going from conscious awareness to deep sleep, cerebral

structure–function coupling behaves reciprocally in phy-

logenetically distinguishable brain systems facilitating the

biologically advantageous regaining of consciousness. Our

identification of state- and region-dependent structural–

functional interplay in the brain implies that future studies
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of higher brain function and pathology need to co-assess

functional and anatomical network properties since other-

wise we must miss the full picture of our complex brain.
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