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Abstract Recently, neuroimaging-based Alzheimer’s

disease (AD) or mild cognitive impairment (MCI) diagnosis

has attracted researchers in the field, due to the increasing

prevalence of the diseases. Unfortunately, the unfavorable

high-dimensional nature of neuroimaging data, but a limit-

ed small number of samples available, makes it challenging

to build a robust computer-aided diagnosis system. Machine

learning techniques have been considered as a useful tool in

this respect and, among various methods, sparse regression

has shown its validity in the literature. However, to our best

knowledge, the existing sparse regression methods mostly

try to select features based on the optimal regression coef-

ficients in one step. We argue that since the training feature

vectors are composed of both informative and uninforma-

tive or less informative features, the resulting optimal re-

gression coefficients are inevidently affected by the

uninformative or less informative features. To this end, we

first propose a novel deep architecture to recursively discard

uninformative features by performing sparse multi-task

learning in a hierarchical fashion. We further hypothesize

that the optimal regression coefficients reflect the relative

importance of features in representing the target response

variables. In this regard, we use the optimal regression co-

efficients learned in one hierarchy as feature weighting

factors in the following hierarchy, and formulate a weighted

sparse multi-task learning method. Lastly, we also take into

account the distributional characteristics of samples per

class and use clustering-induced subclass label vectors as

target response values in our sparse regression model. In our

experiments on the ADNI cohort, we performed both binary

and multi-class classification tasks in AD/MCI diagnosis

and showed the superiority of the proposed method by

comparing with the state-of-the-art methods.

Keywords Alzheimer’s disease (AD) � Mild cognitive

impairment (MCI) � Feature selection � Multi-task

learning � Deep architecture � Sparse least squared

regression � Magnetic resonance imaging (MRI) � Positron

emission topography (PET)

Introduction

As the population becomes older, the world is now facing

an epidemic of dementia, the loss of mental functions such

as memory, thinking, and reasoning, each of which is

sufficient enough to interfere a person’s activities of daily

life. Among various causes of dementia, Alzheimer’s dis-

ease (AD) is the most prevalent in elderly people, rising

significantly every year in terms of the proportion of cause

of death (Alzheimer’s Association 2012). Furthermore, it is

reported that people with mild cognitive impairment
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(MCI), known as precursor to dementia in AD, progress to

AD with an average conversion rate of 10 % per year

(Busse et al. 2006; Alzheimer’s Association 2012).

Although there is currently no pharmaceutical medicine to

recover AD/MCI back to cognitive normal (CN), it is still

important to detect the diseases for timely treatments that

possibly delay the progress. Thus, it is of great interest for

AD/MCI diagnosis or prognosis in the clinic.

With the advent of neuroimaging tools such as magnetic

resonance imaging (MRI), positron emission tomography

(PET), and functional MRI, many researchers have been

devoting their efforts to investigate the underlying biolo-

gical or neurological mechanisms and also to discover

biomarkers for AD/MCI diagnosis or prognosis (Li et al.

2012; Zhang and Shen 2012). Recent studies have shown

that information fusion of multiple modalities can help

enhance the diagnostic performance (Perrin et al. 2009;

Kohannim et al. 2010; Walhovd et al. 2010; Cui et al.

2011; Hinrichs et al. 2011; Zhang et al. 2011; Westman

et al. 2012; Yuan et al. 2012; Zhang and Shen 2012; Suk

et al. 2015). The main challenge in AD/MCI diagnosis or

prognosis with neuroimaging arises from the fact that,

while the data dimensionality is intrinsically high, in gen-

eral, a small number of samples are available. In this re-

gard, machine learning has been playing a pivotal role to

overcome this so-called ‘‘large p, small n’’ problem (West

2003). Broadly, we can categorize the existing methods

into a feature dimension-reduction approach and a feature

selection approach. The feature dimension-reduction ap-

proach transforms the original features in an ambient space

into a lower dimensional subspace, while the feature se-

lection approach finds informative features in the original

space. In neuroimaging data analysis, feature selection

techniques have drawn much attention these days, due to

its interpretational easiness of the results. In this work, we

focus on the feature selection approach.

Among different feature selection techniques, sparse

(least squares) regression methods, e.g., ‘1-penalized linear

regression (Tibshirani 1994), ‘2;1-penalized group sparse

regression (Yuan and Lin 2006; Nie et al. 2010), and their

variants (Roth 2004; Wang et al. 2011; Wan et al. 2012;

Zhu et al. 2014), have attracted researchers because of their

theoretical strengths and effectiveness in various applica-

tions (Varoquaux et al. 2010; Fazli et al. 2011; de Brecht

and Yamagishi 2012; Yuan et al. 2012; Zhang and Shen

2012; Suk et al. 2015).

For example, Wang et al. proposed a sparse multi-task1

regression and feature selection method to jointly analyze

the neuroimaging and clinical data in prediction of the

memory performance (Wang et al. 2011), where ‘1- and

‘2;1-norm regularizations were used for sparsity and fa-

cilitation of multi-task learning, respectively. Zhang and

Shen exploited an ‘2;1-norm based group sparse regression

method to select features that could be used to jointly

represent the clinical status, e.g., AD, MCI, or CN, and two

clinical scores of Mini-Mental State Examination (MMSE)

and Alzheimer’s Disease Assessment Scale-Cognitive

(ADAS-Cog) (Zhang and Shen 2012). Varoquaux et al.

(2010) formulated the subject-level functional connectivity

estimation as multivariate Gaussian process and imposed a

group constraint for a common structure on the graphical

model in the population. Suk et al. (2013) proposed a su-

pervised discriminative group sparse representation to es-

timate functional connectivity from fMRI by penalizing a

large within-class variance and a small between-class

variance of features. Recently, Yuan et al. (2012), Xiang

et al. (2014), and Thung et al. (2014), independently,

proposed a sparse regression-based feature selection

method for AD/MCI diagnosis to maximally utilize fea-

tures from multiple sources by focusing on a missing

modality problem.

In the context of the data distribution, the previous

sparse regression methods mostly assumed a unimodal

distribution for a same group of subjects. However, due to

the inter-subject variability in the same group (Fotenos

et al. 2005; Noppeney et al. 2006; DiFrancesco et al.

2008), it is highly likely for neuroimaging data to have a

complex data distribution, e.g., mixture of Gaussians. To

this end, Suk et al. (2014) recently proposed a subclass-

based sparse multi-task learning method, where they ap-

proximated the complex data distribution per class by

means of clustering and defined subclasses to better en-

compass the distributional characteristics in feature

selection.

Note that the above-mentioned sparse regression meth-

ods find the optimal regression coefficients for the re-

spective objective function in one step, i.e., a single

hierarchy, using the training feature vectors as regressors.

Since the training feature vectors are composed of both

informative and uninformative or less informative features,

the resulting optimal regression coefficients are inevidently

affected by uninformative or less informative features2.

While the regularization terms drive the regression coeffi-

cients of the uninformative or less informative features to

be zero or close to zero, and thus we can discard the cor-

responding features by thresholding, it is still problematic

1 In a least squares regression framework, one task corresponds to

find optimal regression coefficients to represent the values of a target

response variable. So, when we consider multiple target response

variables simultaneously, it is regarded as multi-task learning

(Argyriou et al. 2008).

2 In this work, we define the uninformative and less informative

features based on their optimal regression coefficients. Specifically,

the features whose regression coefficients are zero or close to zero, are

regarded, respectively, as uninformative or less informative in

representing the target response variables.
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to find the optimal threshold for feature selection. As for

the subclass-based feature selection method (Suk et al.

2014), the clustering is performed with the original full

features. Therefore, the clustering results can be also af-

fected by uninformative or less informative features, which

sequentially can influence the sparse multi-task learning,

feature selection, and classification accuracy.

In this paper, we propose a deep sparse multi-task

learning method that can mitigate the effect of uninfor-

mative or less informative features in feature selection.

Specifically, we iteratively perform subclass-based sparse

multi-task learning by discarding uninformative features in

a hierarchical fashion. That is, in each hierarchy, we first

cluster the current feature samples for each original class.

Based on the clustering results, we then assign new label

vectors and perform sparse multi-task learning with an ‘2;1-

norm regularization. It should be noted that, unlike the

conventional multi-task learning methods, which treat all

features equally, we further propose to utilize the optimal

regression coefficients learned in the lower hierarchy as

context information to weight features adaptively. We

validate the effectiveness of the proposed method on the

ADNI cohort by comparing with the state-of-the-art

methods.

Our main contributions can be threefold:

• We propose a novel deep architecture to recursively

discard uninformative features by performing sparse

multi-task learning in a hierarchical fashion. The

rationale of the proposed hierarchical feature selection

is that, while the convex optimization algorithm finds

optimal regression coefficients, it is still affected by the

less informative features. Therefore, if we can discard

uninformative features and perform the sparse multi-

task learning iteratively, the optimal solution can be

more robust to less informative features, and thus to

select task-relevant features.

• We also devise a weighted sparse multi-task learning

using the optimal regression coefficients learned in one

hierarchy as feature-adaptive weighting factors in the

next deeper hierarchy. In this way, we can adaptively

assign different weights for different features in each

hierarchy and the features of small weights, which

survived in the lower hierarchy, are less likely to be

selected in the deeper hierarchy.

• Motivated by Suk et al.’s work (2014), we also take

into account the distributional characteristics of sam-

ples in each class and define clustering-induced label

vectors. That is, in each hierarchy, we define subclasses

by clustering the training samples but with only the

selected feature set from the lower hierarchy, and then

assign new label vectors. By taking this new label

vectors as target response values, we perform the

proposed weighted sparse multi-task learning.

Materials and image processing

Subjects

In this work, we use the ADNI cohort3, but consider only

the baseline MRI, 18-fluoro-deoxyglucose PET, and cere-

brospinal fluid (CSF) data acquired from 51 AD, 99 MCI,

and 52 CN subjects4. For the MCI subjects, they were

clinically further subdivided into 43 progressive MCI

(pMCI), who progressed to AD in 18 months, and 56 stable

MCI (sMCI), who did not progress to AD in 18 months.

We summarize the demographics of the subjects in

Table 1.

With regard to the general eligibility criteria in ADNI,

subjects were in the age of between 55 and 90 with a study

partner, who could provide an independent evaluation of

functioning. General inclusion/exclusion criteria5 are as

follows: (1) healthy subjects: Mini-Mental State Ex-

amination (MMSE) scores between 24 and 30 (inclusive), a

Clinical Dementia Rating (CDR) of 0, non-depressed, non-

MCI, and non-demented; (2) MCI subjects: MMSE scores

between 24 and 30 (inclusive), a memory complaint, ob-

jective memory loss measured by education adjusted scores

Table 1 Demographic and clinical information of the subjects

AD (N = 51) Progressive MCI (N = 43) Stable MCI (N = 56) CN (N = 52)

Female/male 18/33 15/28 17/39 18/34

Age (mean ± SD) 75.2 ± 7.4 [59–88] 75.7 ± 6.9 [58–88] 75.0 ± 7.1 [55–89] 75.3 ± 5.2 [62–85]

Education (mean ± SD) 14.7 ± 3.6 [4–20] 15.4 ± 2.7 [10–20] 14.9 ± 3.3 [8–20] 15.8 ± 3.2 [8–20]

MMSE (mean ± SD) 23.8 ± 2.0 [20–26] 26.9 ± 2.7 [20–30] 27.0 ± 3.2 [18–30] 29 ± 1.2 [25–30]

CDR (mean ± SD) 0.7 ± 0.3 [0.5–1] 0.5 ± 0 [0.5–0.5] 0.5 ± 0 [0.5–0.5] 0 ± 0 [0–0]

MMSE mini-mental state examination, CDR clinical dementia rating, N number of subjects, SD standard deviation [min–max]

3 Available at ‘http://www.loni.ucla.edu/ADNI’.
4 Although there exist in total more than 800 subjects in ADNI

database, only 202 subjects have the baseline data including all the

modalities of MRI, PET, and CSF.
5 Refer to ‘http://www.adniinfo.org’ for more details.
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on Wechsler Memory Scale Logical Memory II, a CDR of

0.5, absence of significant levels of impairment in other

cognitive domains, essentially preserved activities of daily

living, and an absence of dementia; and (3) mild AD:

MMSE scores between 20 and 26 (inclusive), CDR of 0.5

or 1.0, and meets the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer’s

Disease and Related Disorders Association (NINCDS/

ADRDA) criteria for probable AD.

Image processing and feature extraction

The MRI images were preprocessed by applying the typical

procedures of Anterior Commissure (AC)–Posterior Com-

missure (PC) correction, skull stripping, and cerebellum

removal. Specifically, we used MIPAV software6 for AC–

PC correction, resampled images to 256 � 256 � 256, and

applied N3 algorithm (Sled et al. 1998) to correct intensity

inhomogeneity. An accurate and robust skull stripping

(Wang 2014) was performed, followed by cerebellum re-

moval. We further manually reviewed the skull-stripped

images to ensure the clean and dura removal. Then, FAST

in FSL package7 Zhang et al. (2001) was used for struc-

tural MRI image segmentation into three tissue types of

gray matter (GM), white matter (WM) and CSF. We finally

parcellated them into 93 regions of interest (ROIs) by

warping Kabani et al.’s atlas (1998) to each subject’s space

via HAMMER (Shen and Davatzikos 2002).

In this work, we considered only GM for classification,

because of its relatively high relatedness to AD/MCI

compared to WM and CSF (Liu et al. 2012). Regarding

PET images, they were rigidly aligned to the corresponding

MRI images, and then applied the parcellation propagated

from the atlas by registration.

For each ROI, we used the GM tissue volume from

MRI, and the mean intensity from PET as features, which

are widely used in the field for AD/MCI diagnosis (Da-

vatzikos et al. 2011; Hinrichs et al. 2011; Zhang and Shen

2012; Suk et al. 2015). Therefore, we have 93 features

from an MRI image and the same dimensional features

from a PET image. In addition, we have three CSF

biomarkers of Ab42, t-tau, and p-tau as features.

Method

Notations

In this paper, we denote matrices as boldface uppercase

letters, vectors as boldface lowercase letters, and scalars as

normal italic letters, respectively. For a matrix X ¼ ½xij�,
its i-th row and j-th column are denoted as xi and x j,

respectively. We further denote a Frobenius norm and

an ‘2;1-norm of a matrix X as kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i kxik2
2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

j kxjk2
2

q

and kXk2;1 ¼
P

i kxik2 ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffi

P

j x
2
ij

q

, re-

spectively. Let 1q and 0q denote q-dimensional row vectors

whose elements are all 1 and 0, respectively, and jFj be a

cardinality of a set F.

Preliminary

Let X 2 R
N�D and Y 2 R

N�C denote, respectively, the

D neuroimaging features and the corresponding class label

vectors of N samples8 for C-class classification. In this

work, without loss of generality, we represent a class label

with a 0/1 encoding scheme. For example, in a binary

classification problem, the class label of each training

sample is represented by either o1 ¼ 10
� �

or o2 ¼ 01
� �

.

Although it is more general to use scalar values of þ1=� 1

for a binary classification problem, in this work, for general

applicability of the proposed method, we use a 0/1 en-

coding scheme, by which we can naturally apply our

method to both binary and multi-class classification

problems.

In the context of AD/MCI diagnosis, sparse (least

squares) regression methods with different types of

regularizers have been used for feature selection in neu-

roimaging data (Wang et al. 2011; Zhou et al. 2013; Suk

et al. 2014; Zhu et al. 2014). The common assumption on

these methods is that the target response values, which

comprise the class labels in our work, can be predicted by a

linear combination of the regressors, i.e., feature values in

X, as follows:

min
W

Y � XWk k2
FþRðWÞ ð1Þ

where W 2 R
D�C is a regression coefficient matrix and

RðWÞ denotes a regularization function. Note that, since

our main goal is to identify a clinical label based on the

neuroimaging features, we constrain a common subset of

features to be used in predicting the target values. In this

regard, we can use an ‘2;1-norm regularizer for RðWÞ in

Eq. (1) and define a group sparse regression model (Zhou

et al. 2013) as follows:

min
W

Y � XWk k2
Fþk Wk k2;1 ð2Þ

where k denotes a group sparsity control parameter.

By regarding the prediction of each target vector yi

6 Available at ‘http://mipav.cit.nih.gov/clickwrap.php’.
7 Available at ‘http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/’.

8 In our experiments on the ADNI cohort, we have one sample per

subject.
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(i 2 f1; . . .;Cg) as a task, we designate this as sparse multi-

task learning (SMTL). Due to the use of an ‘2;1-norm

regularizer in Eq. (2), the estimated optimal coefficient

matrix Ŵ will have some zero-valued row vectors, de-

noting that the corresponding features are not useful in

prediction of the target response variables, i.e., class labels.

Furthermore, the lower the ‘2-norm of a row vector, the

less informative the corresponding feature in X to represent

the target response variables in Y.

In the meantime, while the neuroimaging is highly

variable among subjects of a same group, the conventional

sparse multi-task learning assumes a unimodal data distri-

bution. That is, it overlooks the complicated distributional

characteristics inherent in samples, and thus can fail to

select task-relevant features. In this regard, Suk and Shen

recently proposed a subclass-based sparse multi-task

learning (S2MTL) method (Suk et al. 2014). Specifically,

they used a clustering method to discover the complex

distributional characteristics and defined subclasses based

on the clustering results. Then, they encoded the respective

subclasses, i.e., clusters, with their unique codes. Finally,

by setting the codes as new label vectors of the training

samples, they performed sparse multi-task learning as

follows:

Ŵ ¼ argmin
W

~Y � XW
�

�

�

�

2

F
þk Wk k2;1 ð3Þ

where ~Y 2 RN�C0
denotes a new label matrix and C0 is the

total number of response variables, i.e., the sum of the

number of the original classes and the number of sub-

classes in each original class.

Deep weighted subclass-based sparse multi-task

learning

The main limitation of the SMTL and S2MTL methods is

that they find the optimal regression coefficients and then

select task-relevant features based on the regression coef-

ficients in one step, i.e., a single hierarchy. However, un-

informative or less informative features, which are also

included in regressors, can affect finding the optimal re-

gression coefficients in both Eqs. (2) and (3). Thus, the

features selected in a single hierarchy may not be optimal

for classification. To mitigate the effects of uninformative

or less informative features in optimizing coefficients

and in selecting features, we propose a ‘deep weighted

subclass-based sparse multi-task learning’ method.

Specifically, rather than selecting features in one step, we

iteratively discard uninformative features and perform

sparse multi-task learning in a hierarchical fashion. In

particular, we devise a novel sparse multi-task learning

with a feature-adaptive weighting scheme under the hy-

pothesis that the optimal regression coefficients reflect the

relative importance of features in representing target re-

sponse variables. Motivated by Suk and Shen’s work

(2014), we also use the S2MTL framework combined with

the proposed feature weighting scheme to reflect the dis-

tributional characteristics inherent in samples. Hereafter,

we call the proposed method as deep weighted S2MTL

(DW-S2MTL).

Figure 1 illustrates the overall framework of our

method for AD/MCI diagnosis. Given multiple modalities

of MRI, PET, and CSF, we extract features from MRI and

CSFPETMRI

ROI-based 
feature extraction

Image 
processing 

Feature  
concatenation

Multi-task  
learning

Classifier  
learning 

Selected feature set 
& classifier

Validation 
accuracy

Accuracy 
increase

Preprocessing and  
feature extraction

Feature  
selection

N

Feature selection  
and classifier learning  

by DW-S2MTL

Y

Clustering & 
label encoding

Trained model  
for AD/MCI diagnosis

Update selected features & 
regression coefficients

Fig. 1 A framework for AD/

MCI diagnosis with the

proposed deep weighted

subclass-based sparse multi-task

learning (DW-S2MTL) method
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PET, preceded by image preprocessing as described in

‘‘Image processing and feature extraction’’, and then

concatenate features of all modalities into a long vector

for complementary information fusion. Using the con-

catenated features as regressors and the corresponding

class labels as target response values, we perform the

proposed DW-S2MTL for feature selection. In this step,

we (1) perform S2MTL (clustering and label encoding and

multi-task learning), (2) select features based on the

learned optimal regression coefficients, (3) train a classi-

fier using training samples but with only the selected

features, and (4) compute validation accuracy. If the

validation accuracy is higher than the previous one (ini-

tially, we set the previous validation accuracy as zero),

we iterate the processes of (1) through (4) in a hierar-

chical manner. That is, in the following hierarchy, we

consider only the selected features along with the corre-

sponding regression coefficients learned from the current

hierarchy. Once converged, i.e., there is no increase in the

validation accuracy, we use the current feature set and the

corresponding classifier to identify the clinical label of a

testing sample.

Now, let us describe the proposed method in detail.

Assume that, at the h-th hierarchy, we have the dimension-

reduced training samples ~XðhÞ 2 R
N�jFðh�1Þj, where F

ðh�1Þ

denotes a set of features selected in the ðh� 1Þ-th hierar-

chy9, along with the corresponding class labels Y. By re-

garding ~XðhÞ and Y as our current training samples, we

perform clustering to find subclasses for each original

class, by which we can facilitate the distributional char-

acteristics in samples.

Earlier, Suk et al. (2014) used the K-means algorithm

for this purpose due to its simplicity and computational

efficiency. However, since it requires to predefine the

number of clusters, i.e., K, for which a cross-validation

technique is usually applied in the literature, it is limited to

use the K-means algorithm in practical applications. To this

end, in this work, we use affinity propagation (Frey and

Dueck 2007), which can automatically select the optimal

number of clusters and has been successfully applied to a

variety of applications (Dueck and Frey 2007; Lu and

Carreira-Perpinan 2008; Wang 2010; Shi et al. 2011;

Alikhanian et al. 2013). For the details of affinity

propagation, please refer to Appendix and Frey and Dueck

(2007).

After clustering samples in ~XðhÞ via affinity propagation,

we define subclasses and assign a new label to each sample.

Let us consider a binary classification problem and assume

that affinity propagation finds K
ðhÞ
1 and K

ðhÞ
2 numbers of

clusters/exemplars for class 1 and class 2, respectively.

Note that we regard the clusters as subclasses of the ori-

ginal class. Then, we define sparse codes for subclasses of

the original class 1 and the original class 2 as follows:

z
ð1Þ
l

� �ðhÞ
¼ o1 s

ð1Þ
l

� �ðhÞ
0
K

ðhÞ
2

� 	

zð2Þm

� �ðhÞ
¼ o2 0

K
ðhÞ
1

s
ð2Þ
m

� �ðhÞ
� 	

where o1 ¼ 10
� �

and o2 ¼ 01
� �

denote the original

class labels for class 1 and class 2, respectively,

l ¼ f1; . . .;K
ðhÞ
1 g, m ¼ f1; . . .;K

ðhÞ
2 g, and ðsð1Þl ÞðhÞ 2

f0; 1gK
ðhÞ
1 and ðsð2Þm ÞðhÞ 2 f0; 1gK

ðhÞ
2 denote, respectively,

subclass-indicator row vectors in which only the l-th/m-th

element is set to 1 and the others are 0. Thus, the full label

set for binary classification becomes:

Z
ðhÞ
1:2 ¼

z
ð1Þ
1

� �ðhÞ
; . . .; z

ð1Þ
l

� �ðhÞ
; . . .; z

ð1Þ
K

ðhÞ
1


 �ðhÞ
;

z
ð2Þ
1

� �ðhÞ
; . . .; z

ð2Þ
m

� �ðhÞ
; . . .; z

ð2Þ
K

ðhÞ
2


 �ðhÞ

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

: ð4Þ

Now, without loss of generality, based on Eq. (4), we can

extend the full label set for C-class classification as

follows:
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where ðzðcÞm ÞðhÞ ¼ oc 0
ðhÞ
K1

� � � s
ðcÞ
m

� �ðhÞ
� � � 0

K
ðhÞ
C

� 	

2

f0;1g Cþ
PC

c¼1
K

ðhÞ
c

� 

and oc is a original class indicator row

vector. Then, for the n-th training sample ð~xnÞðhÞ at the h-th

hierarchy, if it belongs to the original class c and is as-

signed to a cluster m of the class, then its new label vector

ð~ynÞ
ðhÞ

is set to ðzðcÞm ÞðhÞ.
By regarding the newly assigned label vectors

fð~ynÞ
ðhÞgNn¼1 as target response values, i.e., ~YðhÞ ¼

~y1ð ÞðhÞ; � � � ; ~yNð ÞðhÞ
h i

2 R
N� Cþ

PC

c¼1
K

ðhÞ
c

� 

, we can learn the

regression coefficients of an S2MTL model in Eq. (3).

Here, it is noteworthy that the ‘2-norm of a row vector in an

optimal regression coefficient matrix quantifies the rele-

vance of the corresponding feature in representing the

target response variables. In our deep architecture, we use9
F
ð0Þ denotes the original full feature set.
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such context information to adaptively weight the selected

features in the upper hierarchy. Specifically, we devise a

novel weighted sparse multi-task learning method by ex-

ploiting the optimal regression coefficients learned in the

lower hierarchy as feature weighting factors. We define an

adaptive feature weighting vector at the h-th hierarchy as

follows:

dðhÞ ¼
1

F
ðh�1Þj j �

1

Z
ŵ

ðh�1Þ
1

�

�

�

�

�

�

2
; � � � ; ŵ

ðh�1Þ
F
ðh�1Þj j

�

�

�

�

�

�

�

�

2

� 	

ðh 6¼ 1Þ

1

F
ð0Þ�

�

�

�

1
F
ð0Þj j ðh ¼ 1Þ

8

>

>

>

<

>

>

>

:

ð6Þ

where Z ¼
PjFðh�1Þj

i¼1 kŵ
ðh�1Þ
i k2 is a normalizing constant. In

our adaptive feature weighting scheme in Eq. (6), the

higher the ‘2-norm of the optimal regression coefficient

vector ŵ
ðh�1Þ
i , the smaller the weight for the i-th feature is

assigned. By introducing this feature-adaptive weighting

factor into a regularization term of a sparse regression

model, we impose that in the upper hierarchy, the features

of high ‘2-norm values from the lower hierarchy have also

high regression coefficients; meanwhile, those of low ‘2-

norm values from the lower hierarchy have low regression

coefficients and ultimately become zero to be discarded.

Thus, we formulate a weighted sparse multi-task learning

method as follows:

ŴðhÞ ¼ argmin
WðhÞ

~YðhÞ � ~XðhÞWðhÞ�

�

�

�

2

F
þkðhÞ DðhÞ � WðhÞ

�

�

�

�

�

�

2;1

ð7Þ

where WðhÞ 2 R
jFðh�1Þj�ðCþ

PC

c¼1
K

ðhÞ
c Þ, DðhÞ ¼ ðdðhÞÞT

1ðCþ
PC

c¼1
K

ðhÞ
c Þ, and � denotes an element-wise matrix

multiplication. Note that the feature weights defined in

Eq. (6) are used to guide the selection of informative fea-

tures in the current hierarchy by adaptively adjusting the

penalty levels of different features. That is, by giving small

weights for the informative features in representing the

target responses, we impose the corresponding regression

coefficients to be larger, and thus to survive in feature

selection. We should note that, since we use class labels as

target responses, features corresponding to low regression

coefficients would have low discriminative power for the

classification of the respective classes. In this regard, the

proposed method can be effective to remove such features

by deep learning.

Based on the optimal regression coefficients ŴðhÞ, we

select the features whose regression coefficient vector is

non-zero, i.e., kðŵiÞðhÞk2 [ 0. With the selected features,

we train a linear support vector machine (SVM), which has

been successfully used in many applications (Zhang and

Shen 2012; Suk and Lee 2013), and then compute the ac-

curacy on the validation samples. If the validation accuracy
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is higher than the accuracy in the lower hierarchy10, we

move to the next level of hierarchy, to further filter out

uninformative features (if exist), and thus to reduce the

dimensionality; otherwise, stop the deep learning. Algo-

rithm 1 summarizes the overall procedures of the proposed

DW-S2MTL method for feature selection.

For better understanding, in Fig. 2, we present an ex-

ample of applying the proposed DW-S2MTL for feature

selection in binary classification. In the 1st hierarchy, we

have the training feature samples ~Xð1Þ and the new label

vectors ~Yð1Þ determined by clustering. In this hierarchy,

since we have no prior weight information on the features,

we treat all the features equally by setting dð1Þ ¼ 1

jFð0Þj 1jFð0Þj.

Note that the optimization problem in this hierarchy cor-

responds to S2MTL (Suk et al. 2014). Based on the learned

optimal regression coefficients Ŵð1Þ, we select a feature set

F
ð1Þ and define dð2Þ by Eq. (6). By taking account of the

values of the selected features in ~Xð1Þ and the original class

labels Y, we train a linear SVM and compute the classifi-

cation accuracy að1Þ on a validation set. If að1Þ is greater

than að0Þð¼ 0Þ, we set F̂ ¼ F
ð1Þ and the algorithm proceeds

to the next hierarchy. For the 2nd hierarchy, we construct

our feature samples ~Xð2Þ from ~Xð1Þ with only the selected

features of F
ð1Þ and define new label vectors ~Yð2Þ via

clustering for each original class with feature samples in

~Xð2Þ. We then learn the optimal regression coefficients

Ŵð2Þ by solving Eq. (7) with ~Yð2Þ, ~Xð2Þ, and dð2Þ as inputs.

Again, we select a feature set Fð2Þ based on Ŵð2Þ, and train

a linear SVM with the feature samples of ~Xð2Þ but only with

features in F
ð2Þ and the original class labels Y. With the

trained SVM, we compute the classification accuracy að2Þ

on a validation set. If the current validation accuracy að2Þ is

higher than að1Þ, we update our optimal feature set

F̂ ¼ F
ð2Þ, compute the feature weights dð3Þ, and proceed to

the 3rd hierarchy.

In a nutshell, in the h-th hierarchy, we sequentially

perform the steps of (1) clustering samples to define sub-

classes and assigning a new label to the samples, (2)

learning the optimal regression coefficients ŴðhÞ by taking

into account the features selected in the ðh� 1Þ-th hierar-

chy and the regression coefficients Ŵðh�1Þ, (3) selecting

informative feature set based on ŴðhÞ, (4) reorganizing

training and validation samples by discarding the un-

selected features, and (5) training an SVM classifier and

computing the validation accuracy aðhÞ. If the current

validation accuracy is higher than the previous one, i.e.,

aðh�1Þ, which means that the current feature set is better

suited for classification than the previous one, we repeat

1st hierarchy 

2nd hierarchy 

3rd hierarchy 

= argmin
W 1( )

f , ,  δ 1( ) =1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

X 1( )
Ŵ 1( )

Y 1( )

= argmin
W 2( )

f , ,   δ 2( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Ŵ 2( )
X 2( )Y 2( )

= argmin
W 3( )

f , ,   δ 3( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Ŵ 3( )

X 3( )Y 3( )

Low 

High 

0 

if a 1( ) > a 0( ),

if a 2( ) > a 1( ),

Fig. 2 Schematic illustration of

the proposed deep

weighted subclass-based sparse

multi-task learning for feature

selection. f ð ~YðhÞ; ~XðhÞ; dðhÞÞ ¼
k ~YðhÞ � ~XðhÞWðhÞk2

2 þ
kðhÞkDðhÞ � WðhÞk2;1 denotes an

objective function in Eq. (7),

dðhÞ is defined by Eq. (6), and

aðhÞ (að0Þ ¼ 0) and F
ðhÞ denote,

respectively, the validation

accuracy and a set of the

selected features at the h-th

hierarchy

10 Initially, we set the current best accuracy zero.
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the steps from (1) to (5) until convergence, i.e., no im-

provement in the validation accuracy. Note that the number

of features under consideration reduces gradually as ad-

vancing to the higher level in the hierarchy with the re-

spective feature weights determined based on the optimal

weight coefficients from the one level below.

Experimental results

In this section, we validate the effectiveness of the pro-

posed deep weighted subclass-based sparse multi-task

learning for feature selection in AD/MCI diagnosis. We

conducted two sets of experiments, namely, binary and

multi-class classification problems. For the binary classi-

fication, we considered three tasks: (1) AD vs. CN, (2) MCI

vs. CN, and (3) progressive MCI (pMCI), who converted to

AD in 18 months, vs. stable MCI (sMCI), who did not

converted to AD in 18 months. Meanwhile, for the multi-

class classification, we performed two tasks of (1) AD vs.

MCI vs. CN (3-class) and (2) AD vs. pMCI vs. sMCI vs.

CN (4-class). In the classifications of MCI vs. CN (binary)

and AD vs. MCI vs. CN (3-class), we labeled both pMCI

and sMCI as MCI.

Experimental setting

For performance comparison, we consider five competing

methods as follows:

• Sparse multi-task learning (SMTL) (Zhou et al. 2013)

that assumes a unimodal data distribution and selects

features in a single hierarchy.

• Subclass-based SMTL (S2MTL) (Suk et al. 2014) that

takes into account a complex data distribution and

selects features in a single hierarchy.

• Deep weighted SMTL (DW-SMTL) that assumes a

unimodal data distribution and selects features in a

hierarchical fashion using the proposed deep sparse

multi-task learning with a feature weighting scheme.

• Deep S2MTL (D-S2MTL) that takes into account a

complex data distribution and also selects features in a

hierarchical fashion using the proposed deep sparse

multi-task learning but without a feature weighting

scheme.

• Deep weighted S2MTL (DW-S2MTL) that takes into

account a complex data distribution and also selects

features in a hierarchical fashion using the proposed

deep sparse multi-task learning with a feature weight-

ing scheme.

For the S2MTL method, unlike the original work in Suk

et al. (2014), we used affinity propagation to define sub-

classes in order for fair comparison with D-S2MTL and

DW-S2MTL. It should be noted that the main difference

among the competing methods lies in the methodological

characteristics such as the use of data distribution (uni-

modal or complex), the number of hierarchies (single or

multiple), and the use of context information, i.e., feature

weights. We compare their characteristics in Table 2.

Due to the limited number of samples, we evaluated the

performance of all the competing methods by applying a

tenfold cross-validation technique in each classification

problem and taking the average of the results. Specifically,

we randomly partitioned the samples of each class into 10

subsets with approximately equal size without replacement.

We then used 9 out of 10 subsets for training and the

remaining one for testing. We repeated this process 10

times. It is noteworthy that for fair comparison among the

competing methods, we used the same training and testing

samples in our cross-validation.

Regarding model selection of the sparsity control pa-

rameter k in sparse regression models and the soft margin

parameter C in SVM (Burges 1998), we defined the pa-

rameter spaces as k2f0:001;0:005;0:01;0:05;0:1;0:3;0:5g
and C2f2�10; . . .;25g, and performed a grid search. The

parameters that achieved the best classification accuracy in

the inner cross-validation were finally used in testing. In

our implementation, we used a SLEP toolbox11 for opti-

mization of the respective objective function and an

LIBSVM toolbox12 for SVM classifier learning. As for the

multi-class classification, we applied a one-versus-all

strategy (Milgram et al. 2006) and chose the class which

classified the test sample with the greatest margin.

We used 93 MRI features, 93 PET features, and/or 3

CSF features as regressors in all the competing methods.

Table 2 Characteristics of the

competing methods considered

in our experiments

SMTL S2MTL DW-SMTL D-S2MTL DW-S2MTL

Distribution Unimodal Complex Unimodal Complex Complex

Hierarchy Single Single Multiple Multiple Multiple

Use of context information No No Yes No Yes

SMTL sparse multi-task learning, S2 MTL subclass-based SMTL, DW-SMTL deep weighted SMTL,

D-S2MTL deep S2MTL, DW-S2MTL deep weighted S2MTL

11 Available at ‘http://www.public.asu.edu/*jye02/Software/SLEP/

index.htm’.
12 Available at ‘http://www.csie.ntu.edu.tw/*cjlin/libsvm/’.

Brain Struct Funct (2016) 221:2569–2587 2577

123

http://www.public.asu.edu/~jye02/Software/SLEP/index.htm
http://www.public.asu.edu/~jye02/Software/SLEP/index.htm
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Regarding the multimodality neuroimaging fusion, e.g.,

MRI ? PET (MP for short) and MRI ? PET ? CSF

(MPC for short), we constructed a long feature vector by

concatenating features of the modalities.

Performance comparison

Let TP, TN, FP, and FN denote, respectively, true positive,

true negative, false positive, and false negative. We con-

sidered the following metrics to measure the performance

of the methods:

• ACCuracy (ACC) = (TP ? TN)/(TP ? TN ? FP ? FN)

• SENsitivity (SEN) = TP/(TP ? FN)

• SPECificity (SPEC) = TN/(TN ? FP)

• Balanced ACcuracy (BAC) = (SEN ? SPEC)/2

• Positive Predictive Value (PPV) = TP/(TP?FP)

• Negative Predictive Value (NPV) = TN/(TN?FN)

The accuracy that counts the number of correctly classified

samples in a test set is the most direct metric for compar-

ison among methods. Regarding the sensitivity and speci-

ficity, the higher the values of these metrics, the lower the

chance of misdiagnosing to the respective clinical label.

Note that in our dataset, since the number of samples

available for each class is imbalanced, it is likely to have an

inflated performance estimates for two binary classification

tasks, i.e., MCI (99) vs. CN (52) and pMCI (43) vs. sMCI

(56), and one multi-class classification task, i.e., AD (51)

vs. MCI (99) vs. CN (52). For this reason, we also con-

sidered a balanced accuracy and positive/negative predic-

tive values (Wei and Dunbrack 2013).

Binary classification results

We summarized the performances of the competing

methods with various modalities in Tables 3, 4, 5. In

discrimination between AD and CN (Table 3), SMTL

achieved the ACCs of 86.55 % (MRI), 80.45 % (PET),

87.64 % (MP), and 92.45 % (MPC), while S2MTL

achieved the ACCs of 86.55 % (MRI), 85.36 % (PET),

93.18 % (MP), and 92.36 % (MPC). When applying the

proposed deep and feature-adaptive weighting scheme to

these methods, we obtained the ACCs of 88.36 % (MRI),

82.45 % (PET), 90.45 % (MP), and 92.45 % (MPC) by

DW-SMTL and the ACCs of 90.36 % (MRI), 89.27 %

(PET), 93.18 % (MP), and 95.09 % (MPC) by DW-

S2MTL. Note that thanks to the proposed deep and fea-

ture-adaptive weighting scheme, we could improve the

ACCs by 1.85 % (MRI), 2 % (PET), and 2.81 % (MP) in

comparison between SMTL and DW-SMTL and by

3.91 % (MRI), 3.91 % (PET), and 2.73 % (MPC) in

Table 3 A summary of the

performances for AD vs. CN

classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SMTL MRI 86.55 ± 3.02 88.33 84.33 86.33 87.55 85.28

PET 80.45 ± 3.26 80.33 80.67 80.50 88.49 69.11

MP 87.64 ± 3.31 90.33 85.00 87.67 85.53 89.96

MPC 92.45 ± 2.69 94.00 90.67 92.33 92.04 92.94

DW-SMTL MRI 88.36 ± 3.20 84.33 92.33 88.33 91.55 85.68

PET 82.45 ± 3.22 82.33 82.67 82.50 89.70 71.85

MP 90.45 ± 3.13 90.33 90.33 90.33 94.67 83.65

MPC 92.45 ± 2.69 94.00 90.67 92.33 92.05 92.94

S2MTL MRI 86.55 ± 3.02 78.33 94.33 86.33 92.90 82.14

PET 85.36 ± 3.29 84.00 86.67 85.33 85.86 84.90

MP 93.18 ± 2.52 90.00 96.33 93.17 96.05 90.68

MPC 92.36 ± 2.70 94.00 90.33 92.17 92.33 92.40

D-S2MTL MRI 83.64 ± 3.70 84.33 83.00 83.67 89.78 74.48

PET 89.36 ± 2.68 90.00 88.67 89.33 89.54 89.16

MP 88.27 ± 2.78 82.00 94.33 88.17 93.32 84.43

MPC 90.36 ± 2.77 90.00 90.33 90.17 89.25 91.33

DW-S2MTL MRI 90.36 ± 2.53 82.33 98.33 90.33 98.00 84.86

PET 89.27 ± 2.97 82.33 96.33 89.33 95.80 84.27

MP 93.18 ± 2.82 90.00 96.33 93.17 96.05 90.68

MPC 95.09 ± 2.28 92.00 98.00 95.00 97.74 92.86

Boldface denotes the best performance and the maximum performance in each metric

SMTL sparse multi-task learning, S2 MTL subclass-based SMTL, DW-SMTL deep weighted SMTL,

D-S2MTL deep S2MTL, DW-S2MTL deep weighted S2MTL
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comparison between S2MTL and DW-S2MTL. Regarding

the proposed feature weighting scheme, we could also

verify its effectiveness by comparison between D-S2MTL

and DW-S2MTL. Overall, the proposed DW-S2MTL out-

performed the other four competing methods. It is worth

noting that since the discrimination between AD and NC

is relatively easier than the other classification tasks de-

scribed below, all the competing methods achieved good

performance, i.e., higher than 90 % in accuracy. Thus,

there is no substantial difference among the competing

methods.

For the task of MCI vs. CN classification (Table 4), the

proposed DW-S2MTL achieved the best ACCs of 77.57 %

(MRI), 74.90 % (PET), 80.11 % (MP), and 78.77 %

(MPC), while D-S2MTL/DW-SMTL achieved the ACCs of

68.85/68.89 % (MRI), 68.89/64.31 % (PET), and 70.98/

70.94 % (MP), and 68.98/72.77 % (MPC). In the mean-

time, SMTL/S2MTL achieved the ACCs of 70.90/70.32 %

(MRI), 64.98/67.90 % (PET), 66.76/69.65 % (MP), and

68.32/67.02 % (MPC), respectively. By applying the pro-

posed deep and feature-adaptive weighting scheme, DW-

SMTL improved the ACCs by 4.18 % (MP) and 4.45 %

(MPC) compared to SMTL. It is remarkable that compared

to S2MTL, DW-S2MTL improved by 7.25 % (MRI),

7.30 % (PET), 10.46 % (MP), and 11.75 % (MPC).

Lastly, in the classification of pMCI and sMCI

(Table 5), which is clinically the most important because

the timely symptomatic treatment can potentially delay the

progression (Francis et al. 2010), DW-S2MTL outper-

formed the other competing methods again, and the pro-

posed deep and feature-adaptive weighting scheme helped

improve the accuracies for both SMTL and S2MTL. Con-

cretely, we obtained the ACCs of 69.84 % (MRI), 65.71 %

(PET), 74.15 % (MP), and 73.04 % (MPC) by DW-S2MTL

and the ACCs of 63.71/55.46 % (MRI), 55.25/54.12 %

(PET), 67.82/56.71 % (MP), 70.73/58.56 % (MPC) by

D-S2MTL/DW-SMTL. In comparison between S2MTL and

DW-S2MTL, the improvements were 8.84 % (MRI),

7.84 % (PET), 8.82 % (MP), and 6 % (MPC). It is also

noteworthy that the subclass-based methods, i.e., S2MTL

and DW-S2MTL, that encompass the characteristics of a

complex distribution were superior to both SMTL and DW-

SMTL that assumed a unimodal data distribution.

Multi-class classification results

From a clinical standpoint, while there exist multiple stages

in the spectrum of AD and CN, the previous work mostly

focused on binary classification problems. By taking ac-

count of more practical applications, we also performed

Table 4 A summary of the

performances for MCI vs. CN

classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SMTL MRI 70.90 ± 3.04 80.78 52.00 66.39 76.30 58.58

PET 64.98 ± 2.68 75.89 44.00 59.94 72.27 48.69

MP 66.76 ± 3.29 73.56 53.67 63.61 75.35 51.33

MPC 68.32 ± 3.48 74.89 56.00 65.44 76.14 54.32

DW-SMTL MRI 68.89 ± 2.85 76.67 54.00 65.33 76.13 54.74

PET 64.31 ± 2.82 73.89 46.00 59.94 72.34 47.96

MP 70.94 ± 3.04 80.89 52.00 66.44 76.23 58.84

MPC 72.77 ± 3.40 79.78 59.33 69.56 79.00 60.48

S2MTL MRI 70.32 ± 3.18 82.78 46.67 64.72 74.66 58.81

PET 67.60 ± 3.22 78.89 46.33 62.61 73.47 53.81

MP 69.65 ± 2.56 76.78 56.33 66.56 76.66 56.49

MPC 67.02 ± 2.95 78.78 44.67 61.72 73.07 52.55

D-S2MTL MRI 68.85 ± 3.15 76.56 54.33 65.44 75.94 55.17

PET 68.89 ± 2.96 76.89 54.00 65.44 75.68 55.66

MP 70.98 ± 2.91 77.78 58.33 68.06 77.64 58.53

MPC 68.98 ± 3.30 76.78 54.33 65.56 75.95 55.47

DW-S2MTL MRI 77.57 ± 2.92 90.89 52.00 71.44 78.42 74.83

PET 74.90 ± 2.55 96.00 34.67 65.33 73.69 81.97

MP 80.11 ± 2.64 93.89 53.67 73.78 79.54 82.07

MPC 78.77 ± 2.47 90.78 56.00 73.39 79.64 76.21

Boldface denotes the best performance and the maximum performance in each metric

SMTL sparse multi-task learning, S 2MTL subclass-based SMTL, DW-SMTL deep weighted SMTL, D-S
2MTL deep S2MTL, DW-S 2MTL deep weighted S2MTL
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experiments of multi-class classifications. Note that no

change in our framework is required for multi-class clas-

sification, except for the class labels.

Figure 3 summarizes the performances on two multi-

class classification tasks. Same as the binary classification

results, we observed that the proposed DW-S2MTL method

outperformed the competing methods for both three-class

and four-class classification tasks. Concretely, in three-

class classification, SMTL achieved the ACCs of 50.10 %

(MRI), 49.52 % (PET), 54.57 % (MP), and 58.55 %

(MPC), and DW-SMTL achieved the ACCs of 50.10 %

(MRI), 51.50 % (PET), 56.52 % (MP), and 58.55 %

(MPC). Meanwhile, DW-S2MTL achieved 55.50 % (MRI),

53.50 % (PET), 62.43 % (MP), and 62.93 % (MPC). In

four-class classification, the maximal ACC of 53.72 % was

produced by the proposed DW-S2MTL method with MPC

data, improving the ACC by 9.08 % (vs. SMTL), 8.63 %

(vs. DW-SMTL), 11.22 % (vs. S2MTL), and 12.21 % (vs.

D-S2MTL), respectively.

Classification results on a large MRI dataset

Since the focus on AD/MCI diagnosis or prognosis ap-

pears to be mostly on MRI, we further performed ex-

periments with a large number of MRI data. Specifically,

we considered 805 subjects of 198 (AD), 167 (pMCI),

236 (sMCI), and 229 (NC). With this large dataset, we

conducted experiments for the same tasks as considered

above. The classification accuracies and the respective

standard deviations are presented in Fig. 4. In all classi-

fication tasks, the proposed DW-S2MTL clearly surpassed

the other four competing methods, by achieving the ACCs

of 90.27 % (AD vs. NC), 70.86 % (MCI vs. NC),

73.93 % (pMCI vs. sMCI), 57.74 % (AD vs. MCI vs.

NC), and 47.83 % (AD vs. pMCI vs. sMCI vs. NC),

respectively.

Discussions

Based on our experiments of binary and multi-class clas-

sifications, we observed two interesting results: (1) when

comparing SMTL with S2MTL and also DW-SMTL with

DW-S2MTL, the subclass-based approaches, i.e., S2MTL

and DW-S2MTL, outperformed the respective competing

methods, i.e., SMTL and DW-SMTL; (2) the proposed

deep sparse multi-task learning method with a feature-

adaptive weighting scheme helped enhance the diagnostic

accuracies, i.e., DW-SMTL and DW-S2MTL showed better

performance than SMTL, and S2MTL and D-S2MTL,

Table 5 A summary of the

performances for pMCI vs.

sMCI classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SMTL MRI 51.44 ± 3.68 39.50 61.00 50.25 44.78 55.74

PET 50.92 ± 3.97 40.50 59.33 49.92 44.56 55.27

MP 54.48 ± 3.88 41.50 65.00 53.25 49.01 57.82

MPC 60.69 ± 4.06 46.50 72.00 59.25 56.96 62.80

DW-SMTL MRI 55.46 ± 3.65 29.00 76.33 52.67 49.14 57.68

PET 54.12 ± 4.28 38.00 66.33 52.17 46.09 58.55

MP 56.71 ± 4.28 44.00 67.00 55.50 51.91 59.64

MPC 58.56 ± 4.09 36.50 75.67 56.08 53.78 60.57

S2MTL MRI 61.00 ± 3.47 53.00 66.33 59.67 51.19 67.93

PET 57.87 ± 4.13 44.50 68.33 56.42 52.36 61.15

MP 65.33 ± 3.84 59.50 70.67 65.08 65.01 65.58

MPC 67.04 ± 4.38 67.00 66.67 66.83 61.48 69.89

D-S2MTL MRI 63.71 ± 2.43 25.50 92.00 58.75 70.24 62.52

PET 55.25 ± 4.60 50.00 59.67 54.83 51.07 58.64

MP 67.82 ± 3.41 37.00 93.33 65.17 82.12 64.16

MPC 70.73 ± 3.41 42.50 93.00 67.75 82.73 67.22

DW-S2MTL MRI 69.84 ± 2.68 44.00 89.00 66.50 74.79 68.19

PET 65.71 ± 3.64 29.50 95.00 62.25 82.68 62.49

MP 74.15 ± 3.35 50.50 92.67 71.58 84.36 70.51

MPC 73.04 ± 3.51 53.00 89.00 71.00 79.33 70.39

Boldface denotes the best performance and the maximum performance in each metric

SMTL sparse multi-task learning, S 2MTL subclass-based SMTL, DW-SMTL deep weighted SMTL, D-S
2MTL deep S2MTL, DW-S 2MTL deep weighted S2MTL
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respectively. In this section, we further discuss the results

in various perspectives.

Data distributions

In our experiments, the subclass-based methods, i.e.,

S2MTL and DW-S2MTL, were superior to the respective

competing methods, i.e., SMTL and DW-SMTL. To justify

the results, we performed Henze–Zirkler’s multivariate

normality test (Henze and Zirkler 1990) that statistically

determines how well samples can be modeled by a multi-

variate normal distribution, and summarized the results in

Table 6. In our test, the null hypothesis was that the

samples could come from a multivariate normal distribu-

tion. Regarding MRI, the null hypothesis was rejected for

both AD and MCI. With respect to PET, the test rejected

the hypothesis for MCI. In the meantime, it turned out that

the CSF samples of all the disease labels did not follow a

multivariate Gaussian distribution. Based on these statis-

tical evaluations, we can confirm the complex data distri-

butions and also justify the necessity of using the subclass-

based approach, which can efficiently handle such a com-

plex distribution problem.

Effect of deep architecture in feature selection

To see the effect of the proposed deep learning scheme in

a sparse regression framework, in Fig. 5a and b, respec-

tively, we illustrate the change of the weights for each

feature and the selected features over hierarchies by DW-

S2MTL from one of the tenfolds in three-class classifi-

cation with MP data. From the figure, it is clear that in

the 1st hierarchy that corresponds to S2MTL, the weights

for the features are equal and more than 80 % of the total

features were selected. But, as the algorithm forwarded to

the higher hierarchy, it gradually discarded uninformative

or less informative features, whose weights from the op-

timal regression coefficients in the lower hierarchy were

relatively low, and after the 4-th hierarchy, it finally se-

lected only 19 features (approximately 10 % of the total

features). The ROIs corresponding to the finally selected

features, i.e., weighted high for classification, included

hippocampal formation left/right, amygdala left/right (in a

medial temporal lobe that involves a system of

anatomically related structures that are vital for declara-

tive or long-term memory) (Braak and Braak 1991; Visser

et al. 2002; Mosconi 2005; Lee et al. 2006; Devanand

et al. 2007; Frisoni et al. 2008; Burton et al. 2009; De-

sikan et al. 2009; Ewers et al. 2012; Walhovd et al.

2010), precuneus left/right (Karas et al. 2007), cuneus left

Table 6 A summary of Henze–Zirkler’s multivariate normality test

on our dataset

Modality AD MCI NC

MRI 0.0005 (R) 0.0004 (R) 0.6967 (A)

PET 0.4273 (A) 0.0239 (R) 0.3150 (A)

CSF 0.0049 (R) \0.0001 (R) \0.0001 (R)

‘R’ or ‘A’ in parentheses denotes whether the null hypothesis (that the

samples could come from a multivariate normal distribution) is re-

jected or accepted at the 5 % significance level
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Fig. 3 Performance comparison on two multi-class classification

problems. (AVG average of accuracies over different modalities,

SMTL sparse multi-task learning, S 2MTL subclass-based SMTL, DW-

SMTL deep weighted SMTL, D-S 2MTL deep S2MTL, DW-S 2MTL
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Fig. 4 Performance comparison on a large MRI dataset from ADNI.

(SMTL sparse multi-task learning, S 2MTL subclass-based SMTL,
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(Bokde et al. 2006; Singh et al. 2006; Davatzikos et al.

2011), uncus left, anterior cingulate gyrus left, occipital

pole left, subthalamic nucleus left, postcentral gyrus left/

right, superior parietal lobule right, anterior limb of in-

ternal capsule right, and angular gyrus left (Schroeter

et al. 2009; Nobili et al. 2010; Yao et al. 2012). From a

biological perspective, we could understand that some of

the ROIs such as hippocampal formation, amygdala, and

precuneous selected from our MRI features were related

to the volume atrophy in medial temporal cortex, while

precuneous, cingulate gyrus, and parietal lobule selected

from our PET features could be concerned with hy-

pometabolism (Joie et al. 2012). For reference, we also

summarized the statistics of the number of hierarchies

built with the proposed DW-S2MTL in the tasks of binary

and multi-class classification with different modalities in

Table 7.

Performance interpretation

In ‘‘Binary classification results’’ and ‘‘Multi-class classi-

fication results’’, we showed the superiority of the proposed

DW-S2MTL method compared to the competing methods

in the context of classification accuracy. For the binary

classifications of MCI vs. CN and pMCI vs. sMCI, the

proposed DW-S2MTL method with MP data showed better

performance than with MPC data, even though the later

provided additional information from CSF. Note that in this

work, we treated different modalities equally, i.e., uniform

weight across modalities. However, should we apply a

modality-adaptive weighting scheme similar to Zhang

et al. (2011), we then expect to obtain enhanced perfor-

mances with MPC data.

Regarding sensitivity and specificity, the higher the

sensitivity, the lower the chance of misdiagnosing AD/MCI

Fig. 5 An example of the change of the selected features over hierarchies with MP in AD vs. MCI vs. CN
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patients; also the higher the specificity, the lower the

chance of misdiagnosing CN to AD/MCI. In our three bi-

nary classification tasks, although the proposed DW-

S2MTL method achieved the best accuracies, it did not

necessarily obtain the best sensitivity or specificity (but

still reported high sensitivity and specificity). It is note-

worthy that due to the imbalanced samples between

classes, we obtained low sensitivity in pMCI vs. sMCI and

low specificity in MCI vs. CN. In this regard, we also

computed the balanced accuracy that avoids inflated per-

formance estimates on imbalanced datasets by taking the

average of sensitivity and specificity. Based on this metric,

we clearly see that the proposed DW-S2MTL method

outperformed the competing methods by achieving the

maximal BACs of 95 % (MPC) in AD vs. CN, 73.78 %

(MP) in MCI vs. CN, and 71.58 % (MP) in pMCI vs.

sMCI.

The metrics of sensitivity and specificity have been

widely considered in the fields of the computer-aided AD

diagnosis. However, note that since both sensitivity and

specificity are defined on the basis of people with or

without a disease, there is no practical use to estimate the

probability of disease in an individual patient (Akobeng

2007). We rather need to know the positive/negative pre-

dictive values (PPV/NPV for short), which describe a pa-

tient’s probability of having disease once the classification

results are known. Furthermore, PPV and NPV are highly

related to the prevalence of disease. That is, the higher the

disease prevalence, the higher the PPV, i.e., the more likely

a positive diagnostic result; the lower disease prevalence,

the lower the PPV, i.e., the less likely a positive diagnostic

result. NPV would show exactly the opposite trends. In our

experiments, the proposed DW-S2MTL method achieved

the maximal PPVs/NPVs of 97.74 % (MPC)/92.86 %

(MPC) in AD vs. CN, 79.64 % (MPC)/82.07 % (MP) in

MCI vs. CN, and 84.36 % (MP)/70.51 % (MP) in pMCI vs.

sMCI. It is remarkable that in pMCI vs. sMCI classifica-

tion, which is clinically the most important, the proposed

DW-S2MTL showed PPV improvements by 28.4 % (vs.

SMTL with MPC), 30.58 % (vs. DW-SMTL with MPC),

22.88 % (vs. S2MTL with MPC), and 1.63 % (vs.

D-S2MTL) and NPV improvements by 7.71 % (vs. SMTL

with MPC), 9.94 % (vs. DW-SMTL with MP), 0.62 % (vs.

S2MTL with MPC), and 3.29 % (vs. D-S2MTL with MPC).

Comparison with the state-of-the-art methods

In Table 8, we also compared the classification accuracies

of the proposed DW-S2MTL method with those of the

state-of-the-art methods that fused multiple modalities for

the classifications of AD vs. NC and MCI vs. NC. Note

that, due to different datasets and different approaches for

extracting features and building classifiers, it is not fair to

directly compare the performances among the methods.

Nevertheless, the proposed method showed the highest

accuracies among the methods in both binary classification

problems. In particular, it is noteworthy that compared to

Zhang and Shen’s work (2011) in which they used the

same dataset as ours, the proposed method enhanced the

accuracies by 1.89 and 3.71 % for the classifications of

AD/CN and MCI/CN, respectively. Furthermore, in com-

parison with Liu et al.’s work (2013), where they also used

both the same types of features from MRI and PET and the

same number of subjects with ours, our method improved

the accuracies by 0.72 % (AD/CN) and 1.31 % (MCI/CN),

respectively. We also performed statistical significance

tests to compare with Liu et al.’s and Zhang et al.’s

methods. In summary, the null hypothesis was rejected

beyond the 99 % of the confidence level based on the p-

values of 0.00024 (vs. Liu et al.’s method) and 0.00012 (vs.

Zhang et al.’s method).

Conclusions

In neuroimaging-based AD/MCI diagnosis, the ‘high-di-

mension and small sample’ problem has been one of the

major issues. To tackle this problem, sparse regression

methods have been widely exploited for feature selection,

thus reducing the dimensionality. To our best knowledge,

most of the existing methods select informative features in

a single hierarchy. However, during the optimization of the

regression coefficients, the weights of informative features

are inevitably affected by non-informative or noisy fea-

tures, and thus there is a high possibility of having the

informative features underestimated or the uninformative

features overestimated. In this regard, we proposed a deep

sparse multi-task learning method along with a feature-

adaptive weighting scheme for feature selection in AD/

Table 7 A summary of the

statistics (mean ± std [min–

max]) of the number of

hierarchies with the proposed

DW-S2MTL in the tasks of

binary and multi-class

classification with modalities

Task MRI PET MP MPC

AD/CN 1.1 ± 0.3 [1–2] 1.4 ± 0.7 [1–3] 1.5 ± 0.7 [1–3] 1.6 ± 1.0 [1–4]

MCI/CN 1.5 ± 0.8 [1–3] 1.8 ± 0.8 [1–3] 1.4 ± 0.5 [1–2] 2.0 ± 1.1 [1–4]

pMCI/sMCI 1.1 ± 0.3 [1–2] 1.2 ± 0.4 [1–2] 1.3 ± 0.5 [1–2] 1.4 ± 0.7 [1–3]

AD/MCI/CN 1.4 ± 0.5 [1–2] 1.7 ± 0.8 [1–3] 1.6 ± 1.0 [1–4] 1.5 ± 0.7 [1–3]

AD/pMCI/sMCI/CN 1.4 ± 1.0 [1–4] 1.8 ± 0.8 [1–3] 1.4 ± 0.8 [1–3] 1.5 ± 0.5 [1–2]
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MCI diagnosis. The main contributions of this work can be

threefold: (1) Rather than selecting informative features in

a single hierarchy, the proposed method iteratively filters

out uninformative features in a hierarchical fashion. (2)

Furthermore, at different hierarchies, our method utilizes

the regression coefficients optimized in the lower hierarchy

as context information to better determine informative

features for classification. (3) Last but not least, our method

reflects the complex distributional characteristics in each

class via a subclass labeling scheme.

In our experimental results on the ADNI cohort, we

validated the effectiveness of the proposed method in both

binary classification and multi-class classification tasks,

outperforming the competing methods in various metrics.

It is noteworthy that in this work, we regarded the im-

portance of features from different modality equally.

However, as demonstrated by Zhang et al. (2011), different

modalities may have different impacts on making a clinical

decision. If a multi-kernel SVM (Gönen and Alpaydin

2011) is used to replace the linear SVM in our framework,

then it would be possible to learn modality-adaptive

weights and thus can obtain the relative importance of

different modalities.

According to a recent broad spectrum of studies, there

are increasing evidences that subjective cognitive com-

plaint is one of the important genetic risk factors, which

increases the risk of progression to MCI or AD (Loewen-

stein et al. 2012; Mark and Sitskoorn 2013). That is, among

the cognitively normal elderly individuals who have sub-

jective cognitive impairment, there exists a high possibility

for some of them to be in the stage of ‘pre-MCI’. However,

this issue has been underestimated in the field. Thus, we

believe that it is important to design and develop diagnostic

methods by taking into account such information as well.

In addition, to our best knowledge, most of the existing

computational methods have focused on improving diag-

nostic accuracy or finding the potential biomarkers. How-

ever, for practical application of those computational tools

as an expert system, it is required to present the grounds for

the clinical decision. For example, when a diagnostic sys-

tem makes a decision to MCI, then it would be beneficial

for doctors to know which parts of the brain regions are

distinct or abnormal compared to those of the normal

healthy controls.
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Appendix: Affinity propagation

Here, we briefly review the affinity propagation (Frey and

Dueck 2007), by which we find subclasses in each original

class. Let S
ðhÞ
ij ði; j ¼ 1; 2; . . .;NÞ denote the pairwise

similarities13 between each pair of N samples in ~XðhÞ. The

affinity propagation algorithm works on the similarity

matrix SðhÞ ¼ ½SðhÞij � 2 R
N�N and attempts to find ‘exem-

plars’ that maximize the overall sum of similarities be-

tween all exemplars and their member samples.

Methodologically, the algorithm defines two types of

messages, namely, responsibility and availability, ex-

changed among samples: Responsibility R
ðhÞ
ij represents the

accumulated evidence for how well-suited sample j is to

serve as the exemplar for sample i; Availability A
ðhÞ
ij reflects

the accumulated evidence for how appropriate it would be

for sample i to choose sample j as its exemplar. Using these

messages, the exemplar of sample i is determined by the

one that maximizes the following objective function:

argmax
j

fRðhÞ
ij þ A

ðhÞ
ij : j ¼ 1; 2; . . .;Ng: ð8Þ

Table 8 Comparison of classification accuracies (%) with the state-of-the-art methods that used multimodal neuroimaging for AD/CN and MCI/

CN. The boldface denotes the maximum performance in each classification problem. (MP: MRI?PET, MPC: MRI?PET?CSF)

Methods Subjects (AD/MCI/NC) Modalities AD/CN MCI/CN

Kohannim et al. (2010) 40/83/43 MPC 90.7 75.8

Hinrichs et al. (2011) 48/119/66 MP 92.4 n/a

Zhang et al. (2011) 51/99/52 MPC 93.2 76.4

Liu et al. (2013) 51/99/52 MP 94.37 78.80

Proposed DW-S2MTL 51/99/52 MPC 95.09 80.11

13 In this work, we use a negative Euclidian distance for similarity

computation.
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In Algorithm 1, both RðhÞ ¼ ½RðhÞ
ij � and AðhÞ ¼ ½AðhÞ

ij � are

initially set to zero matrices, and then their values are it-

eratively updated as below until converged:

R
ðhÞ
ij ¼

S
ðhÞ
ij � maxk 6¼jfAðhÞ

ik þ S
ðhÞ
ik g ði 6¼ jÞ

S
ðhÞ
ij � maxk 6¼jfSðhÞik g ði ¼ jÞ

2

4

A
ðhÞ
ij ¼

minf0;R
ðhÞ
jj þ

P

k 6¼i;j maxf0;R
ðhÞ
kj gg ði 6¼ jÞ

P

k 6¼i maxf0;R
ðhÞ
kj g ði ¼ jÞ

2

4 :
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