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Abstract Although age-related differences in white

matter have been well documented, the degree to which

regional, tract-specific effects can be distinguished from

global, brain-general effects is not yet clear. Similarly, the

manner in which global and regional differences in white

matter integrity contribute to age-related differences in

cognition has not been well established. To address these

issues, we analyzed diffusion tensor imaging measures

from 52 younger adults (18–28) and 64 older adults

(60–85). We conducted principal component analysis on

each diffusion measure, using data from eight individual

tracts. Two components were observed for fractional

anisotropy: the first comprised high loadings from the

superior longitudinal fasciculi and corticospinal tracts, and

the second comprised high loadings from the optic radia-

tions. In contrast, variation in axial, radial, and mean dif-

fusivities yielded a single-component solution in each case,

with high loadings from most or all tracts. For fractional

anisotropy, the complementary results of multiple compo-

nents and variability in component loadings across tracts

suggest regional variation. However, for the diffusivity

indices, the single component with high loadings from

most or all of the tracts suggests primarily global, brain-

general variation. Further analyses indicated that age was a

significant mediator of the relation between each compo-

nent and perceptual-motor speed. These data suggest that

individual differences in white matter integrity and their

relation to age-related differences in perceptual-motor

speed represent influences that are beyond the level of

individual tracts, but the extent to which regional or global

effects predominate may differ between anisotropy and

diffusivity measures.
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Abbreviations

AC-PC Anterior commissure–posterior commissure

AD Axial diffusivity

CST Corticospinal tract

DTI Diffusion tensor imaging

DWI Diffusion-weighted image

fSPGR Fast spoiled gradient-echo imaging

FA Fractional anisotropy

FMRIB Functional MRI of the brain

FOV Field of view

ICA Independent component analysis

MD Mean diffusivity

MNI Montreal Neurological Institute

MR Magnetic resonance

MRI Magnetic resonance imaging

OR Optic radiations

PCA Principal component analysis

RD Radial diffusivity

RF Radio frequency

ROI Region of interest

RT Reaction time

SFNR Signal fluctuation to noise ratio

SLF Superior longitudinal fasciculus
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SNR Signal to noise ratio

TE Echo time

TR Repetition time

WAIS Wechsler Adult Intelligence Scale

Introduction

Cognitive functions such as perception and attention rely

on widely distributed networks in the brain (McIntosh

2000; Mesulam 1990), and these networks critically

depend on white matter for their efficiency (Filley 2005;

Schmahmann et al. 2008). Age-related decline, even in

the absence of disease, occurs in some aspects of cog-

nition, such as perceptual-motor speed (Salthouse 1996,

2000; Salthouse and Madden 2007), attention (Kramer

and Madden 2008; Verhaeghen and Cerella 2002), and

episodic memory (Burke and Mackay 1997; Zacks et al.

2000; Park et al. 2002). Age-related declines have also

been observed in the integrity of cerebral white matter,

and these changes in white matter, by disrupting the

networks critical for cognitive functioning, may contrib-

ute to the changes in cognitive performance associated

with normal aging (Bartzokis et al. 2004; Bennett and

Madden 2013; Carmichael and Lockhart 2012; Madden

et al. 2009a, 2012; Sullivan and Pfefferbaum 2006,

2011).

Diffusion tensor imaging (DTI) is a widely used method

for investigating white matter. DTI provides in vivo mea-

sures of the rate (e.g., mean diffusivity—MD) and direc-

tionality (e.g., fractional anisotropy—FA) of the diffusion

of water molecules across tissue, and thus can be used to

characterize tissue integrity (Basser 1995; Mori 2007;

Jones 2008; Beaulieu 2002; Le Bihan 2003). In general,

higher FA and lower MD values indicate higher levels of

tissue integrity. DTI measures of the components of dif-

fusivity provide additional information. Axial diffusivity

(AD), the rate of diffusion along the principal direction, has

been related to axonal integrity (Budde et al. 2007; Song

et al. 2003); radial diffusivity (RD), the average rate of

diffusion orthogonal to the principal direction, has been

related to the degree of myelination (Klawiter et al. 2011;

Song et al. 2002, 2003). However, while DTI-based esti-

mation of white matter tract organization exhibits a high

degree of anatomical validity (Catani et al. 2002; Miller

et al. 2011), the constituent measures of diffusivity and

anisotropy must be interpreted with caution, because these

measures are sensitive to the mathematical and geometrical

properties of the associated data, and the neurophysio-

logical basis for specific diffusivity measures is not as yet

completely defined (Jones et al. 2012; Wheeler-Kingshott

and Cercignani 2009).

Neuroimaging studies commonly report decreases in FA

and increases in MD as a function of increasing adult age,

suggesting age-related decline in white matter tissue

integrity (Kochunov et al. 2012; Lebel et al. 2012; Vo-

ineskos et al. 2012; Westlye et al. 2010; Stadlbauer et al.

2012). The pattern of age-related differences in AD and RD

is complex but tends to be more pronounced for RD,

possibly indicating greater age-related differences in

myelin integrity (Bennett et al. 2010; Burzynska et al.

2010). Although age-related differences in white matter

have been well documented, the regional pattern of age-

related change has not been completely specified. Age-

related effects have been observed more prominently in

frontal brain regions than in more posterior regions (Davis

et al. 2009; Sullivan et al. 2006; Zahr et al. 2009), and in

superior compared to inferior regions such as within the

internal capsule (Sullivan et al. 2010). These regional age-

related trends may reflect the vulnerability of later myeli-

nating tracts to the effects of aging.

Previous research has focused on specific regions of

white matter or individual tracts, typically without con-

sideration of the degree to which effects are shared across

tracts. That is, variation in the properties of white matter

may not be entirely specific to individual tracts but instead

may represent more global effects, common to the brain as

a whole. In fact, recent evidence suggests that measures of

white matter are highly correlated across white matter

tracts, particularly within homologous tracts (Lövdén et al.

2012; Penke et al. 2010; Wahl et al. 2010; Li et al. 2012).

A critical finding is that of Penke et al. (2010), who

focused on a sample of 132 older adults (71–73 years of

age). Conducting principal component analysis (PCA) on

each of several DTI measures (FA, AD, RD, MD) from

eight white matter tracts, Penke et al. found that a single

principal component explained approximately 45 % of the

variance in each measure, and that many or most of the

individual tracts loaded highly on each principal compo-

nent. Further, two of these global components (those for

FA and RD) were correlated with information processing

speed, but not with general intelligence or memory. Their

results suggest that, among older adults, individual dif-

ferences in white matter integrity are shared globally

throughout the brain and are related to a specific aspect of

cognition.

Lövdén et al. (2012) also investigated DTI data from

older adults (60–87 years of age) to investigate global and

regional variation in white matter integrity. Using struc-

tural equation modeling, they compared two models: one

positing a general factor (i.e., similar cross-tract correla-

tions) and the other positing tract-specific effects (i.e., each
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tract-tract correlation as a separate factor). Although a

global factor was evident in the DTI data, in contrast to

Penke et al. the model that explained the most variance

contained factors for each specific bilateral tract. More-

over, age-related differences in inter-tract correlations

occurred in only a subset of regions, further indicating that

age-related effects were not homogeneous across all the

tracts. Also supportive of a regional account, Li et al.

(2012) conducted an independent component analysis

(ICA) of whole-brain FA maps (for adults 20–50 years of

age) and found that multiple independent components

emerged, which corresponded to anatomically defined

white matter pathways. The Li et al. investigation, how-

ever, did not address age-related differences, and the Penke

et al. and Lövdén et al. studies, while providing analyses of

age-related effects, limited their participant samples to

older adults. Additionally, none of these previous studies

investigated the potential role of white matter anisotropy or

diffusivity as a mediator (Baron and Kenny 1986; Judd and

Kenny 1981) of cognition.

Building on these previous findings, in the present study,

we used PCA to identify brain-general and regionally

specific components of individual differences in DTI

variables (FA, AD, RD, and MD) across regions of interest

defined to capture white matter pathways. Our analyses

extend the previous age-related studies (Li et al. 2012;

Lövdén et al. 2012; Penke et al. 2010) by including

younger as well as older adults. We selected pathways

critical for inter-hemispheric communication (genu and

splenium of the corpus callosum), language and attention

(superior longitudinal fasciculus; SLF), motor functioning

(corticospinal tract; CST), and visual perception (optic

radiations; OR). We hypothesized that if a global, brain-

general effect accounts for individual differences in cere-

bral white matter, then, for each of the DTI variables, PCA

should yield a single component with high loadings from

most or all of the tracts. Alternatively, if regional or tract-

specific effects account for the individual differences, then

we would expect a different PCA pattern. For each DTI

variable, PCA should yield either multiple components

(corresponding to individual tracts or tract groups) or a

single component driven by a small number of tracts.

Either of these patterns would reflect regional variability in

white matter integrity. Additionally, because age-related

differences in raw DTI measures have been reported pre-

viously, such as a decline in anisotropy and increase in

diffusivity (Kochunov et al. 2012; Lebel et al. 2012; Vo-

ineskos et al. 2012; Westlye et al. 2010; Stadlbauer et al.

2012), we examined the relationship between the PCA-

derived components and age.

We also investigated the relation between the PCA

components of the DTI variables and behavioral measures

of cognition. Previous research suggests that individual

differences in white matter contribute to age-related dif-

ferences in cognition (Madden et al. 2009b; Gold et al.

2010; Salami et al. 2012; Perry et al. 2009; Borghesani

et al. 2013), but the pattern of this relationship is still

unclear. Penke et al. (2010) and other data (Lu et al. 2013)

suggest that white matter integrity is particularly important

for speed-dependent measures of cognition, but substantial

variability exists in the brain regions and behavioral tasks

that covary with adult age (Bennett et al. 2011, 2012;

Kennedy and Raz 2009). Here, we examined age-related

differences in measures of perceptual-motor speed (digit

symbol performance) and vocabulary. Because it is well

established that age-related decline is more prominent in

perceptual-motor speed (and other measures of fluid

intelligence and executive function) than in semantic

memory (and other measures of crystallized intelligence

and linguistic ability; Burke and Mackay 1997; Park et al.

2002; Salthouse 1991b), we hypothesized that the DTI

components (whether global or tract-specific) would

mediate the age-related variance in perceptual-motor speed

but not vocabulary.

Methods

Participants

The analyses were conducted on data sets from previously

published studies (Bucur et al. 2008; Madden et al. 2009b),

as well as previously unpublished data. The initial sample

included 123 participants, who were healthy, right-handed,

community-dwelling adults with normal or corrected to

normal vision and no history of neurological or psycho-

logical disorders. From a screening questionnaire, all par-

ticipants were free from major medical conditions

(including diabetes, atherosclerosis, and neurological and

psychiatric disorders), other than mild essential hyperten-

sion (Christiansen and MacDonald 2009). One participant

in the younger group was hypertensive and untreated.

Twenty-one of the 64 older participants were hypertensive,

14 of these individuals were treated. Because this is a

variable known to influence the brain and MRI measure-

ments, the presence of hypertension was partialed out from

the PCA component scores and subsequent analyses. None

reported taking other medications that might affect the

brain. All participants were screened for good near vision

(corrected,\20/40 acuity), and visual acuity was not sig-

nificantly correlated with any of the component scores or

with the FA and diffusivity values. Data for seven partic-

ipants were eliminated due to missing data in one or more

critical variable(s) of interest. The final data set thus con-

tained 116 individuals, 52 younger adults (24 females)

between 18 and 28 years of age (M = 23.72, SD = 2.66),
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and 64 older adults (35 females) between 60 and 85 years

of age (M = 68.82, SD = 4.94). Demographic and psy-

chometric data are presented in Table 1. All participants

scored 27 or above on the Mini-Mental State Exam (Fol-

stein et al. 1975). Age groups did not differ in years of

education (Table 1). Each participant provided informed

consent and was paid for his or her participation. All

experimental procedures were approved by the Duke

University Medical Center Institutional Review Board.

Neuroimaging

Image acquisition

Data were collected on two different magnetic resonance

imaging (MRI) scanners at the Brain Imaging and Analysis

Center at the Duke University Medical Center. For all

participants, we collected a sagittal localizer scan to iden-

tify the anterior and posterior commissures for slice

selection, a high-resolution T1-weighted series, and DTI

scans. In addition, for all sessions, a semi-automated high-

order shimming program was used to ensure global field

homogeneity. The exact parameters of each series varied

slightly depending on the scanner and are reported below.

Twenty-nine participants were scanned on a 4.0 Tesla

GE LX Nvi MRI scanner equipped with a 41 mT/m gra-

dient coil. Radio frequency (RF) transmission and recep-

tion was achieved with a birdcage RF head coil (General

Electric, Milwaukee, Wisconsin, USA). High-resolution T1

images were acquired using a 3D fSPGR pulse sequence

(TR = 12.3 ms; TE = 5.4 ms; ti = 300 ms; FOV =

24.0 cm2; flip angle = 20�; voxel size = 1 9 1 9 2 mm;

60 contiguous oblique-axial slices parallel to the AC-PC

plane). Diffusion MR scans were acquired for each

participant (TR = 30,000 ms; TE = 138.8 ms; FOV =

24 cm2; flip angle = 90�; voxel size = 1.875 9 1.875 9

3.8 mm; 30 contiguous oblique-axial slices parallel to the

AC-PC plane; 6 diffusion-weighted directions; b =

1,000 s/mm2; 1 non-diffusion-weighted reference image).

Eighty-seven participants were scanned on a 3.0 Tesla

GE Signa Excite HD MRI scanner equipped with 50 mT/m

gradients. An eight-channel head coil was used for RF

transmission and reception (General Electric, Milwaukee,

Wisconsin, USA). High-resolution T1 images were acquired

using a 3D fSPGR pulse sequence (TR = 7.4 ms;

TE = 3 ms; ti = 450 ms; FOV = 25.6 cm2; flip angle =

12�; voxel size = 1 9 1 9 1.2 mm; 104 contiguous slices).

Diffusion MR scans were acquired for each participant

(TR = 17,000 ms; TE = 86.7 ms; FOV = 25.6 cm2; flip

angle = 90�; voxel size = 1 9 1 9 2.4 mm; 52 contiguous

oblique-axial slices parallel to the AC-PC plane; 15 diffu-

sion-weighted directions; b = 1,000 s/mm2; 1 non-diffu-

sion-weighted reference image).

Because there were scanner and sequence variations,

signal fluctuation to noise ratios (SFNRs), derived from an

agar phantom, were included as statistical controls in the

analyses. Different field strengths and number of diffusion-

weighted gradients are known to affect SNR and diffusion

measurements (Jones 2004; Polders et al. 2011; Reischauer

et al. 2009; Vollmar et al. 2010; Zhang et al. 2009; Zhu

et al. 2011); thus statistically controlling for SFNR can be a

viable method to address scanner and sequence variability.

We partialed out SFNR during the PCAs, thereby removing

the associated variance from the extracted components and

from subsequent analyses which utilized those components

(i.e., age group tests and mediation tests). We combined

data sets across scanners to maximize our sample size and

to ensure a sufficient sample size for a reliable PCA.

Details on the distribution of participants across scanners

can be found in Table 1. Examples of raw diffusion-

weighted gradient and FA images are shown in Supple-

mentary Fig. 1.

White matter tract definition and DTI preprocessing

An overview of our data analysis procedure is provided in

Fig. 1, which illustrates seven general stages. Following

visual inspection of each image for sufficient quality and

orientation, we used brain extraction tools (Smith 2002) to

create a normalized T1 image for each participant, using

the Montreal Neurological Institute (MNI) standard 1 mm

template (Stage 1). We concatenated the 116 images into a

4D volume, and with voxel-wise averaging combined the

images into a study-specific structural template in MNI

space (Stage 2).

We then drew regions corresponding to eight white

matter tracts on the averaged, study-specific template: the

Table 1 Participant characteristics by age group

Younger

adults

Older adults

Age (years) 23.72 (2.66) 68.82 (4.94)***

Education (years) 15.96 (2.23) 16.45 (2.46)

Semantic memory (WAIS

vocabulary)

65.31 (3.63) 64.13 (4.54)

Perceptual-motor speed (WAIS

digit symbol)

1,311.83

(206.13)

1,809.28

(285.98)***

3T scanner (n) 28 59

4T scanner (n) 24 5

n = 52 younger adults and 64 older adults. Values are means with

standard deviations in parentheses. Semantic memory = vocabulary

subtest of the Wechsler Adult Intelligence Scale-Revised [WAIS,

(Wechsler 1981)]; perceptual-motor speed = reaction time in ms on a

computer test of digit symbol coding similar to the digit symbol

substitution subtest test of the WAIS

*** p\ 0.0001
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genu and splenium of the corpus callosum, and in both

hemispheres: SLF, CST, and OR (Stage 3). These regions

are illustrated in Fig. 2. The genu and splenium were

chosen for their role in inter-hemispheric communication,

the SLF for its role in attention and language (Bartolomeo

et al. 2007; Saur et al. 2008), the CST for its role in motor

control (Taylor and Gandevia 2004), and the OR for its role

in visual perception (Toosy et al. 2004). We created each of

Fig. 1 Overview diagram of data processing steps. Stage 1 Normal-

ization of structural images to standard MNI space. Stage 2 Creation

of study-specific structural template in MNI space. Stage 3 ROI

definition of the eight white matter tracts. Stage 4 Averaging and

preprocessing of diffusion data and tensor fitting to create FA maps.

Stage 5 Normalization of FA space to MNI space. Stage 6

Deprojection of white matter ROIs using the inverse transformation

parameters from the FA to MNI normalization. Stage 7 Quality

assessment of deprojected ROIs and extraction of FA, AD, RD, and

MD
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the eight white matter tracts once on the study-specific

structural template, using Mango 2.5 (Multi-image Ana-

lysis GUI, http://ric.uthscsa.edu/mango/) and guided by a

white matter atlas (Oishi et al. 2011). Anatomical guide-

lines used for tract definition are presented in the ROI

drawing section of the Supplementary Materials.

We conducted tensor fitting on the diffusion-weighted

images (DWI) for each participant to create an FA map in

native space (Stage 4). We normalized each participant’s

native FA image to the MNI FA template (FMRIB58_-

FA_1 mm) using nonlinear transformations and visually

inspected the normalized output for sufficient quality

(Stage 5). We used the inverse transformation parameters

from the previous step (FA to MNI normalization) to de-

project each tract from template to native space (Stage 6).

Each deprojected tract for each participant was visually

inspected to ensure proper alignment with the white matter

tract of interest. Finally, we visual inspected and adjusted

the deprojected tracts as needed and extracted the diffu-

sivity indices FA, AD, RD, and MD (Stage 7). Potential

partial volume effects were minimized by setting the tract

threshold at FA [0.25 prior to data extraction and by

demarcating the boundaries of the ROIs by at least two

voxels within the visible termination of white matter to

avoid partial intrusion of the gray matter or cerebrospinal

fluid (CSF).

We preprocessed the DTI data with FSL 4.1.5 tools

(FMRIB, Oxford University, UK, Smith et al. 2004). For

each participant, the DWIs were concatenated into a 4D

volume. Participants had between 1 and 5 DWI scans,

which were all collected in a single session. We then

applied five processing steps to the 4D volume, sequen-

tially: (a) brain extraction (Smith 2002), (b) correction of

eddy current-induced artifacts and head motion within and

across scans using affine registration of the different scans

to the first scan in the volume, (c) rotation of the diffusion

gradients to correct for shifts during the affine registration,

(d) averaging of the multiple scans into a single volume,

and (e) estimation of the DTI parameters FA, AD, RD, and

MD. Following these processing steps, we visually

inspected the alignment of the eigenvectors with the ana-

tomical structures to ensure accuracy.

Statistical analyses

Behavioral data

In the original studies, two behavioral measures were

collected from all participants as part of the psychometric

screening: digit symbol reaction time (RT) and vocabulary.

These two measures were used as our proxy for perceptual-

motor speed and semantic memory, respectively. Initially,

vocabulary was the raw score on the subtest of the

Wechsler Adult Intelligence Scale-Revised (WAIS,

Wechsler 1981), and digit symbol was mean RT on a

computer test of digit symbol coding similar to the digit

symbol substitution subtest test of the WAIS. The final

vocabulary and digit symbol values were z scores stan-

dardized using the mean and standard deviation from the

younger group. This method allowed us to evaluate age-

related differences in standard units relative to the younger

cohort (Salthouse 1991b).

Fig. 2 Eight white matter tracts on which analyses were conducted: genu and splenium, bilateral corticospinal tract, CST (sagittal view is of the

left hemisphere tract), bilateral optic radiation, OR, and bilateral superior longitudinal fasciculus, SLF (sagittal view is of left hemisphere tract)
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DTI data

To investigate the potential presence of global and tract-

specific effects, we conducted a single PCA across all

participants for each of the four DTI measures, partialing

out SFNR and the presence or absence of hypertension.

This data reduction method computes orthogonal principal

components (linear combinations of optimally weighted

variables) from the covariance matrix of the data across the

eight white matter tracts (Abdi and Williams 2010). PCA is

well suited to discriminating between global and regional

patterns because it reveals latent component(s) that char-

acterize the maximal amount of unique variance in the

manifest (observed) measures. Moreover, PCA, unlike

ICA, provides an ordering of the extracted components

(Hyvarinen and Oja 2000). For each of the DTI measures

(FA, AD, RD, and MD), the PCA characterized the

covariation across the eight white matter tracts (dependent

variables). Moreover, for each DTI measure, PCA yields a

component score for each participant which is a weighted

estimate of how their individual data correlates to the

overall component. In addition, a component loading is

calculated for each tract, which reflects the degree to which

variability in that tract contributes to the component. Thus,

the pattern of results in terms of the number of components

and the pattern across tracts (i.e., component loadings) can

be used to infer global or regional patterns of variability

and can be analyzed with other variables of interest to

investigate age-related differences. A PCA component was

retained for further analysis when the eigenvalue was

greater than 1.0 and confirmed by scree plot (Cattell 1966;

Kaiser 1960). Component loadings greater than 0.70 were

considered high, given our sample size and number of

variables (Buja and Eyuboglu 1992).

Mediation analyses

To investigate the relations among white matter integrity,

age, and behavior, we compared three different models of

mediation (Salthouse 2011) with each PCA component.

Mediation models were conducted using a multiple

regression procedure (Baron and Kenny 1986; Judd and

Kenny 1981). Model 1 proposes that the brain measure,

one of the DTI components, is a mediator between the

predictor variable, age, and the outcome variable, cognitive

measure. In Model 2, the cognitive measure is the proposed

mediator between age and the brain measure. In Model 3,

age is the proposed mediator between the brain and cog-

nitive measures. Following Baron and Kenny (1986), we

considered mediation to be a warranted interpretation

when, within a model, linear regression confirmed that all

four of the following effects were significant: (1) between

predictor and outcome variables, (2) between predictor and

mediator variables, (3) between mediator and outcome

variables, controlled statistically (partialed) for the pre-

dictor, and (4) a reduction or elimination of the relation

between predictor and outcome variables, after controlling

for the mediator. If mediation was observed, we then cal-

culated the degree to which variance associated with the

predictor was reduced (attenuated), when controlled for

variance associated with the mediator (Salthouse 1991a).

Given prior results in the literature, we hypothesized that

the DTI components would mediate the relationship

between age and perceptual-motor speed, but not the

relationship between age and vocabulary (Madden et al.

2009b; Gold et al. 2010; Salami et al. 2012; Perry et al.

2009; Borghesani et al. 2013). However, to fully assess

potential mediational relationships, we tested the models

formed by the alternative arrangement of the mediator and

predictor variables (Salthouse 2011).

Results

Principal component analyses

The PCA components and associated loadings are pre-

sented in Table 2. The FA data yielded two components:

the first with high loadings from the SLF and CST bilat-

erally, and the second with high loadings from the OR

bilaterally. In contrast, analyses of AD, RD, and MD each

Table 2 Principal component analysis of DTI variables

Component loadings

FA 1 FA 2 AD 1 RD 1 MD 1

Genu 0.38 0.38 0.76 0.57 0.73

Splenium 0.35 0.39 0.70 0.58 0.75

SLF left 0.85 -0.19 0.81 0.94 0.92

SLF right 0.82 -0.22 0.86 0.92 0.92

CST left 0.78 -0.42 0.88 0.85 0.93

CST right 0.84 -0.37 0.89 0.90 0.95

OR left 0.50 0.70 0.67 0.76 0.81

OR right 0.55 0.70 0.63 0.83 0.80

44.28 20.90 60.76 64.69 73.23

Variance explained (%)

Principal component analysis was conducted within the FA, AD, RD,

and MD variables. Values are unrotated loadings and variance

explained from the principal component analysis. Loadings [0.70

(shown in bold font) are interpreted as high. The FA data yielded a

two-component solution, whereas the AD, RD, and MD data each

yielded a single-component solution

FA 1 first component for FA data, FA 2 second component for FA

data, AD 1 first component for AD data, RD 1 first component for RD

data, MD 1 first component for MD data, SLF superior longitudinal

fasciculus, CST corticospinal tract, OR optic radiations
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yielded a single-component solution with high loadings

from bilateral SLF and CST. In addition, the MD compo-

nent also had high loadings from the genu, splenium, and

bilateral OR; the AD component had additional high

loadings from the genu and splenium; and the RD com-

ponent had additional high loadings from bilateral OR.

To determine whether the components varied across age

groups, we submitted the component scores as dependent

variables into a multivariate analysis of variance with age

group and component type as independent variables (it is

important to note that SFNR and hypertension nuisance

variables were already statistically controlled for in the

initial PCA stage). There was a significant main effect of

age group, F(1, 114) = 4.03, p\ 0.05, and a significant

age group 9 component interaction, F(4, 456) = 37.81,

p\ 0.0001. The effect size associated with age group

varied across the components, and univariate tests indi-

cated that the age group difference was significant for each

component individually (see Table 3), with F(1,

115)[ 13.0, p\ 0.001, in each case.

Mediation analyses

We used a four-step mediation procedure to test alternative

models of the relations among age, the PCA-derived

components of the DTI measures (which were corrected for

SFNR and hypertension nuisance variables), and percep-

tual-motor speed (Baron and Kenny 1986; Salthouse 2011).

For each of the DTI measures, when we modeled the PCA

component as a mediator between age and our cognitive

measures (Model 1), the components were not statistically

significant mediators of the age-related variance in speed

(see Figs. 3, 4). Entering each of the components sepa-

rately before age in a regression model predicting speed did

not significantly reduce the original age–speed relation.

Additionally, none of the components had an age-inde-

pendent relation to perceptual-motor speed. This suggests

that individual differences in the covariance of these

properties of white matter, as defined by the PCA-derived

components of the DTI measures, do not have a media-

tional role in the relation between age and perceptual-

motor speed.

We tested an alternative model (Model 2) in which the

cognitivemeasure is the proposedmediator between age and

the brainmeasure (see Figs. 3, 4). However, aswithModel 1,

perceptual-motor speed was not a statistically significant

mediator of the relation between age and the DTI compo-

nents, primarily because speed was not related to any of the

components after the effect of age was controlled.

A third possibility (Model 3) is that age was related to

both the DTI components and perceptual-motor speed, and

that this relationship accounted for some or all of the

variance between each component and speed. The results

indicated that this model was significant for each DTI

component (see Figs. 3, 4). Age was a significant predictor

of each component and a significant predictor of speed

independently of each component. Initially, each compo-

nent significantly predicted speed. However, after the

inclusion of age in the regression, each component no

longer predicted speed. These results are consistent with

age-related variance completely mediating the relation

between the DTI components and perceptual-motor speed.

Follow-up stepwise regressions were conducted to esti-

mate the amount of attenuation in each component-speed

relation after controlling for age. The original variance in

speed explained by the first FA component (R2 = 0.0834),

the second FA component (R2 = 0.0482), the AD com-

ponent (R2 = 0.0474), the RD component (R2 = 0.1009),

and the MD component (R2 = 0.0845) were nearly elimi-

nated (FA 1: R2 = 0.0010; FA 2: R2 = 0.0169; AD:

R2 = 0.0070; RD: R2 = 0.0055; MD: R2 = 0.0071) after

controlling for age.

To directly measure the size of these mediation effects,

effect sizes were calculated by multiplying the standard-

ized regression coefficients of the intermediary paths

(Preacher and Kelley 2011). To directly test the

Table 3 Principal component scores by group

Component scores: mean (SD)

FA 1 FA 2 AD 1 RD 1 MD 1

Older -0.44 (0.94) -0.38 (0.96) 0.30 (1.01) 0.48 (0.91) 0.43 (0.93)

Younger 0.54 (0.82)*** 0.47 (0.89)*** -0.37 (0.91)** -0.60 (0.84)*** -0.53 (0.88)***

Effect size 0.23 0.17 0.10 0.27 0.21

Principal component analysis was conducted within the FA, AD, RD, and MD variables. Mean component scores and standard deviations (SD),

across all tracts, are shown by group. Effect sizes are semi-partial omega-squared values calculated from univariate tests of age group

FA 1 first component for FA data, FA 2 second component for FA data, AD 1 first component for AD data, RD 1 first component for RD data,MD

1 first component for MD data

*** Significant group difference at p\ 0.0001, ** significant group difference at p\ 0.001
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significance of these mediation effects, Sobel tests (Sobel

1982) and bootstrapping tests (Preacher and Hayes 2004)

were conducted. The effect size (ab) was substantial for the

first FA component (0.33), the second FA component

(0.34), the AD component (-0.26), the RD component

(-0.39), and the MD component (-0.36). The Sobel test

was highly significant for all components: first FA com-

ponent (Sobel Z = 4.75; p\ 0.0001), second FA compo-

nent (Sobel Z = 4.66; p\ 0.0001), AD component (Sobel

Z = -3.82; p\ 0.0001), RD component (Sobel Z =

-5.40; p\ 0.0001), and MD component (Sobel Z =

-5.02; p\ 0.0001). Bootstrapping tests, which provide the

advantage of not assuming normality in the indirect effect

(Hayes 2009), showed that the confidence intervals of the

indirect effect did not include 0, thus further confirming the

significance of age as mediator of the component-speed

relation.

We also repeated the exact same mediational steps

outlined above with vocabulary z scores as the cognitive

measure; however, none of the models passed the tests for

mediation. This was due to non-significant relations either

between vocabulary and age or between vocabulary and the

DTI components.

Discussion

Principal component analyses

Recent research with healthy older adults has demonstrated

that individual DTI variables are correlated across tracts,

making a strong case for the usefulness of dimension-

reduction techniques such as PCA to more clearly char-

acterize age-related differences by characterizing inter-

tract covariation. However, it is not yet clear whether

individual differences in white matter tract integrity, as

defined by DTI variables, represent global, brain-general

influences (Penke et al. 2010) or regional, tract-specific

influences (Lövdén et al. 2012). In the present study, we

extended investigations into this issue with PCAs con-

ducted for the first time on DTI data in both older and

younger adults. Moreover, we assessed whether these

structural components mediated cognitive performance in

perceptual-motor speed and vocabulary.

Considering first the FA data, our PCA results revealed

two components (Table 2), each with variable loadings

across tracts, suggesting that a single, global effect did not

capture the FA data sufficiently. The first FA component

Fig. 3 Results from the mediation analyses of the relations among

years of age (age), perceptual-motor speed (speed), and both the first

(FA 1) and the second FA component (FA 2). a Model 1, which

posited each FA component as the mediator of the age–speed relation,

failed because each FA component did not significantly predict speed

after controlling for age and because controlling for each FA

component did not reduce the age–speed relation (dashed line).

bModel 2, which posited speed as the mediator between age and each

FA component, similarly failed. c Model 3, which posited age as the

mediator between each FA component and speed, passed the criteria

for mediation because controlling for age (dashed line) statistically

eliminated the original relation between each FA component and

speed. Standardized regression coefficients are shown for each link

with corresponding significance: n.s. = p[ 0.05, *p\ 0.05,

**p\ 0.001, and ***p\ 0.0001
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had high loadings within superior longitudinal fasciculi

(SLF) and corticospinal tracts (CST), whereas the second

component had high loadings within the optic radiations

(OR). Both FA component scores were higher for younger

adults than for older adults (Table 3), indicating that these

measures of inter-tract covariation were also sensitive to

the well-known age-related differences in FA (Bennett and

Madden 2013).

The regional covariation of tract FA which we observed

is consistent with similar studies showing that FA covaries

across bilateral tract sets (Lövdén et al. 2012) or along

groups of tracts or tract segments (Li et al. 2012). It is also

consistent with studies showing differential rates of age-

related changes across different white matter tracts (Raz

and Rodrigue 2006; Westlye et al. 2010), with studies

reporting the presence of an anterior-posterior gradient

(Brickman et al. 2012; Davis et al. 2009; Gunning-Dixon

et al. 2009; Salat et al. 2005; Sullivan et al. 2006) and a

superior-inferior gradient (Sullivan et al. 2010), and others

suggesting that association tracts are more affected by

aging than projection tracts (Stadlbauer et al. 2008). The

deterioration of myelin sheaths is one hypothesized

mechanism of aging-related differences in white matter

(Meier-Ruge et al. 1992), and this process has been shown

to be regionally heterogeneous (Bartzokis et al. 2004),

consistent with the retrogenesis hypothesis that proposes

that tracts which develop myelin later are among the first to

demyelinate (Brickman et al. 2012). Other potential

mechanisms of age-related white matter decline are axonal

loss and degeneration (Charlton et al. 2006; Meier-Ruge

Fig. 4 Results from the mediation analyses of the relations among

years of age (age), perceptual-motor speed (speed), and the diffusivity

components AD 1, RD 1, and MD 1. a Model 1, which posited each

component as the mediator of the age–speed relation, failed because

each component did not significantly predict speed after controlling

for age and because controlling for each component did not reduce the

age–speed relation (dashed line). b Model 2, which posited speed as

the mediator between age and each component, similarly failed.

c Model 3, which posited age as the mediator between each

component and speed, passed the criteria for mediation because

controlling for age (dashed line) statistically eliminated the original

relation between each component and speed. Standardized regression

coefficients are shown for each link with corresponding significance:

n.s. = p[ 0.05, *p\ 0.05, **p\ 0.001, and ***p\ 0.0001
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et al. 1992), which may be further influenced by cerebro-

vascular disease resulting in lesions, gliosis, and infarcts

(Braffman et al. 1988a, b; de Groot et al. 2001; DeCarli

et al. 2005; Scheltens et al. 1995). Local manifestations of

these microstructural alterations may translate into regional

variability within macrostructural measures of tracts such

as FA.

Although the regional variation in our FA components is

consistent with previous reports, the anatomical basis for

the different tract loadings on the two FA components is

not entirely clear. The grouping of the tracts, for example,

did not dissociate along a functional dimension. The

highest loadings for the first FA component were from

tracts associated with sensory-motor regions (CST) and

frontoparietal language regions (SLF). The OR tracts,

responsible for the transmission of visual sensory infor-

mation from the lateral geniculate nucleus of the thalamus

to the visual cortex, loaded on a separate component from

the CST and SLF. Additionally, the two FA components

were not defined by the direction of the tract. The first

component contained tracts with a superior-inferior orien-

tation (CST) and those with an anterior-posterior orienta-

tion (SLF). The two-component solution may be driven by

the qualitatively different functions associated with the

CST and SLF (motor and cognitive) versus the OR

(vision).

In contrast to our dual-component solution for FA, we

observed a single-component solution for the PCA on

each of the diffusivity measures, AD, RD, and MD

(Table 2). Similar to the first FA component, the diffu-

sivity components also demonstrated strong covariation

between the bilateral SLF and CST systems, along with

the genu and splenium and/or bilateral OR. A single

component upon which most or all tracts load highly

indicated that the majority of variance in the diffusivity

data from these tracts was shared (roughly 60–75 %

variance explained in our data, see Table 2), which is

consistent with a global model as proposed by Penke

et al. (2010). However, it is interesting to note that even

within this predominantly global pattern there persisted

some regional variation in the loadings. There has been

support for global variation in diffusion-based measures

(Nusbaum et al. 2001; Rovaris et al. 2003; Stadlbauer

et al. 2012), although Lövdén et al. (2012) found that a

regional model captured the most variance. Indeed, it is

well documented that, throughout most of the brain, older

adults generally show increases in MD (Kochunov et al.

2012; Lebel et al. 2012; Voineskos et al. 2012; Westlye

et al. 2010), and age-related differences in AD and RD

also occur with the most pronounced effects for RD

(Bennett and Madden 2013), perhaps reflecting greater

age-related demyelination (Bennett et al. 2010; Burzynska

et al. 2010).

These findings suggest that global and regional effects

may depend on the specific aspect of white matter being

examined, a conclusion also offered by Lövdén et al.

(2012). Simultaneous global and regional effects might

occur due to differential rates or magnitudes of change

across different tracts. In other words, although aging

affects cerebral white matter in general (allowing global

trends to be interpreted from the data), some fiber systems

(e.g., association and frontal pathways) experience age-

related changes more strongly (allowing regional trends to

emerge).

There are some important differences between the

present study and previous research that might account for

the different findings. First, the Penke et al. (2010) and

Lövdén et al. (2012) included only older adults, whereas

the present data estimated the PCA structure for younger

and older adults combined. To address this issue, we

conducted an additional PCA on both age groups sepa-

rately which was similar to the combined-groups analysis

(see Supplementary Tables 1, 2). Thus, inclusion of

younger adults does not seem to be driving the differences.

Additionally, the PCA structure of the older group

remained nearly identical even after partialing out years of

age (see Supplementary Table 3), demonstrating the age-

independent nature of these brain-general and regional

trends within the older group.

Second, studies differed in the tracts that were investi-

gated which may contribute to the relative prominence of

global versus tract-specific effects. Similar to our study,

Lövdén et al. (2012) included bilateral SLF and CST, but

they did not include optic radiations, genu or splenium.

While Penke et al. (2010) included the genu and splenium

of the corpus callosum as we did, they also included tracts

that we did not (i.e., bilateral arcuate fasciculi, cingulum

bundles, and uncinate fascicule). Moreover, the Penke et al.

results show some variability in tract loadings suggesting

additional variability beyond the global effect. One

potentially useful method to address the issue of tract

selection is to adopt a voxel-wise whole-brain approach (Li

et al. 2012). But one limitation of this skeleton-based

approach is that only voxels at the center of tracts are

analyzed, thus losing some sensitivity.

We also observed significant differences between age

groups on all of the PCA components, which is consistent

with age-related decline in FA and increased diffusivity

(Bennett and Madden 2013; Bennett et al. 2010; Burzynska

et al. 2010; Carmichael and Lockhart 2012; Davis et al.

2009; Madden et al. 2009a, 2012; Sullivan and Pfeffer-

baum 2006, 2011). While some have suggested that age-

related effects in cerebral white matter are the results of

differences in myelin integrity and/or macrostructural

organization (leading primarily to changes in FA and RD),

rather than axonal loss per se (leading primarily to changes
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in AD), it is important to note that differences associated

with individual DTI variables are the result of many

influences and cannot as yet be attributed to specific

physiological mechanisms (Jones et al. 2012; Wheeler-

Kingshott and Cercignani 2009).

Mediation

Consistent with previous behavioral investigations of

cognitive aging (Park et al. 2002; Salthouse 1991b), our

results confirmed strong age-related decline in perceptual-

motor speed but not vocabulary (Table 1). However, in

contrast to our initial hypothesis, none of the DTI com-

ponents mediated the age-related variance in speed. Thus,

although the components exhibited some sensitivity to age-

related differences, they did not mediate the age-related

differences in speed as might be expected from previous

findings (Gold et al. 2010; Madden et al. 2009b; Perry et al.

2009; Salami et al. 2012; Borghesani et al. 2013). These

previous studies, however, used more cognitively

demanding tasks, as compared to our relatively simple test

of perceptual-motor speed. Additionally, we tested for

relations between the DTI components and speed within

each age group, however, none of these regressions were

significant.

We did observe mediation in an alternative model that

hypothesized age as the mediator of the component-speed

relation. In this case, age accounted for a substantial por-

tion of the variance shared by speed and each component.

Although each component was initially associated with

speed, this was due to the fact that these components

shared variance with age. Other variables associated in

common with age and the tracts measured, such as effi-

ciency of visual sensory (for OR) or motor functioning (for

CST) may be influencing perceptual-motor speed. Our

results highlight the importance of testing alternative

models of the relations among DTI measures, aging, and

cognitive measures (Salthouse 2011).

Limitations

Our data were acquired from two different scanners (see

Supplementary Fig. 1 for example gradient and FA ima-

ges) with differences in field strength and number of dif-

fusion-weighted gradients, factors which are known to

affect signal to noise ratio (SNR), measurement accuracy,

and variability (Jones 2004; Polders et al. 2011; Reischauer

et al. 2009; Vollmar et al. 2010; Zhang et al. 2009; Zhu

et al. 2011). We addressed these potential effects by par-

tialing out participant-specific SFNR values (derived from

a phantom) in the PCAs, thereby removing the associated

inter-scanner variance (Friedman and Glover 2006; Zhu

et al. 2011). To further address this limitation of inter-

scanner differences, we conducted an additional PCA on

data from only one scanner which revealed a very similar

PCA structure (see Supplementary Table 4).

Another potential limitation of the present study is the

selection of white matter tracts. Based on previous

research, we selected tracts that support inter-hemispheric

communication (genu, splenium), as well as tracts that

connect cortical and subcortical regions associated with

visual perception (OR), attention and language (SLF), and

motor control (CST). Although comparable to the number

of tracts investigated by other studies, these represent only

a subset of all white matter tracts. Moreover, our use of

regions of interest as opposed to a tractography-based

approach presents a higher chance that the results may have

been more influenced by partial-voluming effects or from

crossing fibers.

Another potential limitation is that our indices of per-

ceptual-motor speed and semantic memory were limited to

single measures (e.g., the digit symbol task for speed and

WAIS vocabulary for semantic memory). A more robust

method would be to use composite scores across a variety

of speed-based tasks, such as the PCA-based processing

speed factor used by Penke et al. (2010), because such

methods more clearly disentangle the manifest and latent

variables associated with the behavioral performance

measures. We also acknowledge that mediation analysis

based on cross-sectional data may not be as accurate as

mediation analysis based on longitudinal data (Lindenber-

ger et al. 2011; Maxwell and Cole 2007). Future studies

investigating the potential mediational role of PCA-derived

white matter components in the relation between age and

perceptual-motor speed could benefit from longitudinal

data where available.

We note that although we chose to combine all partic-

ipants from both groups into one PCA, an alternative

method could have been to first conduct PCA in an inde-

pendent data set (either younger or older only, or com-

bined) and then use those component loadings to generate

new component scores (or weight the diffusion variables)

in a different data set. This method could produce a more

robust estimate. We partly addressed this issue by dem-

onstrating that separate PCAs on the younger (Supple-

mentary Table 1) and older groups (Supplementary

Tables 2, 3) yielded highly similar patterns to the PCA

structure of both groups combined.

One final point is that while PCA, unlike ICA, provides

the advantage of extracting uncorrelated components that

are ordered by the amount of unique variance explained, it

does not determine that those components are statistically

independent, as ICA does. We chose to use PCA because

of its advantage of ordering the components by unique

variance explained in the data. Interestingly, the only study

that we know of to have used ICA to characterize aging of
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white matter integrity (Li et al. 2012) reported a regional

pattern of covariation within the FA data, similar to the

dual-component solution for FA which we report here.

Conclusion

We used PCA to characterize the relative contribution of

global and regional influences on individual differences in

DTI variables. The PCA of FA yielded two components,

which is consistent with a pattern of regional variation. In

contrast, analyses of the diffusivity variables yielded in

each case a single component with high loadings from most

or all tracts, consistent with a pattern of global or brain-

general variation. We hypothesized that PCA-derived

components of white matter integrity would mediate the

age-related differences associated with perceptual-motor

speed. However, in contrast to our predictions, we found

that each component was related to speed only by virtue of

its relation to age. These data highlight the potential for

using PCA to investigate age-related trends in white matter

properties and the importance of testing alternative models

of age-related effects in the context of mediation.
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Lövdén M, Laukka EJ, Rieckmann A, Kalpouzos G, Li TQ, Jonsson

T, Wahlund LO, Fratiglioni L, Backman L (2012) The dimen-

sionality of between-person differences in white matter micro-

structure in old age. Hum Brain Mapp. doi:10.1002/hbm.21518

Lu PH, Lee GJ, Tishler TA, Meghpara M, Thompson PM, Bartzokis

G (2013) Myelin breakdown mediates age-related slowing in

cognitive processing speed in healthy elderly men. Brain Cogn

81(1):131–138. doi:10.1016/j.bandc.2012.09.006

Madden DJ, Bennett IJ, Song AW (2009a) Cerebral white matter

integrity and cognitive aging: contributions from diffusion tensor

imaging. Neuropsychol Rev 19(4):415–435

Madden DJ, Spaniol J, Costello MC, Bucur B, White LE, Cabeza R,

Davis SW, Dennis NA, Provenzale JM, Huettel SA (2009b)

Cerebral white matter integrity mediates adult age differences in

cognitive performance. J Cogn Neurosci 21(2):289–302

Madden DJ, Bennett IJ, Burzynska A, Potter GG, Chen NK, Song

AW (2012) Diffusion tensor imaging of cerebral white matter

integrity in cognitive aging. Biochim Biophys Acta

1822(3):386–400. doi:10.1016/j.bbadis.2011.08.003

Maxwell SE, Cole DA (2007) Bias in cross-sectional analyses of

longitudinal mediation. Psychol Methods 12(1):23–44. doi:10.

1037/1082-989X.12.1.23

McIntosh AR (2000) Towards a network theory of cognition. Neural

Netw 13(8–9):861–870

Meier-Ruge W, Ulrich J, Bruhlmann M, Meier E (1992) Age-related

white matter atrophy in the human brain. Ann N Y Acad Sci

673:260–269

Mesulam MM (1990) Large-scale neurocognitive networks and

distributed processing for attention, language, and memory.

Ann Neurol 28(5):597–613. doi:10.1002/ana.410280502

Miller KL, Stagg CJ, Douaud G, Jbabdi S, Smith SM, Behrens TE,

Jenkinson M, Chance SA, Esiri MM, Voets NL, Jenkinson N,

Aziz TZ, Turner M, Johansen-Berg H, McNab JA (2011)

Diffusion imaging of whole, post-mortem human brains on a

clinical MRI scanner. Neuroimage 57(1):167–181. doi:10.1016/

j.neuroimage.2011.03.070

Mori S (2007) Introduction to diffusion tensor imaging. Elsevier,

Amsterdam

Nusbaum AO, Tang CY, Buchsbaum MS, Wei TC, Atlas SW (2001)

Regional and global changes in cerebral diffusion with normal

aging. AJNR Am J Neuroradiol 22(1):136–142

Oishi K, Faria AV, Van Zijl PCM, Mori S (2011) MRI atlas of human

white matter, 2nd edn. Academic Press, New York

Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD,

Smith PK (2002) Models of visuospatial and verbal memory

across the adult life span. Psychol Aging 17(2):299–320

Penke L, Munoz Maniega S, Murray C, Gow AJ, Hernandez MC,

Clayden JD, Starr JM, Wardlaw JM, Bastin ME, Deary IJ (2010)

A general factor of brain white matter integrity predicts

information processing speed in healthy older people. J Neurosci

30(22):7569–7574. doi:10.1523/JNEUROSCI.1553-10.2010

Perry ME, McDonald CR, Hagler DJ Jr, Gharapetian L, Kuperman

JM, Koyama AK, Dale AM, McEvoy LK (2009) White matter

2718 Brain Struct Funct (2015) 220:2705–2720

123

http://dx.doi.org/10.1016/j.neurobiolaging.2004.05.004
http://dx.doi.org/10.1016/j.neurobiolaging.2004.05.004
http://dx.doi.org/10.1196/annals.1340.028
http://dx.doi.org/10.1016/j.neuroimage.2006.07.012
http://dx.doi.org/10.1002/mrm.20033
http://dx.doi.org/10.1002/mrm.20033
http://dx.doi.org/10.1016/j.neuroimage.2012.06.081
http://dx.doi.org/10.1177/0193841X8100500502
http://dx.doi.org/10.1177/0193841X8100500502
http://dx.doi.org/10.1177/001316446002000116
http://dx.doi.org/10.1177/001316446002000116
http://dx.doi.org/10.1016/j.neuropsychologia.2009.01.001
http://dx.doi.org/10.1016/j.neuroimage.2011.01.007
http://dx.doi.org/10.1016/j.neuroimage.2011.01.007
http://dx.doi.org/10.1016/j.neurobiolaging.2010.01.014
http://dx.doi.org/10.1016/j.neuroimage.2011.11.094
http://dx.doi.org/10.1016/j.neuroimage.2011.11.094
http://dx.doi.org/10.1002/hbm.21292
http://dx.doi.org/10.1002/hbm.21292
http://dx.doi.org/10.1037/a0020525
http://dx.doi.org/10.1002/hbm.21518
http://dx.doi.org/10.1016/j.bandc.2012.09.006
http://dx.doi.org/10.1016/j.bbadis.2011.08.003
http://dx.doi.org/10.1037/1082-989X.12.1.23
http://dx.doi.org/10.1037/1082-989X.12.1.23
http://dx.doi.org/10.1002/ana.410280502
http://dx.doi.org/10.1016/j.neuroimage.2011.03.070
http://dx.doi.org/10.1016/j.neuroimage.2011.03.070
http://dx.doi.org/10.1523/JNEUROSCI.1553-10.2010


tracts associated with set-shifting in healthy aging. Neuropsych-

ologia 47(13):2835–2842

Polders DL, Leemans A, Hendrikse J, Donahue MJ, Luijten PR,

Hoogduin JM (2011) Signal to noise ratio and uncertainty in

diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla. J Magn Reson

Imaging 33(6):1456–1463. doi:10.1002/jmri.22554

Preacher KJ, Hayes AF (2004) SPSS and SAS procedures for

estimating indirect effects in simple mediation models. Behav

Res Methods Instrum Comput 36(4):717–731

Preacher KJ, Kelley K (2011) Effect size measures for mediation

models: quantitative strategies for communicating indirect

effects. Psychol Methods 16(2):93–115. doi:10.1037/a0022658

Raz N, Rodrigue KM (2006) Differential aging of the brain: patterns,

cognitive correlates and modifiers. Neurosci Biobehav Rev

30(6):730–748. doi:10.1016/j.neubiorev.2006.07.001

Reischauer C, Staempfli P, Jaermann T, Boesiger P (2009) Construc-

tion of a temperature-controlled diffusion phantom for quality

control of diffusion measurements. J Magn Reson Imaging

29(3):692–698. doi:10.1002/jmri.21665

Rovaris M, Iannucci G, Cercignani M, Sormani MP, De Stefano N,

Gerevini S, Comi G, Filippi M (2003) Age-related changes in

conventional, magnetization transfer, and diffusion-tensor MR

imaging findings: study with whole-brain tissue histogram

analysis. Radiology 227(3):731–738. doi:10.1148/radiol.227302

0721

Salami A, Eriksson J, Nilsson LG, Nyberg L (2012) Age-related

white matter microstructural differences partly mediate age-

related decline in processing speed but not cognition. Biochim

Biophys Acta 1822(3):408–415. doi:10.1016/j.bbadis.2011.09.

001

Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND,

Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM

(2005) Age-related alterations in white matter microstructure

measured by diffusion tensor imaging. Neurobiol Aging

26(8):1215–1227

Salthouse TA (1991a) Mediation of adult age differences in cognition

by reductions in working memory and speed of processing.

Psychol Sci 2(3):179–183

Salthouse TA (1991b) Theoretical perspectives on cognitive aging.

Erlbaum, Hillsdale

Salthouse TA (1996) The processing-speed theory of adult age

differences in cognition. Psychol Rev 103(3):403–428

Salthouse TA (2000) Aging and measures of processing speed. Biol

Psychol 54(1–3):35–54

Salthouse TA (2011) Neuroanatomical substrates of age-related

cognitive decline. Psychol Bull 137(5):753–784. doi:10.1037/

a0023262

Salthouse TA, Madden DJ (2007) Information processing speed and

aging. In: Deluca J, Kalmar J (eds) Information processing speed

in clinical populations. Psychology Press, New York,

pp 221–241

Saur D, Kreher BW, Schnell S, Kummerer D, Kellmeyer P, Vry MS,

Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M,

Hennig J, Weiller C (2008) Ventral and dorsal pathways for

language. Proc Natl Acad Sci 105(46):18035–18040. doi:10.

1073/pnas.0805234105

Scheltens P, Barkhof F, Leys D, Wolters EC, Ravid R, Kamphorst W

(1995) Histopathologic correlates of white matter changes on

MRI in Alzheimer’s disease and normal aging. Neurology

45(5):883–888

Schmahmann JD, Smith EE, Eichler FS, Filley CM (2008) Cerebral

white matter: neuroanatomy, clinical neurology, and neurobe-

havioral correlates. Ann N Y Acad Sci 1142:266–309. doi:10.

1196/annals.1444.017

Smith SM (2002) Fast robust automated brain extraction. Hum Brain

Mapp 17(3):143–155. doi:10.1002/hbm.10062

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,

Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney

DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N,

Brady JM, Matthews PM (2004) Advances in functional and

structural MR image analysis and implementation as FSL.

Neuroimage 23(Suppl 1):S208–S219

Sobel ME (1982) Asymptotic intervals for indirect effects in

structural equations models. Sociol methodol: 290–312

Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH

(2002) Dysmyelination revealed through MRI as increased radial

(but unchanged axial) diffusion of water. Neuroimage

17(3):1429–1436

Song SK, Sun SW, Ju WK, Lin SJ, Cross AH, Neufeld AH (2003)

Diffusion tensor imaging detects and differentiates axon and

myelin degeneration in mouse optic nerve after retinal ischemia.

Neuroimage 20(3):1714–1722

Stadlbauer A, Salomonowitz E, Strunk G, Hammen T, Ganslandt O

(2008) Quantitative diffusion tensor fiber tracking of age-related

changes in the limbic system. Eur Radiol 18(1):130–137. doi:10.

1007/s00330-007-0733-8

Stadlbauer A, Ganslandt O, Salomonowitz E, Buchfelder M, Hammen

T, Bachmair J, Eberhardt K (2012) Magnetic resonance fiber

density mapping of age-related white matter changes. Eur J

Radiol 81(12):4005–4012. doi:10.1016/j.ejrad.2012.05.029

Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and

aging. Neurosci Biobehav Rev 30(6):749–761

Sullivan EV, Pfefferbaum A (2011) Diffusion tensor imaging in aging

and age-related neurodegenerative disorders. In: Jones DK (ed)

Diffusion MRI: Theory, methods, and applications Oxford

University Press, New York, pp 624–643

Sullivan EV, Adalsteinsson E, Pfefferbaum A (2006) Selective age-

related degradation of anterior callosal fiber bundles quantified

in vivo with fiber tracking. Cereb Cortex 16(7):1030–1039

Sullivan EV, Zahr NM, Rohlfing T, Pfefferbaum A (2010) Fiber

tracking functionally distinct components of the internal capsule.

Neuropsychologia 48(14):4155–4163. doi:10.1016/j.neuropsy

chologia.2010.10.023

Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the

human corticospinal tract. J Appl Physiol 96(4):1496–1503.

doi:10.1152/japplphysiol.01116.2003

Toosy AT, Ciccarelli O, Parker GJ, Wheeler-Kingshott CA, Miller

DH, Thompson AJ (2004) Characterizing function-structure

relationships in the human visual system with functional MRI

and diffusion tensor imaging. Neuroimage 21(4):1452–1463.

doi:10.1016/j.neuroimage.2003.11.022

Verhaeghen P, Cerella J (2002) Aging, executive control, and

attention: a review of meta-analyses. Neurosci Biobehav Rev

26(7):849–857

Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME,

Kennedy JL, Pollock BG, Mulsant BH (2012) Age-related

decline in white matter tract integrity and cognitive performance:

a DTI tractography and structural equation modeling study.

Neurobiol Aging 33(1):21–34. doi:10.1016/j.neurobiolaging.

2010.02.009

Vollmar C, O’Muircheartaigh J, Barker GJ, Symms MR, Thompson

P, Kumari V, Duncan JS, Richardson MP, Koepp MJ (2010)

Identical, but not the same: intra-site and inter-site reproduc-

ibility of fractional anisotropy measures on two 3.0T scanners.

Neuroimage 51(4):1384–1394. doi:10.1016/j.neuroimage.2010.

03.046

Wahl M, Li YO, Ng J, Lahue SC, Cooper SR, Sherr EH, Mukherjee P

(2010) Microstructural correlations of white matter tracts in the

human brain. Neuroimage 51(2):531–541. doi:10.1016/j.neuro

image.2010.02.072

Wechsler D (1981) Wechsler adult intelligence scale-revised. Psy-

chological Corporation, New York

Brain Struct Funct (2015) 220:2705–2720 2719

123

http://dx.doi.org/10.1002/jmri.22554
http://dx.doi.org/10.1037/a0022658
http://dx.doi.org/10.1016/j.neubiorev.2006.07.001
http://dx.doi.org/10.1002/jmri.21665
http://dx.doi.org/10.1148/radiol.2273020721
http://dx.doi.org/10.1148/radiol.2273020721
http://dx.doi.org/10.1016/j.bbadis.2011.09.001
http://dx.doi.org/10.1016/j.bbadis.2011.09.001
http://dx.doi.org/10.1037/a0023262
http://dx.doi.org/10.1037/a0023262
http://dx.doi.org/10.1073/pnas.0805234105
http://dx.doi.org/10.1073/pnas.0805234105
http://dx.doi.org/10.1196/annals.1444.017
http://dx.doi.org/10.1196/annals.1444.017
http://dx.doi.org/10.1002/hbm.10062
http://dx.doi.org/10.1007/s00330-007-0733-8
http://dx.doi.org/10.1007/s00330-007-0733-8
http://dx.doi.org/10.1016/j.ejrad.2012.05.029
http://dx.doi.org/10.1016/j.neuropsychologia.2010.10.023
http://dx.doi.org/10.1016/j.neuropsychologia.2010.10.023
http://dx.doi.org/10.1152/japplphysiol.01116.2003
http://dx.doi.org/10.1016/j.neuroimage.2003.11.022
http://dx.doi.org/10.1016/j.neurobiolaging.2010.02.009
http://dx.doi.org/10.1016/j.neurobiolaging.2010.02.009
http://dx.doi.org/10.1016/j.neuroimage.2010.03.046
http://dx.doi.org/10.1016/j.neuroimage.2010.03.046
http://dx.doi.org/10.1016/j.neuroimage.2010.02.072
http://dx.doi.org/10.1016/j.neuroimage.2010.02.072


Westlye LT, Walhovd KB, Dale AM, Bjornerud A, Due-Tonnessen P,

Engvig A, Grydeland H, Tamnes CK, Ostby Y, Fjell AM (2010)

Life-span changes of the human brain white matter: diffusion

tensor imaging (DTI) and volumetry. Cereb Cortex

20(9):2055–2068. doi:10.1093/cercor/bhp280

Wheeler-Kingshott CA, Cercignani M (2009) About ‘‘axial’’ and

‘‘radial’’ diffusivities. Magn Reson Med 61(5):1255–1260

Zacks RT, Hasher L, Li KZH (2000) Human memory. In: Craik FIM,

Salthouse TA (eds) The handbook of aging and cognition, 2nd

edn. Erlbaum, Mahwah, pp 293–357

Zahr NM, Rohlfing T, Pfefferbaum A, Sullivan EV (2009) Problem

solving, working memory, and motor correlates of association

and commissural fiber bundles in normal aging: a quantitative

fiber tracking study. Neuroimage 44(3):1050–1062

Zhang N, Deng Z-S, Wang F, Wang X-Y (2009) The effect of

different number of diffusion gradients on SNR of diffusion

tensor-derived measurement maps. J Biomed Sci Eng 2:96–101

Zhu T, Hu R, Qiu X, Taylor M, Tso Y, Yiannoutsos C, Navia B, Mori

S, Ekholm S, Schifitto G, Zhong J (2011) Quantification of

accuracy and precision of multi-center DTI measurements: a

diffusion phantom and human brain study. Neuroimage

56(3):1398–1411. doi:10.1016/j.neuroimage.2011.02.010

2720 Brain Struct Funct (2015) 220:2705–2720

123

http://dx.doi.org/10.1093/cercor/bhp280
http://dx.doi.org/10.1016/j.neuroimage.2011.02.010

	Global versus tract-specific components of cerebral white matter integrity: relation to adult age and perceptual-motor speed
	Abstract
	Introduction
	Methods
	Participants
	Neuroimaging
	Image acquisition
	White matter tract definition and DTI preprocessing

	Statistical analyses
	Behavioral data
	DTI data
	Mediation analyses


	Results
	Principal component analyses
	Mediation analyses

	Discussion
	Principal component analyses
	Mediation
	Limitations

	Conclusion
	Acknowledgments
	References




