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Abstract Studies of large-scale brain functional

connectivity using the resting-state functional magnetic

resonance imaging have advanced our understanding of

human brain functions. Although the evidence of dynamic

functional connectivity is accumulating, the variations of

functional connectivity over time have not been well

characterized. In the present study, we aimed to associate

the variations of functional connectivity with the intrinsic

activities of resting-state networks during a single resting-

state scan by comparing functional connectivity differences

between when a network had higher and lower intrinsic

activities. The activities of the salience network, default

mode network (DMN), and motor network were associated

with changes of resting-state functional connectivity.

Higher activity of the salience network was accompanied

by greater functional connectivity between the fronto-

parietal regions and the DMN regions, and between the

regions within the DMN. Higher DMN activity was asso-

ciated with less connectivity between the regions within the

DMN, and greater connectivity between the regions within

the fronto-parietal network. Higher motor network activity

was correlated with greater connectivity between the

regions within the motor network, and smaller connectivity

between the DMN regions and fronto-parietal regions, and

between the DMN regions and the motor regions. In

addition, the whole brain network modularity was

positively correlated with the motor network activity,

suggesting that the brain is more segregated as sub-systems

when the motor network is intrinsically activated. Toge-

ther, these results demonstrate the association between the

resting-state connectivity variations and the intrinsic

activities of specific networks, which can provide insights

on the dynamic changes in large-scale brain connectivity

and network configurations.

Keywords Default mode network � Dynamic

connectivity � fMRI � Nonlinear connectivity �
Resting-state � Salience network

Introduction

Studies of localization of specific brain regions and their

association to cognitive and affective functions have

shaped our understanding of the human brain. Recent

studies of large-scale brain networks using the resting-state

functional magnetic resonance imaging (fMRI) have pro-

vided novel insights on how distributed brain regions are

functionally integrated (e.g., Biswal et al. 1995, 2010; Fox

et al. 2005). Generally, studies on the functional connec-

tivity are based upon the temporal correlations between

spatially remote neurophysiological events (Friston 1994)

with an implicit assumption that the functional connectivity

is constant during the observation period. Recent studies

demonstrate that the functional connectivity (Allen et al.

2012; Chang and Glover 2010; Handwerker et al. 2012) as

well as the spatial extent of the resting-state networks

(Kang et al. 2011; Kiviniemi et al. 2011) can vary peri-

odically. However, the dynamic changes in functional

connectivity have hitherto been overlooked in fMRI studies

most likely due to the poor temporal resolution of fMRI.
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Given that dynamic changes in connectivity have been well

documented in electroencephalography (EEG) and mag-

netoencephalography (MEG) studies (Dimitriadis et al.

2012; Rubinov et al. 2009), there is a need to study the

dynamic changes in functional connectivity during the

resting-state.

To better understand the dynamic changes in functional

connectivity, it is critical to identify the factors that mod-

ulate the functional connectivity. Vanhaudenhuyse and

colleagues used a behavioral sampling method to demon-

strate that the awareness of the environment or of self

varies at an approximate frequency of 0.05 Hz, which is

similar to the low-frequency fluctuations that are typically

observed in the resting-state fMRI (Vanhaudenhuyse et al.

2011). Most interestingly, these fluctuations associated

with awareness of self were positively and negatively

correlated with the activities of the default mode network

(DMN) and task positive network, respectively, and vice

versa for the fluctuations associated with awareness of the

environment. As it is difficult to monitor the mental state

during the resting-state fMRI scan, Fan and colleagues

proposed that recording the skin conductance response

during fMRI can reflect psychophysiological states of

autonomic arousal. They demonstrated that the functional

connectivity during the resting-state was modulated by

autonomic arousal (Fan et al. 2012). Similarly, we

hypothesize that changes in the intrinsic activities (low

versus high activities) may reflect the changes in mental

state and therefore be used as an index to determine whe-

ther the mental state modulates the functional connectivity.

Specifically, we divided the fMRI images into two condi-

tions based upon the low and high intrinsic activities of a

particular network. This analysis strategy is similar to the

recent ideas of point process analysis or spontaneous event-

related process (Liu and Duyn 2013; Tagliazucchi et al.

2012; Wu et al. 2013); however, our analysis provides a

mean to associate the changes in the intrinsic activities of a

specific network to the changes in functional connectivity

that may extend to other brain systems.

In the present study, we systematically investigated

whether and how the functional connectivity changes

across the whole brain were associated with different brain

network activities. Spatial independent component analysis

(ICA) was first used to identify brain networks (Beckmann

et al. 2005). Functional connectivity between 160 regions

of interest (ROIs) was then calculated separately when a

network had high or low activities. We characterized the

functional connectivity using simple correlation coefficient

and network properties based on the graph theory (Bull-

more and Sporns 2009). Therefore, we not only investi-

gated single connections that were correlated with network

activity, but also studied how the whole brain integration

and segregation were correlated with network activity.

We were particularly interested in the networks that

were related to the resting-state functions such as the DMN

and salience network (Seeley et al. 2007) among the

commonly studied resting-state networks (Cole et al.

2010). The DMN regions exhibit higher energy consump-

tion and neural activity during the resting-state (Raichle

et al. 2001; Shulman et al. 1997), and receive information

from widely distributed brain regions (Liao et al. 2010;

Yan and He 2011). The salience network is suggested to be

critical when switching (activating and deactivating) dif-

ferent brain networks (Sridharan et al. 2008). Our

hypothesis is that higher salience network activity would

be correlated with increased functional connectivity and

network efficiency of large-scale brain networks, while

higher DMN activity would be correlated with decreased

functional connectivity and network efficiency of brain

networks.

Materials and methods

MRI data set

The resting-state fMRI and anatomical MRI dataset was

derived from the Beijing_Zang dataset of the 1,000 func-

tional connectomes project (http://fcon_1000.projects.

nitrc.org/) (Biswal et al. 2010) (Biswal et al. 2010). This

dataset originally included 198 subjects. Only 191 subject

data remained after removing data due to large head motion,

poor coverage, or failure of image registration. The current

analysis only used the last one-third of the subjects (n = 63,

35F/28 M). The mean age of these subjects was 21.3 years

(range from 18 to 25 years). The MRI data were scanned

using a SIEMENS Trio 3-Tesla scanner at Beijing Normal

University. Two hundred and thirty resting-state functional

images were acquired for each subject with TR of 2 s. The

resolution of the fMRI images was 3.125 9 3.125 9 3 mm

with 64 9 64 9 36 voxels. The T1-weighted three-

dimensional magnetization-prepared rapid gradient echo

(MPRAGE) image was acquired using the following

parameters: 128 slices, TR = 2,530 ms, TE = 3.39 ms,

slice thickness = 1.33 mm, flip angle = 7�, inversion

time = 1,100 ms, FOV = 256 9 256 mm2.

Data analysis overview

The data analysis strategy is illustrated in Fig. 1. After

preprocessing, spatial ICA was first performed on the fMRI

data to identify resting-state networks. For each network of

interest, the correspondent time course was used to divide

the time points into two groups: higher and lower activity

of the network. The time courses of 160 ROIs across whole

brain were then divided into two sets according to the
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network activity separation. Correlation differences among

the 160 ROIs were compared between the two sets, and

subsequent network analysis was also performed.

Functional MRI preprocessing

The resting-state fMRI images were preprocessed using the

SPM8 package (http://www.fil.ion.ucl.ac.uk/spm/) under

MATLAB 7.6 environment. After discarding the first two

images of each subject, the remaining functional images

were motion corrected and co-registered to the subject’s

own high-resolution anatomical image. For all the subjects

included in the current analysis, the largest head motion

parameters were smaller than 2 mm or 2�. The anatomical

images were then normalized to the T1 template provided

by SPM8, which was in the Montreal Neurological Institute

(MNI) space. The parameters of anatomical image nor-

malization were then applied to the functional images to

normalize them into the MNI space. At this step, all the

functional images were resampled into 3 9 3 9 3 mm3

voxel size. Finally, all the functional images were spatially

smoothed using a Gaussian kernel with 8 mm full-width at

half-maximum (FWHM). In addition, the anatomical ima-

ges were segmented using the new segment routine in

SPM8 to generate subject specific white matter (WM) and

cerebrospinal fluid (CSF) masks.

Spatial ICA

Spatial ICA was conducted using the Group ICA of fMRI

Toolbox (GIFT) (Calhoun et al. 2001). Preprocessed rest-

ing-state fMRI images were concatenated across all

subjects and fed into the GIFT toolbox. Twenty ICs were

extracted. The resulting IC maps were visually examined to

identify meaningful resting-state networks described in

earlier studies (Biswal et al. 2010; Cole et al. 2010). Nine

out of twenty components were considered as meaningful

resting-state networks, which included the DMN, salience,

attention, left and right executive, motor, primary and ex-

trastriate visual and auditory networks (Fig. 2).

Functional ROIs

Coordinates of 160 ROIs using a series of meta-analyses

were obtained from Dosenbach et al. (2010). Spherical

ROIs were defined with a radius of 8 mm. Mean time series

from the ROIs were extracted for each subject.

Time series processing

The six rigid-body motion parameters, the first eigenvector

of WM, and the first eigenvector of CSF were regressed out

from the time series of 9 resting-state networks and 160

ROIs using a linear regression model. The WM and CSF

masks were defined for each subject by thresholding the

segmented WM and CSF images at p [ 0.99. All the time

series were then band-pass filtered at 0.01–0.1 Hz, and

z-transformed into z-score time series.

Modularity analysis

A modularity analysis was conducted using the Louvain

modularity algorithm to assign the ROIs into different

brain systems (Blondel et al. 2008; Rubinov and Sporns

Fig. 1 Flow chart of data analysis. The critical step of data analysis is

that the time course of a particular IC was used to separate the time

series of 160 ROIs according to the IC’s activity. Time points when

the IC has higher 1/3 activity and lower 1/3 activity were grouped into

two sets, and correlation matrices and network properties of these two

sets were compared subsequently. Arrows and characters in red

indicate when a network has higher activity, while blue color

indicates when a network has lower activity
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2011). The modularity analysis was based on the mean

correlation matrix between 160 time series. This algorithm

takes into account both positive and negative weights of the

network edges and avoids biased thresholding of the net-

works. This analysis identified three modules for the 160

ROIs: the default mode module, the fronto-parietal module,

and the visuomotor module (supplementary Figure S1).

The number of modules is smaller than six, which was

originally reported by Dosenbach et al. (2010), most likely

due to the differences in image preprocessing steps and

modularity algorithm. We adopted the three modules

solution to roughly classify these ROIs into either DMN or

task positive networks. Other task-positive networks, such

as the executive control and dorsal attention networks, are

difficult to separate because these networks are vulnerable

to preprocessing steps as well as different mental states

(Spreng et al. 2013).

Time points separation analysis

Z-transformed time series of each subject from each of the

nine networks were divided into two data sets based on the

amplitude of the time points. The time point with greater

than a z-value of 0.43 (upper 33 %) was categorized into

the high activity dataset, whereas the time point with less

than -0.43 (lower 33 %) were stratified into the low

activity dataset. On average, a single data set comprised of

76 time points. The time points separating analysis was

performed separately for each of the nine networks. We

also conducted time point separation based on upper 50 %

and lower 50 % z-values. The subsequent analysis gener-

ally gave similar results but with less statistical signifi-

cance. Therefore, we only report the results of the upper

and lower 33 % separation.

Comparison of connectivity matrices

The correlation matrices of a given resting-state network

during high or low activity were initially transformed into

Fisher’s z scores. Then, we used a paired t test to compare

the differences in correlation values between high and low

activities for each pair of ROIs. We used a threshold of

p \ 0.0056 (0.05/9) to correct for multiple comparisons of

the nine resting-state network. Then, a false discovery rate

(FDR) correction was used for each analysis to correct for

multiple comparisons of correlations (12,720 edges). The

connections that showed significant changes of functional

connectivity were visualized using the BrainNet Viewer

toolbox (http://www.nitrc.org/projects/bnv/). Given that

the multiple comparison correction may be too stringent,

we used a less stringent correction threshold that corrected

for only the number of edges to illustrate general trends of

functional connectivity changes. These results are reported

in the supplementary materials section.

Fig. 2 Resting-state networks used in the time points separation analysis, which were identified by spatial ICA. The IC maps were spatially

z transformed, and thresholded at z [ 1.96
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Comparison of network properties

In addition to the individual correlation coefficients, we

also compared the graph theory-based measures, which

characterize the whole brain functional segregation and

integration (Bullmore and Sporns 2009). These network

properties included modularity (Newman 2006), mean

clustering coefficients, and global efficiency (Watts and

Strogatz 1998). Modularity estimates the extent the whole

network is segregated into sub-communities. The cluster-

ing coefficient measures the efficiency of the local infor-

mation transmission of every node, whereas the global

efficiency measures the information transmission efficiency

of the entire network. Binary unidirectional networks were

built for each condition and for each subject by thres-

holding the absolute correlation matrices to maintain 10, 20

and 30 % of connections (a.k.a., sparsity). These sparsities

were chosen because the brain network was typically fallen

within this range (Achard and Bullmore 2007; He et al.

2008). Network measures were calculated using the brain

connectivity toolbox (Rubinov and Sporns 2010). Differ-

ences between high and low activity of these network

parameters were compared using a paired t test. FDR

correction was applied to a total of 27 comparisons

(3 sparsity 9 3 networks 9 3 parameters).

Results

Out of the nine networks, three networks were associated

with significant functional connectivity changes at the

threshold of p \ 0.05 after correction for the number of

edges and networks, including the salience network, DMN,

and motor network. We observed no significant association

between changes in functional connectivity and network

activities for the other six networks at the threshold of

p \ 0.05 after correcting for the number of edges and

networks.

The salience network

The connectivity changes related to the salience network

activity are visualized in Fig. 3. Forty-eight connections

were positively associated with the salience network

activity. A set of connections that exhibited differences in

functional connectivity between the regions of the fronto-

parietal module which were mainly located in the lateral

prefrontal and parietal regions, and the regions of the

default mode module which were mainly located in the

medial prefrontal cortex and the left inferior temporal

lobule. Another set of connections that showed differences

in functional connectivity was mainly among the regions

within the default mode module. Using a less stringent

threshold, an obvious pattern is observable in the functional

connectivity difference matrix (the right panel of the sup-

plementary Figure S2A). These connections that revealed

positive association with the salience network activity

appeared to be predominantly left lateralized (Fig. 3);

however, when using a less stringent threshold, the later-

alized pattern was unclear (supplementary Figure S3). In

contrast, there was only one connection between the left

middle insula and the right temporal region that was neg-

atively correlated with the salience network activity. None

of the modularity, mean clustering coefficient, and global

efficiency measures at the three sparsity levels was asso-

ciated with the salience network activity (Fig. 4a).

The DMN

The functional connectivity changes related to the DMN

activity are shown in Fig. 5. Ten functional connections

revealed weaker functional connectivity when the DMN

exhibited higher compared with lower activity. These

connections were mainly between the posterior cingulate

cortex (PCC) of the default mode module with other

regions of the default mode module. When we applied a

less stringent threshold, we observed that the decrease in

functional connectivity was also among other regions of

the default mode module, including the medial prefrontal

cortex (supplementary Figure S2 and S4). In contrast,

seven connections exhibited increased functional connec-

tivity when the DMN was higher than lower, mainly

between the regions in the fronto-parietal module. When

using a less stringent threshold, it was more apparent that

the increased functional connectivity was mainly between

the fronto-parietal regions, and between the cerebellar and

the default mode regions (Figure S4). Lastly, the global

efficiency was positively associated with the DMN activity

Fig. 3 Functional connectivity differences associated with the

salience network activity. Differences were thresholded at p \ 0.05

after correction for the number of edges and networks
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at the sparsity level of 10 % (Fig. 4b). Specifically, the

global efficiency was 0.011 higher when the DMN activity

was higher (t = 3.05, SD = 0.030, p = 3.40 9 10-3).

The motor network

The functional connectivity changes related to the motor

network activity are illustrated in Fig. 6. Twenty-six con-

nections demonstrated higher functional connectivity when

the motor network exhibited higher activity. These regions

involved mainly the bilateral sensorimotor regions. In

contrast, 43 connections showed lower functional connec-

tivity when the motor network had higher activity, which

were between the regions in the default mode module and

the regions in the fronto-parietal module, and between the

regions in the default mode module and the regions in the

visuomotor module. These patterns were more obvious

when using a less stringent threshold (Figure S2 and S5).

Fig. 4 Network properties

associated with the intrinsic

activities of the salience

network (a), DMN (b), and

motor network (c), respectively.

*p \ 0.05 after FDR correction

for all the 27 comparisons

Fig. 5 Functional connectivity differences associated with the DMN

activity. Differences were thresholded at p \ 0.05 after correction for

the number of edges and networks

Fig. 6 Functional connectivity differences associated with the motor

network activity. Differences were thresholded at p \ 0.05 after

correction for the number of edges and networks
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In addition, the motor network activity was also asso-

ciated with the network properties (Fig. 4c). For all the

sparsity levels tested, the modularity was higher when the

motor network exhibited high activity. At the sparsity of

10, 20, and 30 % the modularity was 0.025 (t = 3.46,

SD = 0.058, p = 9.82 9 10-4), 0.023 (t = 4.17, SD =

0.044, p = 9.49 9 10-5), and 0.021 (t = 4.08, SD =

0.041, p = 1.33 9 10-4) greater, respectively, when the

motor network exhibited high activity. Lastly, the mean

clustering coefficient was 0.14 higher when the motor

network activity was high at the sparsity level of 10 %

(t = 3.78, SD = 0.030, p = 3.60 9 10-4).

Discussion

The current study systematically examined the association

between the resting-state functional connectivity and the

intrinsic activities of the different resting-state networks by

separating the time points into high and low intrinsic

activities. Three of the nine networks, including the sal-

ience, the DMN, and the motor networks, demonstrated

associations between their intrinsic activities and the rest-

ing-state functional connectivity. In addition, network

properties were also observed to be associated with the

intrinsic activities of different brain networks.

The salience network

The salience network generally comprises of the bilateral

anterior insula and the anterior cingulate cortex, and was

first distinguished from other task-positive networks by

Seeley and colleagues (Seeley et al. 2007). The salience

network is involved in bottom-up detection of salience

events, and plays a key role in switching between large-

scale networks to facilitate the access of resources from

attention and working memory (Menon and Uddin 2010).

One of the roles of the anterior insula was to activate the

executive network and deactivate the DMN across visual,

auditory modalities and in the resting-state as revealed by

Granger causality analysis (Sridharan et al. 2008). Our

result demonstrates that the high activity of the salience

network is associated with increased functional connec-

tivity between the default mode and fronto-parietal exec-

utive networks. This result suggests that the salience

network not only modulates the activities of the two net-

works, but may also modulate the relationships between

them. Given that the causal relationship between the sal-

ience network activity and the changes of functional con-

nectivity is difficult to infer, an alternative explanation may

be that the increased synchrony among these regions in the

default mode and fronto-parietal modules yields higher

salience network activity. The former explanation is more

plausible, because the regions in the salience network are

generally the driving hubs of the whole brain, which sends

information to various regions of the whole brain (Sridh-

aran et al. 2008; Yan and He 2011). Furthermore, the sal-

ience network contains a special type of neurons termed

von Economo neurons, which have large axons to facilitate

rapid relay of salience network signals to other brain

regions (Allman et al. 2005, 2010; Cauda et al. 2013). This

type of neuron may support the special function of the

salience network during modulation of large-scale brain

networks.

The current results also reveal an association between

the salience network activity and the functional connec-

tivity between the regions within the default mode module.

Together with the previous Granger causality studies

showing that the salience network regions are mainly the

driving hubs, whereas the DMN regions are generally the

driven hubs of the brain (Sridharan et al. 2008; Yan and He

2011), these evidences suggest that the salience network

may modulate the DMN integration. This association is in

line with a recent finding that demonstrates a correlation

between the salience network white matter integrity and

DMN functions (Bonnelle et al. 2012). Even though the

subjects are in the resting-state, the salience network con-

tinuously monitors salience events in other sensory

modalities including autonomic arousal (Critchley et al.

2000; Fan et al. 2012). As reported by Fan and colleagues,

the association between increased DMN functional con-

nectivity and increased skin conductance response (Fan

et al. 2012) may be partially explained by the association

between the increased DMN functional connectivity and

increased salience network activity in our current result.

The DMN

The DMN, mainly comprised of the PCC/precuneus,

medial prefrontal cortex, and bilateral inferior parietal lobe,

was first defined by Raichle and colleagues based on the

observation that this set of brain regions showed higher

energy consumption during the resting-state compared with

when performing tasks (Raichle et al. 2001). The regions in

this network are usually deactivated during task execution

(Laird et al. 2009; Shulman et al. 1997), and their activities

are anticorrelated with task positive regions during the

resting-state (Fox et al. 2005). Surprisingly, the current

study demonstrates that the increase in DMN activity is

mainly accompanied by smaller functional connectivity

between the regions within the default mode module. The

decrease of within-DMN functional connectivity extends to

other regions in the default mode modules when using a

less stringent threshold (Supplementary Figure S4). This is

in contrast with the finding from other networks, e.g., the

motor network, where the network activity is positively
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associated with the within-network functional connectivity.

One possible explanation of the negative correlation may

be that the DMN is heterogeneous, and is comprised of

different fractions (Andrews-Hanna et al. 2010; Laird et al.

2009); thus, the increased DMN activity is accompanied by

relative independence of these sub-networks within the

DMN to support heterogeneous functions.

Increased activity of the DMN is positively associated

with wide spread functional connectivity between the

regions in the fronto-parietal module, and between the

default mode and the cerebellar regions. However, the

connections that conveyed increased functional connec-

tivity did not show a clear pattern (the right panel of Figure

S2B) as compared with those in the salience and the motor

network (the right panels of Figure S2A and S2C). Net-

work analysis further reveals that the increase of functional

connectivity may result in higher global efficiency that

facilitates global information transmission. This may sug-

gest that higher internal oriented state as indexed by higher

DMN intrinsic activity (Vanhaudenhuyse et al. 2011) may

be associated with high integration across the whole brain.

However, we note that the increase of global efficiency was

only observed at the specific sparsity level of 10 %, and

therefore, these effects warrant future studies.

The motor network

The motor network activity was positively covaried with

the functional connectivity between the motor network

regions, while negatively correlated with the functional

connectivity between the default mode and the fronto-

parietal regions, and between the default mode and the

visuomotor regions. The associations between the motor

network activity and within-motor network synchroniza-

tion is reasonable, and is in line with the studies showing

that performing of a motor task is accompanied by both the

activations of the motor areas and increase in functional

connectivity between them (e.g., Zhuang et al. 2005).

However, it is interesting to observe that the functional

connectivity decreases between regions from different

brain systems when the motor network activity increases,

especially between the default mode and the fronto-parietal

regions, and between the default mode and the visuomotor

regions. Further, graph theory-based analysis reveals that

the modularity of the whole brain network increases at all

the three sparsity levels, and the mean clustering coeffi-

cient increases at the sparsity level of 10 % as the motor

network activity increases. These results suggest that the

brain network is more segregated as independent modules

and more locally organized when the motor network has

higher intrinsic activity (Bullmore and Sporns 2009). Thus,

we show within a single resting-state session, network

reconfiguration occurs to facilitate local information

processing and suppress information from other systems.

Whether the same network configuration will occur when

subjects explicitly perform a motor task needs further in-

depth exploration.

Dynamic connectivity

In addition to the recent findings that showed dynamic

functional connectivity in the resting-state (Allen et al.

2012; Chang and Glover 2010; Handwerker et al. 2012),

the current study demonstrates that the variations of rest-

ing-state functional connectivity are correlated with the

activity of other networks. The current results suggest a

functional significance of the dynamic functional connec-

tivity, and motivate theories based upon the dynamics of

connectivity to explain complex brain function. In addition,

the framework presented in the current analysis may be

used to understand the mechanisms underlying mental

disorders, such as schizophrenia (Menon 2011; Palani-

yappan and Liddle 2012). For example, alterations of the

salience network structures and functions (Chan et al.

2011; Palaniyappan and Liddle 2012) and impaired func-

tional connectivity between the DMN and the central

executive network (Manoliu et al. 2013a, b) were both

observed in patients with schizophrenia. The present results

directly revealed a link between the salience network

activity and the functional connectivity between the DMN

and the fronto-parietal regions, which may shed light on

the mechanism of schizophrenia.

One outcome of dynamic connectivity is the reconfigura-

tion of brain networks. In addition to previous studies

showing brain network reconfiguration during learning or

different cognitive loads (Bassett et al. 2011; Kitzbichler et al.

2011), the current study reveals for the first time that whole

brain network properties, especially the modularity, varied

within a single resting-state scan session. The link between

modularity changes and the activity of a specific network may

provide new insight on the dynamic organization of the brain

network. Further in-depth analyses of whether modularity

structures or hub organizations change during the resting-

state are needed. The method used in the present study pro-

vides a framework to study network reconfigurations in

resting-state as well as conventional task fMRI data.

Lastly, the method adopted in the present study is only

an approximate measure of modulation effects. Such

method is limited by both statistical power and causal

inferences. More sophisticated models such as nonlinear

dynamic causal model (DCM) (Friston et al. 2003; Seghier

and Friston 2013; Stephan et al. 2008), and Granger cau-

sality (Goebel et al. 2003; Liao et al. 2009, 2010, 2011)

may be used in the future to study dynamic connectivity to

provide a more accurate and valuable causal information of

the modulation effects.
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