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Abstract Epilepsy is characterized by recurrent and

temporary brain dysfunction due to discharges of inter-

connected groups of neurons. The brain of epilepsy patients

has a dynamic bifurcation that switches between epileptic

and normal states. The dysfunctional state involves large-

scale brain networks. It is very important to understand the

network mechanisms of seizure initiation, maintenance,

and termination in epilepsy. Absence epilepsy provides a

unique model for neuroimaging investigation on dynamic

evolutions of brain networks over seizure repertoire. By

using a dynamic functional connectivity and graph theo-

retical analyses to study absence seizures (AS), we aimed

to obtain transition of network properties that account for

seizure onset and offset. We measured resting-state func-

tional magnetic resonance imaging and simultaneous

electroencephalography (EEG) from children with AS. We

used simultaneous EEG to define the preictal, ictal and

postictal intervals of seizures. We measured dynamic

connectivity maps of the thalamus network and the default

mode network (DMN), as well as functional connectome

topologies, during the three different seizure intervals. The

analysis of dynamic changes of anti-correlation between

the thalamus and the DMN is consistent with an inhibitory

effect of seizures on the default mode of brain function,

which gradually fades out after seizure onset. Also, we

observed complex transitions of functional network topol-

ogy, implicating adaptive reconfiguration of functional

brain networks. In conclusion, our work revealed novel

insights into modifications in large-scale functional con-

nectome during AS, which may contribute to a better
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understanding the network mechanisms of state bifurca-

tions in epileptogenesis.

Keywords Dynamic � Functional connectivity �
Brain connectome � Absence seizure � fMRI

Introduction

Epilepsy is characterized by recurrent and temporary brain

dysfunction due to discharges of interconnected groups of

neurons. Our understanding of the network mechanisms of

seizure initiation, maintenance, and termination during

epilepsy is still limited (Kramer and Cash 2012; Richard-

son 2012). Absence epilepsy is a common type of gen-

eralized epilepsy in childhood (Chang and Lowenstein

2003). It is characterized by brief non-convulsive absence

seizures (AS), and typical 2.5–4 Hz generalized spike-and-

wave discharges (GSWDs), which can be detected by

electroencephalography (EEG) (Blumenfeld 2005). These

features make AS a unique model for neuroimaging

investigation on dynamic evolutions of brain function over

seizure repertoire (Kramer and Cash 2012).

Simultaneous EEG and functional magnetic resonance

imaging (fMRI) is a multimodal imaging technique that is

extremely valuable for epileptic activation localization and

time-course analysis (Chaudhary et al. 2013). A number of

studies have demonstrated dynamic blood-oxygen level

dependent (BOLD) activation in the thalamus and deacti-

vation in the brain regions of default mode network (DMN)

(Raichle et al. 2001) corresponding to different seizure

stages during AS (Bai et al. 2010; Benuzzi et al. 2012;

Carney et al. 2010, 2012; Moeller et al. 2010). These

findings may potentially relate to mechanisms of seizure

generation and suspension of default mode of brain func-

tion in AS.

Moreover, epilepsy has been recently proposed to be a

brain network disorder (Engel et al. 2013; Kramer and

Cash 2012; Laufs 2012; Spencer 2002; Stefan and Lopes

da Silva 2013). Through specific nodes and pathways,

epileptic activity propagates from the source to wide brain

regions, resulting in seizure occurrence and brain func-

tional impairments (Gotman 2008). Functional connectiv-

ity (FC) MRI techniques were recently used for

investigating brain networks in epilepsy (Liao et al. 2010;

Vlooswijk et al. 2010, 2011; Zhang et al. 2011). Specifi-

cally, FC-MRI has contributed to link alterations intrinsic

connectivity networks during AS to a set of specific cog-

nitive impairments (Killory et al. 2011; Luo et al. 2011;

Moeller et al. 2011; Yang et al. 2012).

Typical FC analyses measure the correlations of signals

within a long period of time, thus providing a static pattern

of brain activity coherences (Biswal et al. 1995). However,

human brain connectivity is most likely to be time-

dependent and dynamic, and to be related to ongoing

rhythmic activity (Sporns 2011). Hence, dynamic FC

techniques have been recently proposed to explore recon-

figuration of brain networks (Allen et al. 2012; Chang and

Glover 2010; de Pasquale et al. 2010; Handwerker et al.

2012; Hutchison et al. 2012; Kang et al. 2011; Lee et al.

2013), and have proved to be especially valuable when

investigating the variability of the large-scale brain con-

nectome across different states (Bassett et al. 2011; Fornito

et al. 2012).

Aiming at contributing to a better understanding to the

evolution of seizures at a network level, we conducted a

simultaneous EEG-fMRI study on patients with AS. We

used EEG to define preictal, ictal, and postictal stages of

AS, and we then applied a dynamic analysis of FC-MRI

across these three stages. Accordingly, we revealed novel

insights into the mechanisms underlying dynamics of

large-scale brain networks related to the initiation, main-

tenance and termination of AS.

Method

Participants

A total of 15 patients with typical childhood absence epi-

lepsy (11 females, all right-handed; age [mean ± SD]:

8.06 ± 3.15 years) were recruited from 2009 to 2013 at

Jinling Hospital, Nanjing University School of Medicine.

Written informed consent was obtained from all partici-

pants. The study was approved by the local medical ethics

committee at Jinling Hospital, Nanjing University School

of Medicine. Patients met the following diagnosis criteria:

(a) clinical diagnosis of childhood absence epilepsy was

established according to the International League against

Epilepsy (ILAE) classification; (b) EEG with typical

bilateral, synchronous 2.5–4 Hz GSWDs; (c) no additional

seizure types, such as myoclonic, tonic–clonic, or partial

seizures; and (d) no focal abnormality in routine structural

MRI examinations (Table 1).

EEG-fMRI data acquisition

All patients underwent simultaneous EEG-fMRI recording.

Functional and structural imaging was scanned using a

Siemens Trio 3T scanner at Jinling Hospital, Nanjing,

China. Foam padding was used to minimize head motion

for all subjects. Functional images were acquired using a

single-shot, gradient-recalled echo planar imaging

sequence (repetition time = 2,000 ms, echo time = 30 ms

and flip angle = 90�). Thirty transverse slices (field of

view = 240 9 240 mm2, in-plane matrix = 64 9 64,
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slice thickness = 4 mm, interslice gap = 0.4 mm, voxel

size = 3.75 9 3.75 9 4 mm3), aligned along the anterior

commissure–posterior commissure line were acquired. In

each session, a total of 505 volumes were collected,

resulting in a total scan time of 1,010 s. For each subject,

2–5 sessions were acquired. Subjects were instructed sim-

ply to rest with their eyes closed, not to think of anything in

particular, and not to fall asleep. Subsequently, 3D T1-

weighted anatomical images were acquired in the sagittal

orientation using a magnetization-prepared rapid acquisi-

tion gradient-echo sequence (repetition time = 2,300 ms,

echo time = 2.98 ms, flip angle = 9�, field of view =

256 9 256 mm2, matrix size = 256 9 256, slice thick-

ness = 1 mm, no interslice gap, voxel size = 1 9 1 9

1 mm3 and 176 slices) on each subject.

During fMRI acquisition, EEG data was continuously

recorded through a 10/20 systems with 32 Ag/AgCl elec-

trodes attached to the scalp with conductive cream. Three

EOG/ECG channels were simultaneously recorded. Twenty-

nine EEG electrodes were connected to a BrainAmp ampli-

fier (Brain Products, Germany), with a sampling rate of

5,000 Hz. The amplifier was connected to the recording

computer outside the scanner room via a fiber optic cable.

Typical ictal seizure behaviors were monitored by a

camera in the scanner. Clinical behavioral of absences

included eyelid fluttering, staring and mild myoclonic jerks.

Specifically, mild myoclonic jerks induce head movement

artifacts, which are reflected in both EEG and fMRI data. If

excessive movements were detected during data collection,

the acquisition run was aborted and then started again.

EEG analysis

The EEG was processed offline to filter out MR artifacts and

to remove ballistocardiogram artifacts (Brain Vision

Analyzer 2.0, Germany). Onset and end time of epileptic

discharges (typical 2.5–4 Hz GSWDs) were tagged and

classified by an experienced neurologist and electroen-

cephalographer, according to both spatial distribution and

morphology. If no spike-series was found in a single session,

this fMRI data was excluded from subsequent analyses.

fMRI data preprocessing

Functional images preprocessing was carried out using the

DPARSF (http://www.restfmri.net) and SPM8 (http://

www.fil.ion.ucl.ac.uk/spm) toolkit. Functional images,

after exclusion of the first 5 images to ensure steady-state

longitudinal magnetization, were initially corrected for

temporal differences and head motion. No translation or

rotation parameters in any given data set exceeded ±3 mm

or ±3�. We then co-registered individual 3D T1-weighted

anatomical image to functional images. The 3D T1-

weighted anatomical images were segmented (grey matter,

white matter and cerebrospinal fluid). Then, a nonlinear

spatial deformation was calculated from the grey matter

images to a grey matter template in Montreal Neurological

Institute (MNI) space. This transformation was then

applied to the functional images, which were resliced at a

resolution of 3 9 3 9 3 mm3 and spatially smoothed with

an 8-mm full-width half-maximum isotropic Gaussian

kernel. No spatial smoothing was applied for functional

connectivity network analysis, to avoid introducing artifi-

cial local spatial correlations, as previously suggested

(Salvador et al. 2005; Zhang et al. 2011; Zuo et al. 2012).

GSWDs-related BOLD activity

Analysis of functional images was performed in SPM8

toolkit by means of a general liner model, using GSWDs

Table 1 Demographic and clinical information of patients

Patient Sex/age

(years)

Onset age

(years)

Medication Session No. of AS

(duration, s)

No. of selected

seizures (durations)

All events

(duration, s)

Frequency of

GSWDs (Hz)

1 F/12 9 None 2 5 (119) 2 (60) 119 2.5–3.5

2 M/9 6 None 2 1 (9) 1 (9) 9 3–4

3 F/18 10 SV 2 2 (14) 2 (14) 30 3–4

4 F/7 7 SV 2 19 (229) 8 (104) 229 3–3.5

5 F/8 6 SV 2 1 (12) 1 (12) 12 2.5–3.5

6 M/7 5 SV 2 1 (16) 1 (16) 52 3–4

7 F/5 4 None 2 6 (36) 6 (36) 36 2.5

8 F/11 9 None 2 1 (14) 1 (14) 14 3–4

9 M/7 5 SV, LTG, LEV 2 3 (34) 3 (34) 73 3.5

10 F/6 4 SV, LTG, LEV 2 4 (37) 2 (28) 37 3–3.5

11 F/10 3 SV, LTG, 2 1 (15) 1 (15) 55 3–4

F female, M male, SV sodium valproate, LTG lamotrigine, LEV levetriacetam, AS absence seizures, GSWDs generalized spike-and-wave

discharges
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convolved with a canonical hemodynamic response func-

tion as regressors (Bai et al. 2010; Gotman et al. 2005). The

epochs of GSWDs were represented as variable duration

blocks beginning at the onset of seizure and ending upon

GSWD cessation. Motion realignment parameters were

also included as covariates of no interest. For group anal-

ysis, a second-level random effects model (one sample

t test) was performed to determine regions showing sig-

nificant fMRI changes among patients. We also applied a

false discovery rate (FDR) procedure to correct for multi-

ple comparisons (Genovese et al. 2002).

Analysis of dynamic FC map

We estimated dynamic FC changes before, during, and after

seizures. Before this procedure, BOLD data were processed

to attenuate the contribution of six head motion parameters,

averaged signals from cerebrospinal fluid and white matter,

and the global brain signal (Fox et al. 2005); next, the time

series were band-pass filtered (0.01–0.08 Hz). Two specific

volumes of interest (VOIs) were selected as seeds for FC

analysis, based on regions showing the GSWDs-related

BOLD activation and deactivation. These VOIs were

bilateral thalamus and posterior cingulate cortex/precuneus

(PCC/PCUN) (Table 2).

Subsequently, we evaluated dynamic FC changes using

a sliding-window correlation approach (Hutchison et al.

2012) (see Fig. 1 for a schematic of the sliding-window

approach). We calculated correlation maps between the

time series derived from the seeds and all other brain

voxels for a sliding window of 50 volumes (100 s). We

also investigated the effect of other window lengths (60

and 200 s). For each sliding window, we obtained a cor-

relation map, which was then converted to z-scores using

the Fisher r-to-z transformation. The window was then

shifted by one volume (2 s) and a new correlation map was

calculated. This approach permitted to estimate functional

connectivity over time, in temporal windows such as: 1–50,

2–51, 3–52,…, 451–500 (Kiviniemi et al. 2011). Since the

time series were composed of 500 volumes, this procedure

yielded 451 correlation maps (Handwerker et al. 2012).

The dynamic correlation maps were separated into preictal

(time before seizure onset), ictal, and postictal (time after

seizure end) time periods by using information from EEG

recordings. These three periods covered a time range from

-22 to ?32 s relative to seizure onset. The ictal period of

each seizure was scaled to the mean seizure duration

(12.64 s in our data). For subsequent group analysis, we

resampled the number of FC maps and matrices to account

for different seizure durations (Bai et al. 2010). Specifi-

cally, if the ictal period was longer or shorter than mean

seizure duration, the related FC maps and matrices were

down- and up-sampled to keep constant their number

across different seizures (this number was 6, since the

mean size duration was 12.64 s). In contrast, the preictal

(22 s duration) and postictal (22 s duration) data were not

resampled, but just aligned in time across seizures. This

was done by lining up the seizure onset times for preictal

data, and by lining up the seizure offset times for postictal

data, as in previous studies (Bai et al. 2010).

We used a one-way within-subject analysis of vari-

ance (ANOVA) (P \ 0.05, FDR-corrected) to determine

Table 2 Significant clusters of

GSWDs-related BOLD

activation and deactivation

THA thalamus, PCC/PCUN

posterior cingulate cortex/

precuneus, MTG mesial

temporal gyrus, ITG inferior

temporal gyrus, PHIP

parahippocampus, CAU caudate

nucleus, PUT putamen, ACC

anterior cingulate cortex, MCC

median cingulate cortex, AG

angular gyrus
a Showing GSWDs-related

BOLD activation considering as

VOI
b Showing GSWDs-related

BOLD deactivation considering

as VOI

Region Hem. Activation/

deactivation

Peak coordinates

MNI (x, y, z)

Cluster

size

(voxels)

T value

THAa L/R Activation -12, -27, 12 382 11.31

Ventricle L Activation -21, 30, 6 25 6.94

R Activation 21, 33, 6 40 6.42

PCC/PCUNb L/R Deactivation 9, -51, 24 561 –10.03

MTG L Deactivation -57, -24, -9 88 –6.03

R Deactivation 60, -3, -24 423 –8.86

ITG L Deactivation -51, 6, -33 81 –7.31

PHIP L Deactivation -27, -30, -15 83 –6.08

R Deactivation 27, -21, -21 47 –6.16

CAU/PUT L Deactivation -15, 9, -3 82 –6.68

R Deactivation 15, 12, -3 95 –7.44

ACC L/R Deactivation -3, 39, 6 54 –5.33

MCC L/R Deactivation 3, -27, 39 56 –5.87

AG L Deactivation -42, -57, 24 264 –6.55

R Deactivation 54, -63, 24 209 –7.37

Pons L/R Deactivation 9, -24, -36 125 –9.24
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significant changes in the correlation maps (after Fisher

r-to-z transform) across the intervals for the entire set of

seizures.

Moreover, to test the reliability of the dynamic FC

results, we carried out a split-half analysis (He et al. 2009;

Zhang et al. 2011). Specifically, we divided the total 28

seizures into two subgroups (14 seizures for each sub-

group). For each subgroup, the seed-based dynamic FC

analysis was calculated as in the whole-group analysis.

Then, we performed a one-way within-subject ANOVA on

the functional connectivity maps of each subgroup, and we

assessed the spatial correspondence between the resulting

ANOVA maps. Furthermore, we tested the consistency of

these findings by repeating a slip-half analysis 100 times,

dividing each time the 28 seizures into two different groups

of 14 seizures. For each split-half analysis, we performed a

one-way within-subject ANOVA, and we then created a

consistency map showing the frequency with which the

brain regions were found to be significant in the ANOVA

test.

Fig. 1 Schematic of the sliding-window FC approach. The time

series of the seed (red line in the top row) and of a representative

brain voxel (blue line in top row) were correlated using a sliding-

window of 50 volumes (100 s). For window #1, which is defined on

volumes 1–50, the correlation between the time series of the seed and

of all brain voxels is calculated, resulting in the creation of a

correlation map. The window was then shifted by one volume and a

new correlation map was calculated (e.g., window #2, defined on

volumes 2–51). This procedure allowed the estimation of FC over

time. Since the time series had 500 volumes in our data, we calculated

451 correlation maps in total (see second row in the figure). Similarly,

for each sliding-window of 50 volumes, we compared by temporal

correlation the time series extracted from a set of regions of interest

(ROIs) covering the whole brain. This resulted in a set of 451

temporal correlation matrices (see third row in the figure). The

dynamic FC maps and matrices for the preictal (time period before

seizure onset), ictal, and postictal (time period after seizure offset)

were selected using information from simultaneously collected EEG

data (see bottom row)
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Dynamic functional connectome analysis

The whole cerebral cortex was parcelled into 90 anatomical

ROIs using the automated anatomical labeling (AAL)

template (Tzourio-Mazoyer et al. 2002). This parcellation

scheme will be referred to as AAL-90. A list of anatomical

labels of the nodes is presented in the Online Resource

Table 1. Considering that the range of nodal scale and the

difference in template parcellations may impact on the

results of network analysis (Hagmann et al. 2010; Wang

et al. 2009), we also used a high-resolution parcellation

scheme with 512 ROIs (Hagmann et al. 2008). Specifically,

we generated 512 ROIs of approximately identical size

across both hemispheres by subdividing each region in the

low-resolution AAL-90 template into a set of subregions.

This parcellation scheme will be referred to as AAL-512

(Zhang et al. 2011). These two types of parcellation

schemes were used in parallel for network analyses, for a

cross-validation of our results. As mentioned above, we

obtained regional BOLD time series by averaging time

series across voxels in each ROI using non-smoothed

functional images. The time series were preprocessed as for

seed-based FC analysis. For each sliding window, we

obtained a temporal correlation matrix (90 9 90 or

512 9 512) whose elements (rij) are Pearson correlation

coefficients between every pair of ROIs. Since the time

series included 500 volumes, we obtained 451 temporal

correlation matrices in total. Again, the correlation matri-

ces within the ictal period were resampled to equalize the

seizure duration, whereas those within the preictal (22 s)

and postictal (22 s) period were not scaled but just aligned

(Bai et al. 2010). Individual elements of rij were subjected

to statistical testing for the construction of weighted

functional connectivity networks. The value of rij that was

not significant at the corrected level (P \ 0.05, FDR-cor-

rected) was set to zero, or it was kept otherwise.

Graph theoretical analyses were carried out on each

network for the preictal, ictal and postictal periods using

the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net) (Rubinov and Sporns 2010). We

calculated both overall topology and nodal characteristic.

The overall topologies included: small-world property

(Sigma), which quantifies simultaneous global and local

parallel information processing in brain networks (Bassett

and Bullmore 2006); weighted clustering coefficient Cw
net

� �
,

which quantifies the local interconnectivity or cliquishness

of the network, and normalized weighted clustering coef-

ficient (Gamma); weighted characteristic shortest path

length Lw
net

� �
, which quantifies the ability for parallel

information propagation, and normalized weighted char-

acteristic shortest path length (Lambda); the nodal degree

Sw
u

� �
and the total connection strength in network Sw

net

� �
,

which quantifies the extent to which a node is relevant to

the graph, and the sum of the weights of all the connections

of the network, respectively. To determine how the overall

network topology evolved in time, we applied a one-way

within-subject ANOVA on overall topologies across

intervals over the entire collection of seizures. Further-

more, we performed two-sample t tests between values for

the preictal, ictal and postictal periods.

Projection of volumes to cortical surface

For visualization purpose, group-level GSWDs-related

BOLD activity map and dynamic FC maps were projected

from the volumes to the individual cortical surfaces and

then registered to the ICBM152 brain surfaces using

Freesurfer (http://surfer.nmr.mgh.harvard.edu/). The sur-

face maps were visualized using BrainNet Viewer (http://

www.nitrc.org/projects/bnv/). Dynamic functional con-

nectome results were also visualized with BrainNet

Viewer. In this case, nodes were positioned according to

the ROIs’ centroid stereotaxic coordinates and were col-

ored according to six anatomical subsystems. Hub nodes

were indicated with larger size. Furthermore, edges are

coded according to their connection weights.

Results

We collected simultaneous EEG-fMRI data from 15 chil-

dren with AS, over a time period of about 16 min each. Of

these 15 patients together, 11 patients had AS and therefore

contributed data for our analysis. We identified 44 seizures

in total (Table 1). To avoid confounding effects in sliding-

window length for FC/brain network analyses, we selected

only the GSWDs seizures with discharges longer than 6 s

and with minimum interval of 20 s between the end of the

last GSWDs and the beginning of the next GSWDs. This

criterion led us to the selection of 28 seizures (duration:

mean ± SD = 12.64 ± 9.46 s), which were used in sub-

sequent analyses (see Table 1; Fig. 2 for information on

patients and their contribution in terms of seizure number).

Our statistical analyses revealed no significant difference

of seizure duration among patients (Kruskal–Wallis sta-

tistic value was 16.61, P = 0.0834).

Brain activity during GSWDs

We observed BOLD increases in the bilateral thalamus, as

well as decreases in the bilateral angular gyrus, temporal

cortex, parahippocampus, basal ganglia and PCC/PCUN

(Fig. 3; Table 2), which largely belong to the DMN (Fox

et al. 2005; Raichle et al. 2001). The thalamus network and

the DMN were previously shown in studies of BOLD

2006 Brain Struct Funct (2014) 219:2001–2015
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changes related to GSWDs (Archer et al. 2003; Gotman

et al. 2005; Moeller et al. 2008a, b).

Dynamic FC maps using the thalamus as seed

The FC maps of patients were characterized by negative

correlations between the thalamus and DMN regions

(Fig. 4a). When we compared the FC maps from the

thalamus across all subjects and seizures within the preic-

tal, ictal, and postictal intervals, we found that significant

changes were located within the subcortical regions

[bilateral thalamus, caudate nucleus (CAU), putamen

(PUT)], and cortical regions mainly encompassing the

DMN [(PCC/PCUN), inferior parietal lobule (IPL), hip-

pocampus, angular gyrus, medial prefrontal cortex] (one-

way within-subjects ANOVA, P \ 0.05, FDR-corrected)

(Fig. 4b). Moreover, FC between thalamus and the bilateral

basal ganglia (CAU, PUT), PCC/PCUN and IPL showed

anti-correlation in the preictal and ictal periods and positive

correlation in the postictal period (Fig. 4c).

Dynamic FC using PCC/PCUN as seed

We investigated dynamic FC using the PCC/PCUN as

seed. In line with previous studies (Fox et al. 2005), we

found positive correlations between the PCC/PCUN and

regions of the DMN, and negative correlations between the

PCC/PCUN and regions of task-positive networks. More-

over, the bilateral thalamus showed anti-correlations with

the PCC/PCUN in patients with AS (Fig. 5a). We then

compared the FC maps for all subjects and seizures within

preictal, ictal, and postictal intervals. Significant changes in

FC maps across periods were located at the bilateral CAU,

cuneus, pre/post-central gyrus, and the right thalamus and

fusiform gyrus (one-way within-subjects ANOVA analysis,

P \ 0.05, FDR-corrected) (Fig. 5b). Specifically, the

bilateral CAU showed positive correlation with PCC/

PCUN within the preictal period and decreased over time,

finally showing anti-correlation during the postictal period

(Fig. 5c). As absence seizures evolved, the right thalamus

had an increase in correlation with the PCC/PCUN

(Fig. 5c).

Reproducibility of dynamic FC findings

We assess the reproducibility of our findings by using a

split-half analysis. Specifically, we divided the seizures in

two subgroups and we compared the results of each of

them. With either the thalamus or the PCC/PCUN as seed,

our split-half analysis showed similar dynamic FC patterns,

although less reliable than those obtained from the whole

group (Fig. 6). When we investigated dynamic FC using

thalamus as seed, the common significant changes in FC

were located in the bilateral CAU, PUT and thalamus

(Fig. 6a). For the PCC/PCUN as seed, the common sig-

nificant changes in FC were in bilateral CAU, PUT and

right THA (Fig. 6b).

Dynamic large-scale functional connectome

We used a sliding-window seed-based FC analysis to study

brain dynamics of seizure generation, maintenance and

termination in AS patients. As an exploratory analysis, we

were also interested in how the large-scale functional

connectome evolves across time, and how time evolution

reflects changes related to seizure periods. Accordingly, we

Fig. 2 The distribution of the duration of the seizures in individual

patients and in all patients. The bar plot shows, for each single patient

(a) and for all patients together (b), the duration of the detected

seizures. The error bars indicate the standard deviation (SD)

Fig. 3 GSWDs-related BOLD activation and deactivation in absence

seizures. A second-level random effects analysis revealed significant

BOLD activation (warm color) and deactivation (cool color) (FDR-

corrected height threshold P \ 0.05, and extent threshold k = 5

voxels). The results are presented on inflated surface maps (Upper)

and axial maps (Lower). THA thalamus, PCC/PCUN posterior

cingulate cortex/precuneus, L left hemisphere, R right hemisphere
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measured FC between areas defined in either the low-res-

olution AAL-90 or high-resolution AAL-512 parcellation

scheme, for each interval from the preictal, ictal, and

postictal periods (Figs. 7, 8). For the low-resolution AAL-

90 parcellation, a one-way within-subjects ANOVA anal-

ysis across all intervals showed different overall topologies

on total connection strength (F = 3.184, P = 0.0000),

overall clustering coefficient (F = 3.992, P = 0.0000) and

overall characteristic shortest path length (F = 4.431,

P = 0.0000). No significant change was found in the

small-worldness index (F = 1.280, P = 0.1560). We

observed larger total connection strength (T = 2.441,

P = 0.0214) and clustering coefficient (T = 2.946,

P = 0.0065) and decreased shortest path length (T =

-2.954, P = 0.0064) between ictal and postictal periods.

When we used the high-resolution AAL-512 parcellation,

we obtained findings consistent to those of the AAL-90

parcellation, for total connection strength (F = 6.358,

P = 0.0000), overall clustering coefficient (F = 8.070,

P = 0.0000) and overall characteristic shortest path length

(F = 10.663, P = 0.0000). However, a one-way within-

subjects ANOVA analysis on normalized weighted char-

acteristic shortest path length (Lambda) showed different

values across intervals (F = 4.854, P = 0.0000), and was

specifically lower between ictal and postictal periods

(T = -2.664, P = 0.0128).

FC during nondischarge periods

Previous studies suggested the presence of distinct FC

patterns between GSWDs and nondischarge states in IGE

(Luo et al. 2012; Moeller et al. 2011; Yang et al. 2012). To

test this hypothesis, we selected nondischarge periods (no

GSWDs detected during a given session) and randomly

tagged intervals as they were moments of seizure onset.

We repeated our one-way within-subject ANOVA on

dynamic FC maps for nondischarge periods, and we found

no significant difference neither with PCC/PCUN nor

Fig. 4 Dynamic changes of the thalamus network during AS.

a Significant positive (warm color) and negative (cool color)

correlations were derived from one-sample t test (uncorrected

heighted threshold P \ 0.05, and extend threshold k = 5 voxels).

The results are presented on inflated surface maps for preictal

(Upper), ictal (Middle) and postictal (Lower) periods from -22 to

?32 s, relative to seizure onset. b Significant change of the thalamus

network across the preictal, ictal, and postictal intervals (one-way

within-subject ANOVA, FDR-corrected height threshold P \ 0.05,

and extent threshold k = 5 voxels). Significant network changes

(warm color) are presented on inflated surface maps (Upper) and axial

maps (Lower). c Mean FC strength (Z value) time courses in six

anatomical clusters (PCC/PCUN, CAU, PUT and IPL). Error bars

represent SEM across seizures. The mean seizure duration is shown in

the red box. PCC/PCUN posterior cingulate cortex/precuneus, CAU

caudate nucleus, PUT putamen, IPL inferior parietal lobule, L left

hemisphere, R right hemisphere
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thalamus as seed. A one sample t test on time-averaged FC

maps obtained with the thalamic and the PCC/PCUN seeds,

respectively, showed positive and negative correlations

during nondischarge period (Fig. 9). Note that a positive

correlation between the thalamus and the regions of DMN

was observed during the nondischarge period (Fig. 9).

We also extracted topology measures of dynamic large-

scale functional connectome across time. By means of one-

way within-subject ANOVA, we found no significant

change across intervals for any of the overall topology

measures (e.g., small-worldness in Fig. 9c).

Discussion

In this study, we combined dynamic FC and graph theo-

retical analyses to explore the switching of GSWDs-related

networks, as well as the whole-brain functional connec-

tome over the different time periods during AS. We found

an abnormal pattern of anti-correlation between the

thalamus (thalamus network) and the PCC/PCUN

(belonging to the DMN), and complex transitions of

functional connectome topology over the preictal, ictal and

postictal periods. These findings may contribute to a better

understanding of the patho-physiological mechanisms

underlying seizure initiation, maintenance and termination

of AS.

Dynamic network changes of the thalamus

and the DMN

The abnormal FC pattern between the thalamus and the

DMN was the most remarkable finding of the present

study. The FC between the thalamus and the DMN showed

negative correlation during AS, which became positive in

the normal physiological state (Greicius et al. 2007; Zhang

et al. 2008). GSWDs-related activations in the thalamus

and deactivations in the DMN are typically observed in AS,

suggesting a link with GSWD generation and functional

suspension during seizure (Blumenfeld 2012; Gotman et al.

Fig. 5 Dynamic changes in the DMN during AS. a Significant

positive (warm color) and negative (cool color) correlations were

derived from one-sample t test (uncorrected heighted threshold

P \ 0.05, and extend threshold k = 5 voxels). The results are

presented on inflated surface maps for preictal (Upper), ictal (Middle)

and postictal (Lower) periods from -22 to ?32 s, relative to seizure

onset. b Significant change of the DMN across the preictal, ictal, and

postictal intervals (one-way within-subjects ANOVA analysis, FDR-

corrected height threshold P \ 0.05, and extent threshold k = 5

voxels). Significant network changes (warm color) are presented on

inflated surface maps (Upper) and axial maps (Lower). c Mean FC

strength (Z value) time courses in five anatomical clusters (THA,

CAU, and IPL). Error bars represent SEM across all seizures. The

mean seizure duration is shown in the red box. THA thalamus, CAU

caudate nucleus, IPL inferior parietal lobule, L left hemisphere,

R right hemisphere
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2005). Importantly, this anti-correlation between the thal-

amus and the DMN disappeared in the later ictal and

postictal periods, suggesting a dynamic recovery after a

short inhibitory influence of GSWDs (from the thalamus)

on the default mode of brain function (Danielson et al.

2011; Moeller et al. 2008a).

Either in the network obtained with the thalamus or the

PCC/PCUN as seed, the basal ganglia (bilateral CAU and

PUT) showed significant FC change during AS progres-

sion. Moreover, the basal ganglia presented similar FC

transition pattern with the DMN, and reverse pattern with

the thalamus. This finding suggests that the basal ganglia

system, which normally maintains default function before

GSWDs (Danielson et al. 2011; Moeller et al. 2008a), is

transiently affected during seizure and is gradually restored

to baseline connectivity afterwards. Moreover, considering

the important role of the basal ganglia in the modulation of

epileptic discharges generalization (Luo et al. 2012), the

current results provided new evidence on the modulatory

role of these structures in AS.

Dynamic topological organization of functional

connectome

We for the first time investigated the dynamic changes of

the whole-brain functional connectome in AS using graph

theoretical analyses. Emerging evidences from connec-

tomic studies (Bernhardt et al. 2011; Liao et al. 2010;

Vaessen et al. 2012; Vlooswijk et al. 2011; Zhang et al.

2011) have supported the heuristic view of epilepsy as a

brain network disorder (Kramer and Cash 2012; Laufs

2012). In contrast to conventional brain graphs constructed

over observation of several minutes (Bullmore and Bassett

2011), our findings revealed a rapid reconfiguration of the

functional connectome during AS.

We observed higher total connection strength during the

ictal period relative to the periods before and after seizures

(Figs. 6a, 7a), indicating a relative increase in large-scale

brain activity synchronization caused by GSWDs (Kramer

et al. 2010; Schindler et al. 2008; Wu et al. 2006). The

functional connectome in the seizure period exhibited

small-world topology (Sigma). The comparison between

ictal and preictal periods yielded slightly significant dif-

ference in small-worldness, which is consistent with pre-

vious electrophysiological findings (Wu et al. 2006). This

result possibly indicates that networks during seizure

propagation acquire larger clustering coefficients (mea-

suring local connectedness) and path lengths (measuring

overall network integration), which is roughly equal to

small-worldness (Kramer and Cash 2012).

As compared to preictal and ictal periods, the postictal

functional connectome dramatically reduced local con-

nectedness and overall network integration. This may

underlie an apparent shift from highly information-pro-

cessing efficiency for seizure propagation to long path

length cost for seizure termination. Highly network inte-

gration efficiency is related to maturation processes (Fair

et al. 2009) and is modulated by dynamically changing

processing demands (Sepulcre et al. 2010). Here, one can

assume that a similar mechanism is used to terminate a

seizure. An alternative explanation is that impaired local

connectedness reflects more random configurations (Kra-

mer et al. 2010; Schindler et al. 2008). We speculate that

network randomization, associated with high local effi-

ciency of information transfer and robustness, may be

considered as a self-regulatory mechanism for seizure ter-

mination (Schindler et al. 2008).

Taken together, we found a non-monotone shift of

functional network topology during seizure progression.

The observed changes in small-worldness 10 s before

GSWD onset may have a potential implication for seizure

prediction (Mormann et al. 2007). Moreover, there was a

higher small-worldness during ictal period, along with a

shift to randomness during the postictal period. Our find-

ings are not completely consistent with previous observa-

tions using EEG (Kramer et al. 2010; Schindler et al. 2008;

Wu et al. 2006). As suggested by Kramer and Cash (2012),

cross-modalities divergences may be resolved in the future

work combining EEG and fMRI.

Fig. 6 Evaluation of the reliability of dynamic functional connec-

tivity findings. The 28 seizures were divided into two groups of 14

seizures to conduct a split-half analysis, which was repeated 100

times. For each group, significant changes in the thalamus network

(a) and in the DMN (b) across the preictal, ictal, and postictal

intervals were obtained by a one-way within-subject ANOVA (FDR-

corrected height threshold P \ 0.05, and extent threshold k = 5

voxels). The brain regions with significant changes in both groups for

each of the 100 iterations were combined to create a consistency map

(values ranging from 20 to 90 %). These maps are represented over an

anatomical template in sagittal, coronal and axial sections
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Methodological considerations and limitations

There are still some controversies concerning optimal

strategies for large-scale brain graph analysis (Bullmore

and Bassett 2011). Node definition is key issue for the

construction of the functional connectome. Variation of

graph theoretical parameters of functional connectome

might depend on the use of different prior anatomical or

functional brain templates (Shirer et al. 2012; Wang et al.

2009) or on different node scales (Fornito et al. 2010;

Zalesky et al. 2010). To account for this issue, we con-

structed a fully weighted brain network using anatomic

templates with relatively low and high resolution, respec-

tively. The connection strength (thresholded on the basis of

Fig. 7 Dynamic large-scale AAL-90 functional connectome during

AS. a The large-scale AAL-90 functional connectome architecture for

each interval from preictal (Upper), ictal (Middle), and postictal

(Lower) periods are shown from -22 to ?32 s (with steps of 2 s),

relative to each seizure onset. Nodes are positioned according to

ROIs’ centroid stereotaxic coordinates and differently colored

according to the six anatomical subsystems. Larger size nodes are

hub nodes. Edges are coded according to their connection weights.

b Overall topologies, including total connection strength in network

Sw
net

� �
, overall clustering coefficient Cw

net

� �
, overall characteristic

shortest path length Lw
net

� �
, small-worldness (Sigma), the normalized

clustering coefficient (Gamma) and the normalized characteristic

shortestpath length (Lambda), of functional connectome of each

interval in three seizure periods are showed. Error bars represent

SEM across seizures

Brain Struct Funct (2014) 219:2001–2015 2011

123



statistical testing with correction for multiple comparisons)

in the functional connectome reflects heterogeneity in

capacity and intensity of connections. Future studies using

multiple cost thresholds, different brain templates or finer

node scales are needed to assess consistent topological

organization (Fornito et al. 2010; Zalesky et al. 2010).

To explore possible time varying dynamics, we used a

sliding-window FC analysis (window length = 100 s).

Since we filtered the fMRI data in a frequency band from

0.01 to 0.08 Hz, we used a window length that is the

inverse of the minimum frequency (=1/0.01 Hz = 100 s)

to cover a full cycle of the observed signals (Lee et al.

Fig. 8 Dynamic large-scale AAL-512 functional connectome during

AS. a The large-scale AAL-512 functional connectome architecture

for each interval from preictal (Upper), ictal (Middle), and postictal

(Lower) periods are shown from -22 to ?32 s (with steps of 2 s),

relative to each seizure onset. Nodes are positioned according to

ROIs’ centroid stereotaxic coordinates and differently colored

according to the six anatomical subsystems. Larger size nodes are

hub nodes. Edges are coded according to their connection weights.

b Overall topologies, including total connection strength in network

Sw
net

� �
, overall clustering coefficient Cw

net

� �
, overall characteristic

shortest path length Lw
net

� �
, small-worldness (Sigma), the normalized

clustering coefficient (Gamma) and the normalized characteristic

shortestpath length (Lambda), of functional connectome of each

interval in three seizure periods are showed. Error bars represent

SEM across seizures
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2013). We also explored the effect of other window length

(60 and 200 s) on FC dynamics, which led to similar but

less reliable results (Online Resource Fig. S1 and S2).

Measurements over longer time window reduced the vari-

ability in functional connectivity patterns observed across

the preictal, ictal and postictal stages. Shorter time win-

dows revealed a larger spatial variance in the maps, which

could however be indicative of noise or random variability.

Future studies are warranted to consider various time

windows for a cross-validation of FC dynamics.

Recently, it has been shown that the global signal

regression, a commonly used yet controversial prepro-

cessing step for functional connectivity analysis (Fox et al.

2009; Murphy et al. 2009; Weissenbacher et al. 2009),

yields substantial increases in negative correlations (Saad

et al. 2012). To check for the impact of this preprocessing

step, we repeated our dynamic FC analysis without global

signal regression. By doing so, we found that the main

findings of the study were still preserved. Nonetheless, the

distribution of functional connectivity values obtained with

the thalamus as seed showed more prominent negative

correlations, and it showed more prominent positive cor-

relations when we used the PCC/PCUN as seed. In turn, the

ANOVA across the preictal, ictal, and postictal intervals

without global signal regression provided very similar

results to those obtained by using this preprocessing step

(data not shown).

A number of limitations are noteworthy. First, this study

is limited by a relatively small sample size. Second, our

design does not allow controlling for confounding effects

of anti-epileptic drugs, which can affect normal neuronal

function and produce cognitive impairments. Third, we

could not evaluate whether dynamics FC are potentially

related to abnormal mechanisms of consciousness in AS.

Forth, our functional images were collected at standard

spatial resolution, but a higher spatial resolution should be

ideally pursued in a pediatric sample. Fifth, no EEG-fMRI

data were acquired in matched normal children. Finally, the

dynamic FC and connectome analysis used here could not

clarify whether and how brain activity involved in GSWDs

propagates to other brain areas. To address this question in

an animal model of AS, the ‘effective connectivity’

method, which refers to causal effects that one neuronal

population exerts on another, has been employed (David

et al. 2008). Future work using the ‘effective connectivity’

method in patients with AS might reveal dynamic neural

correlates of seizure generation and spreading to other

brain regions.

Conclusion

In conclusion, this study combined dynamic FC and graph

theoretical analyses to investigate the transition of the

functional connectome of the brain over the preictal, ictal

and postictal periods during AS. Dynamic change of anti-

correlation between the thalamus and DMN is consistent

with an inhibitory effect of seizures on the default mode of

brain function, which gradually fades out after seizure

onset. Also, we observed complex transitions of functional

network topology, implicating adaptive reconfiguration of

functional brain networks. In conclusion, our work

revealed novel insights into modifications in large-scale

functional connectome during AS, which may contribute to

a better understanding the network mechanisms of state

bifurcations in epileptogenesis.
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Fig. 9 Dynamic FC analysis of nondischarge state. A one sample

t test on averaged FC maps across all intervals showed positive (warm

color) and negative (cool color) correlation maps with the thalamus

(a) and the PCC/CPUN (b) as seed during nondischarge state

(uncorrected height threshold P \ 0.05, and extend threshold k = 5

voxels). c Dynamic changes of the small-worldness of functional

connectome during nondischarge state. Error bars represent SEM

across seizures. A one-way within-subject ANOVA showed no

significant difference across time periods. Note that no seizure events

were present in nondischarge state, so we used seizure onset times

corresponding to those detected in patients during GSWDs state

Brain Struct Funct (2014) 219:2001–2015 2013

123



References

Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD

(2012) Tracking whole-brain connectivity dynamics in the

resting state. Cereb Cortex. doi:10.1093/cercor/bhs352

Archer JS, Abbott DF, Waites AB, Jackson GD (2003) fMRI

‘‘deactivation’’ of the posterior cingulate during generalized

spike and wave. Neuroimage 20(4):1915–1922

Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C et al

(2010) Dynamic time course of typical childhood absence

seizures: EEG, behavior, and functional magnetic resonance

imaging. J Neurosci 30(17):5884–5893

Bassett DS, Bullmore E (2006) Small-world brain networks. Neuro-

scientist 12(6):512–523

Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton

ST (2011) Dynamic reconfiguration of human brain networks

during learning. Proc Natl Acad Sci USA 108(18):7641–7646

Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA,

Capovilla G et al (2012) Increased cortical BOLD signal

anticipates generalized spike and wave discharges in adolescents

and adults with idiopathic generalized epilepsies. Epilepsia

53(4):622–630

Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N (2011) Graph-

theoretical analysis reveals disrupted small-world organization

of cortical thickness correlation networks in temporal lobe

epilepsy. Cereb Cortex 21(9):2147–2157

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional

connectivity in the motor cortex of resting human brain using

echo-planar MRI. Magn Reson Med 34(4):537–541

Blumenfeld H (2005) Cellular and network mechanisms of spike-

wave seizures. Epilepsia 46(Suppl 9):21–33

Blumenfeld H (2012) Impaired consciousness in epilepsy. Lancet

Neurol 11(9):814–826

Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of

the human brain connectome. Annu Rev Clin Psychol 7:113–140

Carney PW, Masterton RA, Harvey AS, Scheffer IE, Berkovic SF,

Jackson GD (2010) The core network in absence epilepsy.

Differences in cortical and thalamic BOLD response. Neurology

75(10):904–911

Carney PW, Masterton RA, Flanagan D, Berkovic SF, Jackson GD

(2012) The frontal lobe in absence epilepsy: EEG-fMRI findings.

Neurology 78(15):1157–1165

Chang C, Glover GH (2010) Time-frequency dynamics of resting-

state brain connectivity measured with fMRI. Neuroimage

50(1):81–98

Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med

349(13):1257–1266

Chaudhary UJ, Duncan JS, Lemieux L (2013) Mapping hemodynamic

correlates of seizures using fMRI: a review. Hum Brain

Mapp 34(2):447–466

Danielson NB, Guo JN, Blumenfeld H (2011) The default mode

network and altered consciousness in epilepsy. Behav Neurol

24(1):55–65

David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C

et al (2008) Identifying neural drivers with functional MRI: an

electrophysiological validation. PLoS Biol 6(12):2683–2697

de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D,

Marzetti L et al (2010) Temporal dynamics of spontaneous MEG

activity in brain networks. Proc Natl Acad Sci USA

107(13):6040–6045

Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A et al (2013)

Connectomics and epilepsy. Curr Opin Neurol 26(2):186–194

Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin

FM et al (2009) Functional brain networks develop from a ‘‘local

to distributed’’ organization. PLoS Comput Biol 5(5):e1000381

Fornito A, Zalesky A, Bullmore ET (2010) Network scaling effects in

graph analytic studies of human resting-state FMRI data. Front

Syst Neurosci 4:22

Fornito A, Harrison BJ, Zalesky A, Simons JS (2012) Competitive

and cooperative dynamics of large-scale brain functional

networks supporting recollection. Proc Natl Acad Sci USA

109(31):12788–12793

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,

Raichle ME (2005) The human brain is intrinsically organized

into dynamic, anticorrelated functional networks. Proc Natl Acad

Sci USA 102(27):9673–9678

Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal

and observed anticorrelated resting state brain networks. J Neu-

rophysiol 101(6):3270–3283

Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical

maps in functional neuroimaging using the false discovery rate.

Neuroimage 15(4):870–878

Gotman J (2008) Epileptic networks studied with EEG-fMRI.

Epilepsia 49(Suppl 3):42–51

Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau

F (2005) Generalized epileptic discharges show thalamocortical

activation and suspension of the default state of the brain. Proc

Natl Acad Sci USA 102(42):15236–15240

Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna

H et al (2007) Resting-state functional connectivity in major

depression: abnormally increased contributions from subgenual

cingulate cortex and thalamus. Biol Psychiatr 62(5):429–437

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen

VJ et al (2008) Mapping the structural core of human cerebral

cortex. PLoS Biol 6(7):e159

Hagmann P, Cammoun L, Gigandet X, Gerhard S, Ellen Grant P,

Wedeen V et al (2010) MR connectomics: principles and

challenges. J Neurosci Methods 194(1):34–45

Handwerker DA, Roopchansingh V, Gonzalez-Castillo J, Bandettini

PA (2012) Periodic changes in fMRI connectivity. Neuroimage

63(3):1712–1719

He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H et al (2009)

Uncovering intrinsic modular organization of spontaneous brain

activity in humans. PLoS ONE 4(4):e5226

Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS (2012)

Resting-state networks show dynamic functional connectivity in

awake humans and anesthetized macaques. Hum Brain Mapp.

doi:10.1002/hbm.22058

Kang J, Wang L, Yan C, Wang J, Liang X, He Y (2011)

Characterizing dynamic functional connectivity in the resting

brain using variable parameter regression and Kalman filtering

approaches. Neuroimage 56(3):1222–1234

Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M et al

(2011) Impaired attention and network connectivity in childhood

absence epilepsy. Neuroimage 56(4):2209–2217

Kiviniemi V, Vire T, Remes J, Elseoud AA, Starck T, Tervonen O

et al (2011) A sliding time-window ICA reveals spatial

variability of the default mode network in time. Brain Connect

1(4):339–347

Kramer MA, Cash SS (2012) Epilepsy as a disorder of cortical

network organization. Neuroscientist 18(4):360–372

Kramer MA, Eden UT, Kolaczyk ED, Zepeda R, Eskandar EN, Cash

SS (2010) Coalescence and fragmentation of cortical networks

during focal seizures. J Neurosci 30(30):10076–10085

Laufs H (2012) Functional imaging of seizures and epilepsy:
evolution from zones to networks. Curr Opin Neurol 25(2):

194–200

Lee HL, Zahneisen B, Hugger T, LeVan P, Henning J (2013)

Tracking dynamic resting-state networks at higher frequencies

using MR-encephalography. Neuroimage 65:216–222

2014 Brain Struct Funct (2014) 219:2001–2015

123

http://dx.doi.org/10.1093/cercor/bhs352
http://dx.doi.org/10.1002/hbm.22058


Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X et al (2010)

Altered functional connectivity and small-world in mesial

temporal lobe epilepsy. PLoS ONE 5(1):e8525

Luo C, Li Q, Lai Y, Xia Y, Qin Y, Liao W et al (2011) Altered

functional connectivity in default mode network in absence

epilepsy: a resting-state fMRI study. Hum Brain Mapp

32(3):438–449

Luo C, Li Q, Xia Y, Lei X, Xue K, Yao Z et al (2012) Resting state

basal ganglia network in idiopathic generalized epilepsy. Hum

Brain Mapp 33(6):1279–1294

Moeller F, Siebner HR, Wolff S, Muhle H, Boor R, Granert O et al

(2008a) Changes in activity of striato-thalamo-cortical network

precede generalized spike wave discharges. Neuroimage

39(4):1839–1849

Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O et al

(2008b) Simultaneous EEG-fMRI in drug-naive children with

newly diagnosed absence epilepsy. Epilepsia 49(9):1510–1519

Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M

et al (2010) Absence seizures: individual patterns revealed by

EEG-fMRI. Epilepsia 51(10):2000–2010

Moeller F, Maneshi M, Pittau F, Gholipour T, Bellec P, Dubeau F

et al (2011) Functional connectivity in patients with idiopathic

generalized epilepsy. Epilepsia 52(3):515–522

Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure

prediction: the long and winding road. Brain 130(Pt 2):314–333

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA

(2009) The impact of global signal regression on resting state

correlations: are anti-correlated networks introduced? Neuroim-

age 44(3):893–905

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA,

Shulman GL (2001) A default mode of brain function. Proc Natl

Acad Sci USA 98(2):676–682

Richardson MP (2012) Large scale brain models of epilepsy:

dynamics meets connectomics. J Neurol Neurosurg Psychiatry

83(12):1238–1248

Rubinov M, Sporns O (2010) Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52(3):1059–

1069

Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A et al (2012)

Trouble at rest: how correlation patterns and group differences

become distorted after global signal regression. Brain Connect

2(1):25–32

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D,

Bullmore E (2005) Neurophysiological architecture of functional

magnetic resonance images of human brain. Cereb Cortex

15(9):1332–1342

Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K

(2008) Evolving functional network properties and synchroniz-

ability during human epileptic seizures. Chaos 18(3):033119

Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL

(2010) The organization of local and distant functional connec-

tivity in the human brain. PLoS Comput Biol 6(6):e1000808

Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012)

Decoding subject-driven cognitive States with whole-brain

connectivity patterns. Cereb Cortex 22(1):158–165

Spencer SS (2002) Neural networks in human epilepsy: evidence of

and implications for treatment. Epilepsia 43(3):219–227

Sporns O (2011) The non-random brain: efficiency, economy, and

complex dynamics. Front Comput Neurosci 5:5

Stefan H, Lopes da Silva FH (2013) Epileptic neuronal networks:

methods of identification and clinical relevance. Front Neurol

4(8). doi:10.3389/fneur.2013.00008

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard

O, Delcroix N et al (2002) Automated anatomical labeling of

activations in SPM using a macroscopic anatomical parcellation

of the MNI MRI single-subject brain. Neuroimage 15(1):273–

289

Vaessen MJ, Jansen JF, Vlooswijk MC, Hofman PA, Majoie HJ,

Aldenkamp AP et al (2012) White matter network abnormalities

are associated with cognitive decline in chronic epilepsy. Cereb

Cortex 22(9):2139–2147

Vlooswijk MC, Jansen JF, de Krom MC, Majoie HM, Hofman PA,

Backes WH et al (2010) Functional MRI in chronic epilepsy:

associations with cognitive impairment. Lancet Neurol 9(10):

1018–1027

Vlooswijk MC, Vaessen MJ, Jansen JF, de Krom MC, Majoie HJ,

Hofman PA et al (2011) Loss of network efficiency associated

with cognitive decline in chronic epilepsy. Neurology 77(10):

938–944

Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q et al (2009)

Parcellation-dependent small-world brain functional networks: a

resting-state fMRI study. Hum Brain Mapp 30(5):1511–1523

Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E,

Windischberger C (2009) Correlations and anticorrelations in

resting-state functional connectivity MRI: a quantitative com-

parison of preprocessing strategies. Neuroimage 47(4):1408–

1416

Wu H, Li X, Guan X (2006) Networking property during epileptic

seizure with multi-channel EEG recordings. In: Wang J (ed)

Lecture Notes in Computer Science, vol. 3976, pp 573–578

Yang T, Luo C, Li Q, Guo Z, Liu L, Gong Q et al (2012) Altered

resting-state connectivity during interictal generalized spike-

wave discharges in drug-naive childhood absence epilepsy. Hum

Brain Mapp. doi:10.1002/hbm.22025

Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C

et al (2010) Whole-brain anatomical networks: does the choice

of nodes matter? Neuroimage 50(3):970–983

Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle

ME (2008) Intrinsic functional relations between human cerebral

cortex and thalamus. J Neurophysiol 100(4):1740–1748

Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q et al (2011)

Altered functional-structural coupling of large-scale brain net-

works in idiopathic generalized epilepsy. Brain 134(Pt

10):2912–2928

Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, Sporns O

et al (2012) Network centrality in the human functional

connectome. Cereb Cortex 22(8):1862–1875

Brain Struct Funct (2014) 219:2001–2015 2015

123

http://dx.doi.org/10.3389/fneur.2013.00008
http://dx.doi.org/10.1002/hbm.22025

	Dynamical intrinsic functional architecture of the brain during absence seizures
	Abstract
	Introduction
	Method
	Participants
	EEG-fMRI data acquisition
	EEG analysis
	fMRI data preprocessing
	GSWDs-related BOLD activity
	Analysis of dynamic FC map
	Dynamic functional connectome analysis
	Projection of volumes to cortical surface

	Results
	Brain activity during GSWDs
	Dynamic FC maps using the thalamus as seed
	Dynamic FC using PCC/PCUN as seed
	Reproducibility of dynamic FC findings
	Dynamic large-scale functional connectome
	FC during nondischarge periods

	Discussion
	Dynamic network changes of the thalamus and the DMN
	Dynamic topological organization of functional connectome
	Methodological considerations and limitations

	Conclusion
	Acknowledgments
	References


