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Abstract The concept of the ‘‘extended amygdala’’,

developed and explored by Lennart Heimer, Jose de

Olmos, George Alheid, and their collaborators, has had an

enormous impact on the field of neuroscience and on our

own work. Measuring fear-potentiated startle test using

conditioned stimuli that vary in length we suggest that the

central nucleus of the amygdala (CeA) and the lateral

division of the bed nucleus of the stria terminalis (BNSTL)

are involved in short-term versus long-term fear responses

we call phasic versus sustained fear, respectively. Outputs

from the basolateral amygdala (BLA) activate the medial

division of the CeA (CeAM) to very rapidly elicit phasic

fear responses via CeAM projections to the hypothalamus

and brainstem. The BLA also projects to the BNSTL, which

together with other BNSTL inputs from the lateral CeA

(CeAL) initiate a slower developing, but sustained fear

response, akin to anxiety. We hypothesize this occurs

because the CeAL releases the peptide corticotropin

releasing hormone (CRF) into the BNSTL which facilitates

the release of glutamate from BLA terminals. This acti-

vates the BNSTL which projects to hypothalamic and

brainstem areas similar to those innervated by the CeAM

that mediate the specific signs of fear and anxiety. The

generality of this idea is illustrated by selective studies

looking at context conditioning, social defeat, drug with-

drawal and stress induced reinstatement.

Keywords Amygdala � Bed nucleus of the stria

terminalis � Fear � Anxiety � Startle � Context

Introduction

Based on early observations by Johnston (1923), the

concept of the ‘‘extended amygdala’’ was developed and

explored in great detail by Lennart Heimer, Jose de

Olmos, George Alheid, and their many collaborators to

the great benefit of behavioral researchers such as our-

selves. Among their many significant findings, and of

particular relevance to our research, they showed that the

central (CeA) and medial (MeA) nuclei of the amygdala

and the bed nucleus of the stria terminalis (BNST)

were connected by columns of cells located throughout

the stria terminalis, the fiber tract that connects these

amygdala nuclei with the BNST, and also in a ventrally

located sublenticular part of the basal forebrain (Alheid

and Heimer, 1988; Alheid et al. 1998). They showed

also that the CeA projected primarily to the lateral

division of the BNST (BNSTL) and that the MeA pro-

jected primarily to the medial division of the BNST

(BNSTM). This was followed by a series of observations

that the CeA and BNSTL shared many common attributes

in terms of inputs, outputs, cell types, and neurochemical

makeup, especially with respect to the high levels of

several peptides found in both structures (Alheid et al.

1995). Based on the many similarities between these two

components of the extended amygdala, and also on the

known involvement of the CeA in conditioned fear (Kapp

et al. 1979), our laboratory began also to evaluate the

role of the BNSTL. This work was thoroughly reviewed

in Walker et al. (2003) and will only be summarized

briefly here.

D. L. Walker (&) � M. Davis

Yerkes National Primate Center and the Center for Behavioral

Neuroscience, Emory University, 954 Gatewood Drive,

Atlanta, GA 30329, USA

e-mail: dlwalke@emory.edu

123

Brain Struct Funct (2008) 213:29–42

DOI 10.1007/s00429-008-0183-3



CeA versus BNST involvement in fear responses:

initial findings

Similar to earlier work in which freezing was used as a fear

measure (Iwata et al. 1986; LeDoux et al. 1988), we found

that CeA but not BNSTL lesions also blocked fear-poten-

tiated startle, in this case to a 3.2 s light that had previously

been paired with footshock (Hitchcock and Davis 1986,

1991). We later found that startle also was increased after

several minutes of exposure to bright light, even without

prior pairings with shock (Walker and Davis 1997a). This

‘‘light-enhanced startle’’ effect could be reduced by anx-

iolytic compounds (de Jongh et al. 2002; Walker and Davis

2002; de Jongh et al. 2003) suggesting it represented an

unconditioned anxiogenic effect of bright light, consistent

with previous evidence that rats and mice will avoid

brightly lit areas if possible and will show signs of anxiety

if avoidance is not possible (DeFries et al. 1966; File and

Hyde 1978; Crawley 1981). In contrast to fear-potentiated

startle to short-duration conditioned fear stimuli (CSs), this

light-enhanced startle effect was not blocked by local

infusion of the AMPA receptor antagonist NBQX into the

CeA but was blocked by local infusions into the BNSTL.

We also found that the BNSTL, but not the CeA, was

involved in the startle increases produced by intraventricular

infusions of the anxiogenic peptide corticotropin releasing

factor (CRF). Thus, excitotoxic BNSTL lesions, or local

infusions of a CRF antagonist into the BNSTL, but not into

the CeA, completely blocked CRF enhanced startle (Davis

et al. 1997). In addition, CRF infusions directly into the

BNSTL (Lee and Davis 1997), but not into the CeA or any

other part of the amygdala (Liang et al. 1992), also facili-

tated startle amplitude. The observed parallels between

CRF- and light-enhanced startle suggested that CRF recep-

tors in the BNSTL might contribute to light-enhanced startle.

Using systemic administration of a proprietary non-peptide

CRF-1 receptor antagonist, we have now found that CRF-R1

blockade does indeed disrupt light-enhanced startle, but has

no effect on fear-potentiated startle at the doses tested

(Fig. 1, and also see de Jongh et al. 2003).

What is perhaps most valuable about these specific

paradigms (i.e., fear-potentiated and light-enhanced startle)

is that, procedurally, they are so very similar. Each uses

increased startle as a measure of fear, and light as the

stimulus that triggers that fear. Indeed, the visual stimulus

used in most of our fear-potentiated startle experiments is

physically identical to that used in the light-enhanced

startle procedure, differing only in its duration and condi-

tioning history. These similarities are useful in that they

greatly constrain the range of possible interpretations that

might account for the observed differences in terms of CeA

versus BNSTL involvement, and also to CRF receptor

blockade.

In our initial paper describing the differential involve-

ment of the CeA versus BNSTL in fear-potentiated and

light-enhanced startle, we suggested that there were two

possibilities that might account for the double dissociation

between the involvement of these two structures in these

two effects (Walker and Davis 1997a). One was that the

CeA plays a special role in mediating conditioned fear

responses, whereas the BNSTL plays a special role in

unconditioned responses. The other was that the CeA plays

a special role in mediating short-duration fear responses,

whereas the BNSTL plays a special role in longer-duration

responses. Based on recent data from our laboratory and

elsewhere, we now believe that the second hypothesis is

correct. We specifically suggest that the medial division of

the CeA (CeAM) and its projections to brainstem areas

which mediate many of the behaviors that are influenced by

fear, is critical for short-duration fear responses whereas

the lateral division of the CeA (CeAL) and it’s CRF-con-

taining projections to the BNSTL are critical for sustained

fear responses. We have also suggested that sustained fear

in this model may be more akin to anxiety, as that term is

commonly used, than is short-duration fear and as such

may be particularly relevant clinically. These are the data

we will concentrate on in this review.

Differential involvement of the CeA versus BNST

in short- versus long-duration startle increases

The most direct test of these two alternatives (conditioned

versus unconditioned or short- versus long-duration) would

be to evaluate the effect of a BNSTL manipulation on fear

responses elicited by a stimulus that is both conditioned

and also long in duration. If blockade of BNSTL function

disrupted the influence of such a stimulus, these results
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Fig. 1 A CRF1 receptor antagonist given systemically reduces light-

enhanced startle, but has no effect on fear-potentiated startle at the

doses tested
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would be consistent with the short- versus long-duration

hypothesis and inconsistent with the conditioned versus

unconditioned hypothesis. We have now developed pro-

cedures that combine these two variables and have, in fact,

found that the BNSTL is only involved in startle increases

produced by long-duration (i.e., minutes as opposed to

seconds) CSs.

In one such procedure, rats are placed into our standard

startle box and presented with silence for the first 8 min

followed by a continuous 8 min low-frequency-filtered

noise. During this auditory stimulus, seven 0.5 s, 0.4 mA

footshocks are presented using random interstimulus

intervals. This procedure is done twice within a session for

three total sessions spread across three consecutive days. In

more recent versions we have presented seven clicker

stimuli with durations ranging from 3 s to 8 min together

with co-terminating footshock, also on each of three con-

secutive days. With both versions, the rats learn that when

the CS comes on they are at risk for shock, but they do not

know exactly when that shock might occur. Prior to

training and also on the test day, startle amplitude is

measured for 8 min before presentation of the CS and for

8 min during presentation of the CS in a context distinc-

tively different from that used in training. For each animal,

a percent change score from the pre-conditioning to the

post-conditioning test is calculated. It should be empha-

sized that this is very different than our typical procedure in

which the CS onset to shock interval is constant (typically

3.2 s) during training, and the CS onset to startle interval

during testing is the same. Under those conditions, rats

quickly learn to predict when the shock will occur as

indicated by the fact that fear-potentiated startle is greatest

when the CS-startle interval used in testing matches the

CS-shock interval used in training (Davis et al. 1989).

Using this new procedure we typically see that there is

relatively little change in startle amplitude from the pre- to

the post-conditioning test during the pre-CS period (i.e.,

very little generalized context conditioning) but a large and

consistent increase from the pre- to post-conditioning test

when the CS is present. Using this design, we evaluated the

effect of pre-test intra-BNSTL and intra-CeA NBQX

infusions. As indicated in Fig. 2, intra-BNSTL infusions

decreased the late (i.e., sustained) component of the fear-

potentiated startle effect (min 5–8), but not the early

component (min 1–4), whereas intra-CeA NBQX infusions

had no effect using these parameters. These results are

consistent with the hypothesis that the BNSTL plays a

selective role in long-duration fear responses. That is, once

the auditory cue had been on for 4 min the BNSTL, but not

the CeA, became critical for this sustained fear response. In

fact, during the first 4 min, inactivation of the BNSTL

actually increased the magnitude of fear potentiated startle,

consistent with recent data showing that the BNSTL may

tonically inhibit fear-potentiated startle (Meloni et al.

2006). In fact, in the rat, the BNST sends a very strong

projection to the CeAM (Fig. 3), which in one way or the

other may tonically inhibit the expression of fear-potenti-

ated startle.

On the other hand, it was somewhat surprising that

inactivation of the CeA did not disrupt fear-potentiated

startle during the first 4 min of the auditory CS, given

previous findings that electrolytic (Hitchcock and Davis

1987) or chemical (Campeau and Davis 1995) CeA lesions

completely block fear-potentiated startle to 3.2 s auditory

CSs, and that intra-CeA NBQX infusions block fear-

potentiated startle to 3.2 s visual CSs (Walker and Davis

1997b). Further experiments are underway, using a larger

group of rats, to more precisely determine when short-

duration fear turns into sustained fear (as defined by sus-

ceptibility to these types of manipulations), using either

NBQX into the CeA or a CRF-1 receptor antagonist given

systemically (see below). We predict that fear-potentiated

startle at very early parts of the 8 min CS will be blocked

by inactivation of the CeA and spared by systemic

administration of a CRF antagonist.

It should be noted also that the two paradigms differ in

that the shock is very predictable in the phasic fear para-

digm, but much less so in the sustained fear paradigm.

Thus, it is possible that this aspect of the procedure alone

renders sustained fear CeA-independent. To a large degree,

fear duration and US predictability are inexorably inter-

twined. One is almost invariably a confound for the other.

That is, for a highly predictable US (e.g., one which always

occurs 3.2 s after CS onset), fear can be very brief, lasting

only for the moment in which shock is anticipated (and this
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Fig. 2 Intra-BNSTL infusions decreased the late (i.e., sustained)

component of the fear-potentiated startle effect (min 5–8), but not the

early component (min 1–n4), whereas intra-CeA NBQX infusions had

no effect using these parameters. These results are consistent with the

hypothesis that the BNSTL plays a selective role in long-duration fear

responses

Brain Struct Funct (2008) 213:29–42 31

123



appears to be exactly what well-trained rats do Davis et al.

1989). For a less predictable shock (e.g., one which may

occur at any time during an 8 min CS), fear must be

maintained for the duration of the CS. It is possible how-

ever to disentangle these variables. Very recently, we

found that animals trained with the paradigm that supports

good sustained fear (i.e., variable duration CSs up to 8 min

with coterminating footshock) also show high levels of

fear-potentiated startle to a 3.7 s CS (Walker, Miles and

Davis, in preparation). Because the conditioning procedure

is the same, so is US predictability (in this case, it is very

unpredictable). Thus, differences in the effect of any pre-

test manipulation would have to be attributed to differences

in response duration rather than predictability. Although

we have not yet done this with BNST inactivation, we very

recently found that a CRF1 receptor antagonist that com-

pletely blocks sustained fear, has no effect on short-

duration fear, irrespective of the conditioning procedure

(i.e., irrespective of predictability—Walker, Miles and

Davis, in preparation). Results from Waddell et al. (2006a),

in which BNST lesions disrupted conditioned suppression

to a 10 but not 1-min min clicker CS—both with very

predictable co-terminating footshocks (discussed in next

section)—would also appear more consistent with the

conclusion that response duration rather than predictability

is the key variable.

Figure 2 also shows data from animals with cannula

placements in the basolateral amygdala (BLA). These

data show that BLA inactivation disrupts fear-potentiated

startle throughout the 8 min CS, consistent with its

blockade of fear-potentiated startle both to a 3.2 s tone

(Campeau and Davis 1995) and sustained fear (Fig. 2) in

the light-enhanced startle paradigm (Walker and Davis

1997b). We believe that the BLA’s involvement in short-

duration fear is mediated by projections to the CeAM,

which in turn projects to the startle pathway, and that

Fig. 3 Biotinylated dextran

amine, an anterograde neuronal

tracer, infused into the BNST

(a) reveals projections to many

of the same hypothalamic and

brainstem areas involved in

specific signs of fear that are

also innervated by the CeAM,

(c–f), and also to the CeAM

itself (b), suggesting that

the BNST may modulate

CeAM-mediated fear
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it’s involvement in sustained fear is mediated by pro-

jections to the BNSTL, which also projects to the startle

pathway.

In summary, these data indicate that the BNSTL does

indeed play an important role in the expression of condi-

tioned fear responses, provided that those responses are

maintained for a relatively long time. Based on the finding

that an unconditioned visual stimulus begins to increase

startle approximately 60 s after light onset (Davis et al.

1989) and the fact that inactivation of the BNST does not

disrupt fear-potentiated startle to a 3.2 s visual CS (Walker

and Davis 1997a), we suspect the transition from CeAM to

BNSTL involvement may begin between 4 and 60 s after

CS onset, although it may be several minutes before the

response is fully dependent on the BNSTL.

Differential involvement of the CeA versus BNST

in short- versus long-duration fear responses:

corroborating evidence from other laboratories

and paradigms

Another stimulus that is both conditioned and long in

duration is context. Sullivan et al. (2004) have now

reported that post-training electrolytic BNSTL lesions dis-

rupt freezing as well as corticosterone responses to a

context CS but do not affect these same responses to a brief

auditory CS, whereas CeA lesions disrupt freezing to both.

On the basis of those findings, they suggested that the

BNSTL plays a special role in context-elicited fear. How-

ever, in light of our most recent findings, we wonder if a

more parsimonious interpretation may be that BNSTL

lesions disrupt context-elicited freezing simply because

context CSs are invariably long in duration, and so too are

the responses they evoke. Recent work by Waddell et al.

(2006b) are especially relevant in that regard. They found

that pre-training BNSTL lesions blocked conditioned sup-

pression to a 10 min but not to a 1 min clicker CS.

Interestingly, they also found that BNSTL lesions disrupted

the context-dependent reinstatement of conditioned sup-

pression (i.e., in previously extinguished animals) by

footshock. Overall, a differential involvement of the BNST

in long- versus short-duration fear responses has now been

demonstrated across three different response measures—

startle, freezing, and conditioned suppression. As such, the

pattern does not appear to be idiosyncratic to a particular

response measure.

What is the role of CRF receptors?

The same hypothesis that accounts for the differential

involvement of the CeA and BNSTL in fear-potentiated

versus light-enhanced startle might also account for the

differential involvement of CRF receptors (as shown pre-

viously in Fig. 1). That is, CRF receptors might contribute

to long- but not short-duration fear responses, irrespective

of whether the fear or anxiety response is conditioned

or unconditioned. In fact, prior studies have shown that

the non-specific CRF antagonist, a-helical CRF9–41, does

indeed disrupt sustained freezing responses to context CSs

(Kalin and Takahashi 1990; Deak et al. 1999). We recently

evaluated the same CRF-1 receptor antagonist used in

Fig. 1 on fear-potentiated startle to the 8 min auditory CS.

As shown in Fig. 4 (black bars), systemic administration of

the CRF-1 receptor antagonist dose-dependently blocked

fear-potentiated startle to the long-duration CS. In contrast

to the effect of intra-BNSTL AMPA receptor blockade,

however, the effect was apparent even during the first few

minutes (the data for the entire 8 min CS period are

combined in Fig. 3).

As previously noted, the same doses did not block fear-

potentiated startle to a 3.7 s visual CS. To ensure that that

dissociation was not indicative of a less interesting

modality-specific effect, in a different group of rats we

assessed the CRF-1 receptor antagonist’s ability to block

fear-potentiated startle to a 3.7 s auditory CS. This too was

unaffected (Fig. 4 gray bars). In fact, fear-potentiated

startle in the intermediate dose group was actually greater,

though not significantly so, than fear-potentiated startle in

the vehicle group. Given the involvement of CRF in BNST

functions, and evidence presented earlier that BNST inac-

tivation actually facilitates fear-potentiated startle to short-

duration threat cues (e.g., Meloni et al. 2006, and see also

Fig. 2), one wonders if this nominal increase reflects

random between-group variability or something more

M
ea

n 
P

er
ce

nt
 P

ot
en

tia
tio

n

*

*

Phasic (3.7-sec CS)

Sustained (8-min CS)

CRF-R1 Antagonist Dose (mg/kg, oral)
-40

0

40

80

120

160

0 10 30

Fig. 4 Systemic administration of a CRF1 receptor antagonist dose-

dependently blocked fear-potentiated startle to the long-duration

auditory CS but not a 3.7 s auditory CS

Brain Struct Funct (2008) 213:29–42 33

123



meaningful. In any case, the results clearly suggest that

CRF-1 receptors contribute to long- (minutes) but not

short- (seconds) duration fear responses in these para-

digms, even though the time course does not exactly mirror

that of AMPA receptor blockade in the BNSTL. However,

as mentioned above, we expect that if we used a large

number of rats and sampled startle every 10 s or so during

the 8 min CS, the CRF-1 receptor antagonist would not

block fear-potentiated startle during the earliest part of the

8 min CS but only after the CS had been on for some time.

Alternatively, it is possible that fear-potentiated startle

during the first few minutes of the 8 min CS is dependent

on CRF but not AMPA receptors in the BNSTL or that the

systemically administered CRF receptor antagonist acts

elsewhere to disrupt fear-potentiated startle during the first

few minutes of CS exposure. A possible site of action for

the early effect is the BLA, where CRF receptors are found

in even greater abundance than in the BNSTL (DeSouza

et al. 1985; Chen et al. 2000). Perhaps then, CRF receptors

in the BLA contribute to an intermediate phase of the fear

response (e.g., during the first several minutes of the long-

duration CS), whereas those in the BNSTL contribute to the

more delayed component of this response. These ideas are

currently being tested.

Circumstantial evidence for independent roles

of the CeAM versus CeAL

The CeA can be divided into several subnuclei which

include, most notably, the medial and lateral (CeAM and

CeAL) subdivisions, respectively. Although both areas

project to the BNSTL (Sun et al. 1991; Petrovich and

Swanson 1997; Bourgeais et al. 2001; Dong et al. 2001),

they are otherwise very different. First, the CeAM has

many projections to brainstem nuclei and other areas that

mediate behaviors influenced by fear (c.f., Davis 2000;

Davis and Whalen 2001), including areas that mediate

or modulate the acoustic startle response (Shammah-

Lagnado et al. 1987; Rosen et al. 1991; Fendt et al.

1994; Meloni and Davis 1999; Shi et al. 2002). In

contrast, CeAL projections to these areas are much more

limited (Schwaber et al. 1982; Veening et al. 1984; Gray

and Magnusson 1987, 1992). The CeAL projects instead

to the substantia innominata, to the CeAM, and quite

prominently to the BNSTL (Sun et al. 1991; Petrovich

and Swanson 1997; Bourgeais et al. 2001; Dong et al.

2001).

The CeAM and CeAL are also very different in terms

of their neurotransmitter content. Whereas CeAL neurons

stain for a variety of neuropeptide transmitters, these

same peptides are largely absent from CeAM neurons

(Wray and Hoffman 1983; Veening et al. 1984; Moga and

Gray 1985; Cassell et al. 1986; Gray and Magnusson

1987; Shimada et al. 1989; Otake et al. 1995; Day et al.

1999). One peptide found in great abundance in the CeAL

is CRF. In fact, CeAL neurons are a major source of

BNSTL CRF. This was demonstrated by Sakanaka et al.

(1986) who found that electrolytic CeA but not BLA

lesions dramatically reduced BNSTL CRF-immunoreac-

tivity—nearly depleting it entirely from dorsal BNSTL.

Many neurons within the BNSTL are themselves CRF-

positive (Cummings et al. 1983; Cintra et al. 1987; Gray

and Magnusson 1987; Shimada et al. 1989; Phelix and

Paul 1990; Gray and Magnuson 1992; Makino et al.

1994a, b; Watts and Sanchez-Watts 1995; Day et al.

1999; Veinante et al. 2003), and CRF-positive neurons in

both areas invariably express GABA (Veinante et al.

1997; Day et al. 1999). As high-frequency stimulation is

known to favor peptide release (e.g., Lundberg et al.

1986; Bartfai et al. 1988; Whim 1989; Bourque 1991; Ip

1994), the findings suggest that the influence of these

neurons (i.e., either inhibitory or excitatory) on down-

stream structures may vary as a function of the pattern of

afferent activity. More specifically, sustained high-fre-

quency activation may favor the release of CRF.

It is also of some interest that CRF-positive neurons in

the CeAL and dorsal BNSTL express glucocorticoid

receptors (Cintra et al. 1987; Honkaniemi et al. 1992;

Lechner and Valentino 1999). The regulation of these

neurons by stress hormones would be compatible with the

hypothesis that the CeAL and BNSTL participate in long-

duration responses to sustained threats that do not need to

be as temporally precise as those to more immediate or

predictable threats (e.g., fixed CS-US interval).

If CeAL neurons are involved in BNSTL-dependent

effects, then it is necessary to account for the failure of

intra-CeA NBQX infusions to disrupt light-enhanced startle

in Walker and Davis (1997b) or the late stage of fear-

potentiated startle to the 8 min CS in Fig. 2. One possibility

is that the CeAM neurons thought to mediate short-duration

fear responses via direct projections to the brainstem are

AMPA-responsive, whereas the CeAL neurons that may

mediate longer duration fear responses indirectly by way of

projections to the BNSTL are not. Perhaps those neurons are

driven instead by activation of other receptor types such

as glucocorticoid and/or calcitonin gene related peptide

(CGRP) receptors. Indeed, previous studies have shown

that chronic corticosterone administration upregulates

CRF mRNA in CeAL and BNSTL neurons (Swanson and

Simmons 1989; Makino et al. 1994a,b; Watts and Sanchez-

Watts 1995; Shepard et al. 2000; Liu et al. 2004), and

interacts synergistically with CRF to increase startle

amplitude (Lee et al. 1994). Calcitonin gene related peptide

(CGRP) is also an interesting candidate, especially given its

preferential distribution (Haring et al. 1991; Honkaniemi

34 Brain Struct Funct (2008) 213:29–42
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et al. 1992; Harrigan et al. 1994; Dobolyi et al. 2005) and

that of its receptors (Kruger et al. 1988) within the lateral

versus medial CeA. These receptors, when activated, pro-

duce various symptoms associated with fear and anxiety

such as heart rate and blood pressure increases (Nguyen

et al. 1986; Brown and Gray 1988), antinociception (Xu

et al. 2003), and freezing (Kocorowski and Helmstetter

2001). CGRP-positive terminals directly innervate stress-

responsive (Honkaniemi et al. 1992) CRF-containing neu-

rons within the CeAL (Harrigan et al. 1994). Perhaps then,

glutamate selectively activates CeAM neurons that mediate

short-duration fear responses whereas CGRP, corticoste-

rone and/or other peptide receptors selectively influence

CeAL neurons which mediate more sustained fear respon-

ses. Having shown that intra-CeA NBQX infusions

selectively influence the former, it will now be interesting to

evaluate the effect of some of these other ligands on short-

and long-duration startle increases.

Another difference is that the CeAM receives input from

almost all other nuclei within the amygdala whereas the rat

CeAL receives virtually no amygdala input at all (Jolkko-

nen and Pitkanen 1998). Instead, prominent inputs to the

CeAL include those from insular and entorhinal cortices

(Yasui et al. 1991; Sun et al. 1994; McDonald et al. 1997),

and also from the paraventricular nucleus of the thalamus

(PVT—Berendse and Groenewegen 1991; Turner and

Herkenham 1991; Moga et al. 1995; Li and Kirouac 2008;

Vertes and Hoover 2008)—areas that project very lightly to

CeAM.

Projections from the PVT are especially interesting

insofar as the PVT is one of the most stress-responsive

areas in the brain, based on the induction of c-fos with a

variety of stressors (Chastrette et al. 1991; Beck and

Fibiger 1995; Cullinan et al. 1995; Duncan et al. 1996;

Bhatnagar and Dallman 1998; Bhatnagar and Dallman

1999; Bubser and Deutch 1999). In fact, Bhatnagar and

Dalman (1998) have suggested that the PVT to amygdala

to paraventricular nucleus of the hypothalamus projection

is a key regulator of the hypothalamic-pituitary-adrenal

response to stress. Moreover, the PVT innervates regions in

the extended amygdala, including the CeAL that contain

corticotropin-releasing factor (CRF) neurons, many of

which receive apparent contacts from PVT fibers (Li and

Kirouac 2008). Interestingly, the PVT also appears to be

involved in circadian rhythms and the BNST shows peri-

odicity in clock gene expression that is highly similar to,

and dependent upon, the suprachiasmatic nucleus (Amir

et al. 2004).

Cortical inputs to CeAL are also interesting in that

they raise the intriguing possibility that these inputs

might mediate, at least in more cognitive species, the

autonomic accompaniments of something more aptly

described as ‘worry’. In fact, the insular cortex has now

been found in several fMRI studies to become active

when human subjects are told to anticipate shock (Phelps

et al. 2001), or learn to expect other aversive stimuli in

the course of conditioning procedures (Buchel et al.

1998; Ploghaus et al. 1999), as has the BNST (and see

also Kalin 2005 for threat-induced BNST activation in

nonhuman primates; Straube et al. 2007). The insular

cortex also projects heavily to BNSTL as well as to the

posterior part of the BLA (BLAP) (e.g., Yasui et al.

1991; McDonald et al. 1999), which itself projects to the

BNSTL.

Functional evidence for an involvement of a CRF-

containing CeAL?BNSTL projection in long-lasting

anxiety and stress effects

Jasnow et al. (2004) found that social defeat behavior in

Syrian Hamsters was reduced by pre-defeat unilateral

electrolytic CeA lesions and also by pre-test unilateral

intra-BNSTL D-Phe CRF12–41 infusions. The combined

manipulation, on opposite sides of the brain, produced an

even greater effect. On the basis of these results, they

concluded that ‘‘stress activates CRF-containing neurons in

the CeA, which then releases CRF within the BNST.’’

Similarly, Erb et al. (2001) showed that neither unilateral

intra-CeA TTX infusions nor unilateral intra-BNSTL

infusions of the CRF receptor antagonist D-Phe CRF12–41

disrupted the shock-induced reinstatement of extinguished

cocaine-seeking behavior, but that the combination of both

treatments, again on opposite sides of the brain, did,

leading them to conclude that a ‘‘CRF-containing pathway

from CeA to BNST is involved in mediating the effects of

CRF…on the reinstatement of cocaine seeking.’’

Although the results of both studies are consistent with

the conclusions that were drawn, they are not definitive

insofar as only a partial implementation of the crossed-

lesion design was used. That is, neither study compared the

effect of contralateral versus ipsilateral CRF antagonist

infusions (e.g., left CeA lesion + CRF antagonist into right

BNST versus CeA lesion + CRF antagonist into left

BNST). Assuming that a serial CeA-to-BNST circuit is

critical for the behavior in question, one would predict that

the effect of ipsilateral CeA + BNST treatments would be

less than that of contralateral CeA + BNST treatments,

and equal in magnitude to that obtained by unilaterally

manipulating either structure alone. Also, intra-CeA TTX

infusions in the Erb et al. (2001) study and electrolytic CeA

lesions in the Jasnow et al. (2004) study would have

interrupted communication between the BLA and BNSTL

because fibers from BLA project through the CeA on their

way to the BNSTL (Davis and Whalen 2001; Dong et al.

2001). Thus, the observed behavioral effects in these
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studies might have been attributable to an interruption of

this pathway instead. Thus, it will be important to deter-

mine if fiber-sparing inactivation of the CeA will reproduce

these intriguing findings.

Role of the CeA and BNST in drug withdrawal

There is now considerable evidence that some of the anx-

iogenic effects of drug withdrawal involve activation of the

both the CeA and BNST, and may involve CRF-containing

projections from the CeAL to the BNST. This seems to be

the case for the affective components of anxiety (e.g.,

avoidance of the place where drug withdrawal occurred)

but not the somatic symptoms (e.g., classic signs of drug

withdrawal such as wet dog shakes, teeth chattering, ptosis,

postural abnormalities).

In the CeAL, naloxone-precipitated morphine withdrawal

induced CRE-mediated transcription in approximately half

of the neurons that are immuno-positive for CRF (Shaw-

Lutchman et al. 2002), and significantly increases the

number of c-Fos-positive neurons in the CeA and BNST

(Gracy et al. 2001; Frenois et al. 2002; Jin et al. 2004; Fre-

nois et al. 2005). Although c-Fos was not found in CRF-

positive immunoreactive neurons in the amygdala (Hamlin

et al. 2004), the number of CRF-immunoreactive neurons

was significantly lower in withdrawn versus non-withdrawn

rats, leading Veinante et al. (2003) to suggest that opiate

withdrawal might actually have led to a massive activation

and subsequent depletion of CRF from those cells. In fact,

Olive et al. (2002) have shown that ethanol withdrawal does

produce a large (*100%) increase in extracellular CRF in

the BNST. As indicated above, naloxone-precipitated

morphine withdrawal increases c-fos in the CeA as well as

the BNST. Consistent with a serial circuit for withdrawal-

associated effects, c-fos activation in the BNST is disrupted

by excitotoxic CeA lesions, whereas c-fos activation in

the CeA is not disrupted by excitotoxic BNST lesions.

Moreover, lesions in either area disrupted the affective

component of withdrawal, namely conditioned place aver-

sions to the location in which withdrawal occurred

(Nakagawa et al. 2005).

Although intraventricular or intra-CeA a-helical

CRF9–41 infusions, as well as systemic injections of the

CRF-R1 antagonist CP-154,526 (Iredale et al. 2000; Lu

et al. 2000; McNally and Akil 2002) block many of the

somatic signs of morphine withdrawal (e.g., wet dog

shakes, teeth chattering, ptosis, postural abnormalities),

a-helical CRF9–41 infusions directly into the BNST do not

(McNally and Akil 2002). Also, the CRF antagonist D-Phe-

CRF12–41 infused into the CeA but not the BNST, has been

found to reduce ethanol consumption in alcohol-dependent

animals (Funk et al. 2006). Thus, CRF in the BNST does not

seem to be involved in the somatic components of opiate

withdrawal.

On the other hand, there is considerable evidence to show

that CRF (Heinrichs et al. 1995; Contarino and Papaleo

2005; Stinus et al. 2005) and the BNST, and more specifi-

cally norepinephrine acting on b-adrenergic receptors in the

BNST, are involved in the affective state associated with

drug withdrawal. The BNST has one of the highest con-

centrations of norepinephrine in the brain, and opiate

withdrawal activates BNST-projecting cells in the A1 and

A2 noradrenergic cell groups of the caudal medulla.

Lesions of the ventral noradrenergic bundle, which interrupt

the projection of these cell groups to the BNST, reduce

opiate-withdrawal-induced place aversion, as do injections

of b-adrenergic-receptor antagonists into the BNST itself,

even though these same manipulations have little effect on

the somatic symptoms of withdrawal (Aston-Jones et al.

1999; Delfs et al. 2000; and see also Cecchi et al. 2007).

Interestingly, noradrenergic bundle lesions did not

reduce conditioned place aversions when shock was used

as a US (Delfs et al. 2000), suggesting the effect was

specific either to drug withdrawal or to addicted animals.

On the other hand, lesions of the BNST did block condi-

tioned place aversions to somatic pain produced by intra-

peritoneal acetic acid injections or formalin injections in

the paw, but had no effect on acetic acid-induced noci-

ceptive writhing and actually increased formalin-induced

nociceptive behaviors (Deyama et al. 2007). Taken toge-

ther, these data suggest the BNST is primarly involved in

the aversive affective symptoms of drug withdrawal. In

fact, the reduction of the affective aspects of withdrawal

using manipulations of the BNST, in the face of little or no

effect on the somatic symptoms of withdrawal, may make

the decrease in affective symptoms even more impressive.

BLA?BNSTL projections

The preceding section focused on the possible involvement

of CeAL to BNSTL projections in sustained anxiety and

aversive states. It is important to note also that the BNSTL.

receives substantial inputs from the BLA—particularly

from caudal part of the BLA (BLAp) —(Weller and Smith

1982; McDonald 1991; Dong et al. 2001). This may

explain why NBQX infusions into the caudal rather than

rostral BLA (Fig. 5) blocked light-enhanced startle in

Walker and Davis (1997b). We have also found more

recently that infusions of an NBQX/muscimol cocktail into

the BLA completely block CRF-enhanced startle (Fig. 6).

Although excitotoxic BLA lesions only attenuated CRF-

enhanced startle in Lee and Davis (1997), the more caudal

elements of the BLA were spared in that study. Moreover,

electrolytic lesions of the CeA, through which BLA fibers
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pass on their way to the BNSTL (Davis and Whalen 2001;

Dong et al. 2001) also block CRF-enhanced startle (Liang

et al. 1992). Together, these results suggest that BLAP

inputs to the BNSTL may be involved in CRF- as well

as light-enhanced startle, and perhaps in sustained fear

responses more generally.

One model that could account for these results posits

that the activation of CRF receptors in the BNSTL poten-

tiates either the release of glutamate from BLA terminals

(i.e., pre-synaptic receptors), or the response of BNSTL

neurons (i.e., post-synaptic receptors) to glutamate released

these same BLAP or other neurons (Fig. 7). Findings

consistent with the first possibility have been presented

in abstract form by Forray et al. (2005). Using in vivo

microdialysis, they found that intra-BNSTL infusions of

high-K+ evoke a substantial rise in extracellular BNSTL

glutamate in rats that had undergone a chronic stress pro-

cedure, and that this response was completely prevented by

co-infusion of the CRF-1 receptor antagonist NBI 27914.

Taken as a whole, these findings are consistent with a

neural model in which (a) CeAL neurons release CRF into

the BNSTL, (b) CRF binds to presynaptic receptors on

BLAP terminals (c) CRF receptor activation increases the

release of glutamate from these terminals, and (d) gluta-

matergic input to BNSTL neurons drives sustained threat

responses (Fig. 8). We are currently testing this model

using lesions that are selective for the CeAL versus the

CeAM, microdialysis, and local drug infusions. More gen-

erally, we believe that the CeAL and the BNSTL, compared
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Fig. 7 Schematic model of how we believe the extended amygdala

produces sustained fear. CeAL neurons release CRF which binds to

receptors located on the terminals of glutamatergic BLAP neurons.

Activation of these CRF receptors increases glutamate release and,

therefore, excitatory drive onto BNSTL neurons. These BNSTL

neurons project to other areas, mostly in the brainstem, that mediate

behaviors influenced by fear
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Fig. 8 Schematic diagram of the role of different parts of the

extended amygdala in phasic versus sustained fear
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to the CeAM play a critical role in sustained responses to

long-duration threats akin to anxiety. In some cases these

effects are mediated by CRF and norepinephrine in either

the CeAL, the BNSTL or both.

Although we have limited this brief review to findings

that we believe to be most directly relevant to the neural

substrates of short- versus long-duration fear responses,

many other studies have found evidence for a differential

involvement of various components of the extended

amygdala in a variety of other effects. Most notably these

involve different patterns of morphological changes in the

extended amygdala in different types of stress which have

different effects on anxiety (Vyas et al. 2002, 2003), the

critical role of the BNST as a relay between the hippo-

campus’s inhibitory modulation of the paraventricular

nucleus of the hypothalamus (Cullinan et al. 1993) and the

importance that norepinephrine plays in this circuitry

(Forray and Gysling 2004), the role of the BNST in stress-

induced anorexia (Ciccocioppo et al. 2003; Ciccocioppo

et al. 2004) and the ‘‘learned helplessness’’ model

of depression (Maier et al. 1993; Hammack et al. 2004),

differential modulation in the amygdala versus BNST of

stress-induced anxiety by norepinephrine and galanin

(Morilak et al. 2003), differential effects of repeated

urocortin infusions into the amygdala versus BNST on

the development of anxiety and vulnerability to lactate-

induced ‘panic’ (Sajdyk et al. 1999; Sajdyk and Gehlert

2000; Rainnie et al. 2004; Lee et al. 2008) and the role of

the BNST versus the amygdala in predator odor induced

anxiety (Fendt et al. 2003). As a whole, these studies point

to the widespread influence of the concept of an ‘‘extended

amygdala’’ and, therefore, to the significance of Lennart

Heimers’ work—a body of research which has already

proven influential in many different areas of behavioral

neuroscience, including our own, and which we are certain

will have an enduring impact on the field as a whole. We

believe this would please Dr. Heimer very much.
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