
Abstract We have already demonstrated that a reconsti-
tuted basement membrane (Matrigel) is a key modulator
of morphogenetic changes and cytodifferentiation of
pleomorphic adenoma cells in culture. Myoepithelioma
is considered to be a neoplasm closely related to pleo-
morphic adenoma and should experience similar induc-
tion processes. Thus, the aim of this study was to investi-
gate whether Matrigel would influence myoepithelioma
cells. We used a cell line derived from a human salivary
gland plasmacytoid myoepithelioma (M1 cells) grown in
a three-dimensional preparation of Matrigel. Phenotype
differences were assessed using conventional light mi-
croscopy technique (haematoxylin and eosin) and phase
and differential interference contrast (Nomarski). Immu-
nofluorescence was carried out to detect smooth-muscle
actin, laminin and type-IV collagen. M1 cells exhibited
all proteins studied, showing a myoepithelial differentia-
tion. M1 cells grown inside Matrigel presented morpho-
logical changes and changes in smooth-muscle actin sta-
tus. By growing M1 cells inside Matrigel, it was possible
to reproduce the tumour architecture with no duct-like
structures. Based on our findings, we suggest that myo-
epithelioma would be derived from a cell with a commit-
ment to myoepithelial differentiation. We also suggest
that the mechanical properties of the matrix environment
will likely regulate smooth-muscle actin expression in
myoepithelioma.
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Introduction

Myoepithelioma is defined as a rare tumour of myo-
epithelial cell differentiation [9, 25]. Histopathological
growth patterns may be solid, myxoid and reticular [7, 8,
9]. Two main cytological subtypes have been described
for this tumour: spindle-shaped and plasmacytoid [23,
24, 25]. Myoepithelioma differs from pleomorphic ade-
noma in that it has little or no ductal component [24].
For some authors, myoepithelioma is part of the spec-
trum of pleomorphic adenoma [4, 9, 26].

It has been suggested that the extracellular matrix
plays an important role as a regulatory factor of pheno-
typic differences among salivary gland neoplasms [13,
14, 16]. We have already demonstrated that a three-
dimensional preparation of a reconstituted basement
membrane (Matrigel), a supramolecular array of extra-
cellular matrix proteins, is a key modulator of morpho-
genetic changes and cytodifferentiation of pleomorphic
adenoma cells in culture [14]. Myoepithelioma is consid-
ered to be a neoplasm closely related to pleomorphic 
adenoma [4, 23, 24, 26] and should experience similar
induction processes. Therefore, it would be interesting to
study whether basement membrane molecules could in-
fluence myoepithelioma cells.

We have previously established a neoplastic myoepi-
thelial cell line (M1 cells) derived from human salivary
gland plasmacytoid myoepithelioma [16, 20]. M1 cells
were grown in contact with Matrigel in a three-dimen-
sional preparation. Phenotype differences were assessed
using conventional light microscopy technique [haema-
toxylin and eosin (HE)], phase and differential interfer-
ence contrast (Nomarski) and fluorescence microscopy.

Materials and methods

Cell culture

M1 cells were derived from a human plasmacytoid myoepithelio-
ma [16, 20]. These cells were cultured in high-glucose Dulbecco’s
Modified Eagle’s Medium (DMEM, Sigma Chemical Co., St.
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Louis, Mo.) supplemented with 10% fetal bovine serum (Cultilab,
Campinas, SP, Brazil) and 1% antibiotic–antimycotic solution
(Sigma). The cells were maintained in 25-cm2 flasks in a humidi-
fied atmosphere of 5% CO2 at 37°C. To study phenotype differen-
tiation, M1 cells were plated on no. 1 round glass coverslips (Ted
Pella Inc., Redding, Calif.). Morphology of M1 cells was analysed
using phase contrast.

Immunofluorescence

Detection of smooth-muscle actin was carried out to confirm the
myogenous differentiation of M1 cells. Labelling of smooth-
muscle actin was performed as described previously [16]. For lam-
inin and type-IV collagen immunostaining, M1 cells grown on
coverslips were fixed in 1% paraformaldehyde in phosphate-
buffered saline (PBS) for 10 min and rinsed in PBS. Cells were
then subjected to an immunofluorescence protocol [15] using
mouse monoclonal antibodies against laminin (Biogenex Labora-
tory, San Ramon, Calif.), diluted 1:50 in PBS and type-IV colla-
gen (Biogenex), diluted 1:20 in PBS. An anti-mouse fluorescein
(FITC) conjugate (Amersham Co., Arlington Heights, Ill.) was
used as a secondary antibody. All incubations were done for
60 min at room temperature. The mounting medium was Pro Long
(Molecular Probes, Eugene, Ore.). Replacement of the primary 
antibody with PBS was used as a negative control.

Immunofluorescence labelling of M1 cells was carried out at
least five times, and a minimum of 100 cells was examined each
time. The observations and photographic recording were carried
out under a Zeiss Axiophot 2 fluorescence microscope (Carl Zeiss
Inc, Oberköchen, Germany), using the objectives 40× Plan Neo-
fluar, 1.4 NA and 63× Plan Apochromatic, 1.4 NA.

Three-dimensional preparation of Matrigel

M1 cells were plated on no. 1 round glass coverslips coated with a
reconstituted basement membrane (Matrigel, kindly provided by
Dr. Matthew Hoffman NIDCR, NIH, Bethesda, Md.). The coating

procedure was as follows [14]: we prepared a thick gel for grow-
ing cells within a three-dimensional matrix, simulating an intact
basement membrane. Matrigel was thawed, homogenised and di-
luted in cold serum-free DMEM to reach a final concentration of
6 mg/ml (stock solution 13 mg/ml). M1 cells were then harvested
from the culture flasks and resuspended inside Matrigel prepara-
tion. After that, this Matrigel containing M1 cells was placed
(100 µl/cm2) on cold coverslips. Cells were then incubated at 37°C
in a humidified atmosphere of 5% CO2 in air. M1 cells were
grown on this three-dimensional preparation of Matrigel for
1 week. Two controls were used: (1) M1 cells plated on plain glass
coverslips and (2) M1 cells plated on coverslips with a thin coat-
ing of Matrigel (3 mg/ml; 50 µl/cm2).

Light microscopy

Coverslips with M1 cells growing within Matrigel were fixed in
10% formalin for 24 h. Then, Matrigel was carefully removed
from the coverslips, paraffin-embedded, and stained with HE.
Cells growing inside Matrigel were also studied using phase con-
trast, Nomarski and fluorescence microscopy. For fluorescence
microscopy, we used samples immunostained with smooth-muscle
actin, in order to access overall morphology of M1 cells inside
Matrigel. For comparative analysis between in vitro and in vivo
situations, we obtained new HE-stained sections from the tumour
that originated the M1-cell line [16, 20].

Results

Phase contrast microscopy showed that M1 cells, when
grown on a glass surface, presented a polyedrical mor-
phology with abundant cytoplasm and visible stress 
fibres (Fig. 1).
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Fig. 1 Phase-contrast micros-
copy of M1 cells (derived from
a human salivary gland plasma-
cytoid myoepithelioma) grown
on a glass surface. A flat mono-
layer of polyedrical cells is ob-
served. The nuclei are round,
with two or three nucleoli. The
cytoplasms are abundant, with
stress fibres. Magnification
400×



Immunofluorescence

Smooth-muscle actin appeared as parallel bundles of 
filaments dispersed throughout the cytoplasm (Fig. 2a).
Laminin (Fig. 2b) and type-IV collagen (Fig. 2c) exhibi-
ted a patchy pattern of distribution throughout the cell
surface. Laminin label was more abundant than that of
type-IV collagen.

Light microscopy

The M1-cell line, when cultured on a glass surface,
formed a flat-cell monolayer composed of juxtaposed

cells (Fig. 1). Individually, these cells exhibited a poly-
edrical shape and abundant cytoplasm. The M1-cell line,
when cultured within Matrigel, assumed a new overall
morphology, represented by cellular cords in a branching
configuration (Fig. 3a–d). No duct-like structures were
observed. Individually, M1 cells grown inside Matrigel
were mostly spindle-shaped, with a hypercromatic nuc-
leus with a barely discernible nucleolus (Fig. 3e). The
plasmacytoid-like phenotype of M1 cells was occasion-
ally observed in this Matrigel preparation (Fig. 3f).

The histopathology of the original tumour was similar
to that observed in the three-dimensional preparation 
of M1 cells in Matrigel. Islands and cords of non-cohe-
sive cells lying in either hyaline or myxoid matrixes
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Fig. 2 Characterisation, by
means of immunofluorescence,
of the M1-cell line (a cell line
derived from a human salivary
gland plasmacytoid myoepithe-
lioma). These cells express
smooth-muscle actin (a), most-
ly as stress fibres. Laminin (b)
and type-IV collagen (c) are
also observed, forming multi-
ple dots throughout the cell sur-
face. Laminin label is distribut-
ed on the entire surface of M1
cells, making their nuclei (b, *)
hardly visible. Type-IV colla-
gen expression appears to be
weaker when compared with
laminin immunostaining. Mag-
nifications 400×



(Fig. 4a, b) represented neoplasm architecture. Cells
showed glassy and hyaline cytoplasm, and most of them
were plasmacytoid in shape. However, the majority of
cells facing the extracellular matrix presented an elon-
gated morphology (Fig. 4a, arrows).

M1 cells grown within Matrigel revealed a stellate
phenotype with long and thin cytoplasmic processes
branching out from the cell body (Fig. 5a–c). These
elongated multipolar processes established cell–cell 
contacts (Fig. 5a). The smooth-muscle actin network
showed some degree of rearrangement when M1 cells
were cultured inside Matrigel. Cells plated on both plain
glass coverslips (Fig. 2a) and coverslips with a thin 
coating of Matrigel (data not shown) presented smooth-
muscle actin mostly distributed as bundles of filaments

(stress fibres). However, when grown inside Matrigel,
M1 cells exhibited mostly globular actin (Fig. 5a). By
comparison, the amount of actin in M1 cells grown in-
side Matrigel (Fig. 5a) was apparently smaller than that
of cells grown on plain coverslips (Fig. 2a).

Discussion

A cell line (M1) derived from human plasmacytoid myo-
epithelioma expressed markers for myoepithelial differ-
entiation, such as smooth-muscle actin, laminin and
type-IV collagen. The M1-cell line was cultured inside
Matrigel. The culture grew in a branching pattern with-
out formation of duct-like structures. There were confor-
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Fig. 3 Morphology of M1 cells
(derived from a human salivary
gland plasmacytoid myoepithe-
lioma) when grown inside a
three-dimensional preparation
of Matrigel. Phase contrast
shows M1 cells in a branching
configuration (a). This configu-
ration is clearly depicted when
the image shown in (a) is pro-
cessed using the Adobe Photo-
shop “trace contour” filter (b).
c, d Haematoxylin and eosin
preparations of M1 cells grown
inside Matrigel (M). M1 cells
are mostly elongated, forming
anastomosing cords. Close-up
view shows cells with hyper-
cromatic nucleus with barely
discernible nucleoli (e). Plas-
macytoid-like phenotype was
occasionally observed in this
Matrigel preparation (f). Mag-
nifications a, b 200×; c, d 400×
and e, f 800×



mational and molecular changes in these cells, represent-
ed by a stellate phenotype and a depolymerisation of
smooth-muscle actin, respectively.

We previously described that M1 cells, in addition to
smooth-muscle actin, laminin and type-IV collagen, also
express vimentin and pan-keratin [16]. Our findings are
in agreement with Dundas et al. [10]. These authors
demonstrated that clones of cultured myoepithelial cells
derived from rat normal mammary gland express vari-
able amounts of cytokeratin 8 and 14, smooth-muscle 
actin, laminin, type-IV collagen and vimentin.

Morphogenetic studies of normal and neoplastic sali-
vary glands have been carried out through culturing cells
in a three-dimensional matrix environment [3, 6, 11, 13,

14, 17, 31, 32, 33]. Most of the studies on neoplastic 
salivary glands have cultured cells from pleomorphic ad-
enoma [13, 14, 31]. We have used a unique cell line
(M1) derived from a rare human salivary gland plasma-
cytoid myoepithelioma [16, 20]. Moreover, we believe
that culturing M1 cells inside Matrigel will provide im-
portant information on myoepithelioma biology. This re-
constituted basement membrane has been used in many
laboratories as a means of preserving, enhancing or in-
ducing phenotypes of a variety of epithelial cells [17, 18,
19, 22, 30]. Matrigel has in its composition important
morphoregulatory molecules, such as laminin and 
type-IV collagen, playing important roles either in cell
proliferation or in cell differentiation [19, 30].

575

Fig. 4 Morphology (haema-
toxylin and eosin) of the tu-
mour that originated the M1-
cell line (a cell line derived
from a human salivary gland
plasmacytoid myoepithelioma).
The overall picture is similar to
the M1-cell line grown inside
Matrigel. Islands (a) and cords
(b) of non-cohesive cells lying
in either hyaline or myxoid ma-
trix is observed. Most cells are
plasmacytoid, with a glassy 
and hyaline cytoplasm. Howev-
er, the majority of cells facing 
the extracellular matrix present
an elongated morphology 
(a, arrows). Magnifications
400×



The arrangement of M1 cells inside Matrigel mim-
icked the original tumour in both architectural growth
pattern and cytologic subtypes. Islands and cords of non-
cohesive cells lying in either hyaline or myxoid matrix
represented the tumour. Myoepithelioma cells showed
glassy and hyaline cytoplasm, and most of them were
plasmacytoid in shape. However, the majority of cells
facing the extracellular matrix presented elongated 
morphology, as previously described by Bhaskar and
Weinmann [5]. Likewise, M1 cells grown inside Matri-
gel formed island and cords intermingled in the extracel-
lular matrix. Elongated cells were predominant, growing
in direct contact with the extracellular matrix. Plasmacy-
toid cells, although in smaller amounts, were also pres-

ent. Duct-like structures were absent in both in vivo and
in vitro conditions.

The reproduction of the tumour architecture in our in
vitro assay could be due to either the physical or bio-
chemical properties of Matrigel. We have previously
shown that spatial arrangement of this reconstituted
basement membrane is a key modulator of morphogenet-
ic changes and cytodifferentiation of a pleomorphic ade-
noma cell line [14]. We showed that M1 cells secrete 
extracellular matrix molecules, such as laminin and 
type-IV collagen. Matrigel is basically an enriched prep-
aration of laminin and type-IV collagen [19]. Thus, these
molecules may act as autocrine factors, determining the
morphogenetic changes of M1 cells.
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Fig. 5 Cytoplasmic distribu-
tion of smooth muscle actin in
M1 cells (derived from a hu-
man salivary gland plasmacy-
toid myoepithelioma) grown
within Matrigel. Fluorescence
microscopy (a, b) and differ-
ential interference contrast
(Nomarski, c) show cells with
stellate phenotype with long
and thin cytoplasmic processes
branching out from the cell
body (a–c). Cell–cell contacts
are noteworthy (a, arrows).
Smooth-muscle actin network
shows some degree of rear-
rangement when M1 cells were
cultured inside Matrigel. These
cells exhibit mostly globular
actin (a, b) and few stress 
fibres (b, arrow). Magnifica-
tions a 400× and b, c 630×



Differently from the cell line derived from pleomor-
phic adenoma (AP2 cells) [14], M1 cells exhibited no
epithelial differentiation inside Matrigel. M1 cells pre-
sented a myoepithelial phenotype with no formation of
duct-like structures. Indeed, the myoepithelioma general-
ly lacks duct formation in vivo [7, 8, 9]. Jaeger et al. [14]
suggested that pleomorphic adenoma would be derived
from a “reserve” cell still capable of differentiation into
either direction, epithelial or myoepithelial, depending
on the extracellular induction. Based on these findings,
we suggest that the myoepithelial cell is the “reserve”
cell of the salivary gland myoepithelioma. This should
be further emphasised, because it provides evidence that
myoepithelioma cells are truly committed to myoepithe-
lial differentiation rather than representing an end of a
spectrum of differentiation between ductal and myoepi-
thelial phenotype.

The smooth-muscle actin network showed some de-
gree of rearrangement when M1 cells were cultured in-
side Matrigel. Cells plated on both plain substrates and
on a thin coating of Matrigel presented smooth-muscle
actin mostly distributed as bundles of filaments (stress
fibres). However, when grown inside Matrigel, M1 cells
exhibited mostly globular actin (G-actin). Stress fibres
form in response to tension generated across a cell [1].
Cells in culture exhibit different levels of intracellular
tension, as shown by the variation in the abundance and
distribution of actin stress fibres in different systems [2].
Thus, cells in monolayer cultures on a plastic substrate
developed high levels of intracellular tension, whereas in
anchored gels, they developed a moderate tension [2].
This could explain the changes in actin status in M1
cells, ranging from stress fibres in cells grown on plain
coverslips and on thin coating of Matrigel to mostly 
G-actin in cells grown inside an anchored Matrigel.
Moreover, our results suggest that the amount of actin in
cells grown inside the Matrigel was smaller than that of
cells grown on plain coverslips. It is in accordance with
findings of Arora et al. [2], who showed that smooth-
muscle actin transcription is regulated in part by intracel-
lular tension.

In addition to its mechanical properties, Matrigel has
chemical factors that may have an impact on actin ex-
pression in M1 cells. It has been suggested that a mecha-
nism by which a putative specialised extracellular matrix
molecule, under the control of transforming growth fac-
tor (TGF)-β, is required for outside–inside signalling and
possibly for the development of the intracellular tension
necessary for smooth-muscle actin induction [2]. It is
known that Matrigel has in its composition TGF-β [30].
Hence, the changes in smooth-muscle actin expression
could also be due to this chemical factor.

An increase in smooth-muscle actin leads to retarda-
tion of motility. Any reduction in the pool of filamentous
actin would increase the rate of motility [21]. Therefore,
in cells grown inside Matrigel, the reduction of stress fi-
bres could facilitate the movement of proliferated cells,
resulting in the formation of cellular cords in a branching
configuration, a finding similar to that reported by 

Azuma and Sato [3]. The cells grown inside Matrigel
would be in a more labile situation capable of remodel-
ing the extracellular matrix by proteolytic enzymes and
their inhibitors [27].

In conclusion, we presented the effects of a three-
dimensional preparation of Matrigel on cells derived
from a human salivary gland plasmacytoid myoepithelio-
ma. The cells grown inside Matrigel presented morpho-
logical changes and changes in the smooth-muscle 
actin status. It was possible to reproduce the tumour 
architecture with no duct-like formation. Additionally,
we showed positivity to smooth-muscle actin. We previ-
ously suggested that smooth-muscle actin expression in
M1 cells would be regulated by the extracellular matrix
[16]. The present investigation is a step further, showing
that the plasticity of Matrigel directly influences smooth-
muscle actin cytoplasmic organisation. This finding may
explain the well-known variations in smooth-muscle 
actin expression in human salivary gland myoepithelio-
mas [12, 26, 28, 29].
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