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Abstract
This review addresses changes and updates in eosinophilic disorders under the International Consensus Classifica-
tion (ICC). The previous category of myeloid/lymphoid neoplasm with eosinophilia (M/LN-eo) and a specific gene 
rearrangement is changed to M/LN-eo with tyrosine kinase gene fusions to reflect the underlying genetic lesions. Two 
new members, M/LN-eo with ETV6::ABL1 fusion and M/LN-eo with various FLT3 fusions, have been added to the 
category; and M/LN-eo with PCM1::JAK2 and its genetic variants ETV6::JAK2 and BCR::JAK2 are recognized as a 
formal entity from their former provisional status. The updated understanding of the clinical and molecular genetic 
features of PDGFRA, PDGFRB and FGFR1 neoplasms is summarized. Clear guidance as to how to distinguish these 
fusion gene–associated disorders from the overlapping entities of Ph-like B-acute lymphoblastic leukemia (ALL), de 
novo T-ALL, and systemic mastocytosis is provided. Bone marrow morphology now constitutes one of the diagnostic 
criteria of chronic eosinophilic leukemia, NOS (CEL, NOS), and idiopathic hypereosinophilia/hypereosinophilic syn-
drome (HE/HES), facilitating the separation of a true myeloid neoplasm with characteristic eosinophilic proliferation 
from those of unknown etiology and not attributable to a myeloid neoplasm.

Keywords  Myeloid/lymphoid neoplasm with eosinophilia · Tyrosine kinase gene fusion · ETV6::ABL1; FLT3 
rearrangement · Chronic eosinophilic leukemia · NOS · Idiopathic hypereosinophilic syndrome

Introduction

In adults, peripheral blood (PB) eosinophilia is 
defined by ≥ 0.5 × 109/L eosinophils and hypereosino-
philia (HE) by ≥ 1.5 × 109/L. Tissue eosinophilia is 
defined by increased eosinophils or signs of eosinophil 

degranulation beyond the normal range for the particu-
lar sites [1]. A definition of BM eosinophilia has been 
proposed to require ≥ 20% eosinophils, with or without 
PB eosinophilia. Hypereosinophilic syndrome (HES) is 
defined as peripheral blood (PB) hypereosinophilia in 
association with tissue/organ damage [1]. The causes 
of eosinophilia are broad and can be reactive (major-
ity), neoplastic, or idiopathic [2, 3]. In eosinophilia 
associated with a hematopoietic neoplasm, eosino-
phils often bear the same molecular genetic aberrations 
as their progenitors and/or other myeloid components 
[4]. These hematopoietic neoplasms can be further cat-
egorized into three large groups: (1) myeloid/lymphoid 
neoplasms with eosinophilia (M/LN-eo) and recurrent 
genetic rearrangements such as PDGFRA, PDGFRB, 
FGFR1, or PCM1::JAK2 [5]; (2) eosinophilia associ-
ated with another well-defined myeloid neoplasm, such 
as chronic myeloid leukemia (CML) or acute myeloid 
leukemia (AML) with inversion of chromosome 16; and 
(3) chronic eosinophilic leukemia (CEL), not otherwise 
specified (NOS) [5]. This current review highlights the 
updates in the International Consensus Classification 
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(ICC) [6] on eosinophilic disorders, mainly in the cat-
egory of M/LN-eo and recurrent genetic rearrangements 
and the further refinement of the definitions for CEL, 
NOS, and idiopathic HE/HES.

Myeloid/lymphoid neoplasms 
with eosinophilia and tyrosine kinase gene 
fusions

M/LN-eo and rearrangements of PDGFRA, PDGFRB, 
and FGFR1 were recognized as a standalone category in 
the 2008 WHO classification of myeloid neoplasms [7]. 
M/LN-eo with PCM1::JAK2 fusion was added to this 
family as a provisional entity in the 2016 WHO classifi-
cation. The common features shared among the members 
in this category include: (1) constitutive tyrosine kinase 
(TK) signaling as a result of a gene fusion; (2) origin 
from mutated pluripotent bone marrow (BM) stem cells 
that can differentiate into myeloid and/or lymphoid prog-
enies, leading to clinically complex and heterogeneous 
manifestations; (3) frequent association with PB and/or 
tissue eosinophilia; and (4) excellent responses of some 
entities to specific TK inhibitors (TKI).

The category name is changed to M/LN-eo with TK-
gene fusions (M/LN-eo-TK) in the ICC [6] and applies to 
instances bearing the respective genetic aberration at the 
initial presentation and not to other well-defined hemat-
opoietic neoplasms that have acquired such abnormalities 
later in the course of disease. The name change empha-
sizes the molecular genetic changes underlying these 
hematopoietic neoplasms that lead to constitutive TK 
signaling amenable to targeted therapy [3, 8]. Additional 
important changes made in this disease category are the 
inclusion of M/LN with t(9;12)(q34;p13)/ETV6::ABL1 
and FLT3-rearrangements as new members and promot-
ing PCM1::JAK2 and its genetic variants ETV6::JAK2 
and BCR::JAK2 as formal entities from their provisional 
state in the 2016 WHO classification. The update also 
provides clear guidance on how to distinguish M/LN-eo 
presenting as B- or T-acute lymphoblastic leukemia 
(ALL) from Philadelphia (Ph)-like B-ALL or de novo 
T-ALL, and M/LN-eo with mast cell proliferation from 
systemic mastocytosis.

Myeloid/lymphoid neoplasms 
with ETV6::ABL1/t(9;12)(q34.1;p13.2) fusion

ETV6::ABL1 fusions have been reported in various 
hematologic malignancies, including B- or T-ALL, AML, 
and chronic myeloid neoplasms (CMN) such as myelo-
proliferative neoplasm (MPN) and myelodysplastic/

myeloproliferative neoplasm (MDS/MPN) [9–13]. In the 
44 cases summarized by Zaliova and colleagues [12], half 
(22/44, 50%) were ALL (20 B-ALL and 2 T-ALL) and 
more than half occurred in infants or pediatric patients. 
Interestingly, although these ALL cases presented with 
high white blood cell counts (WBCs), eosinophilia was 
only reported in 3/13 patients. Of note, ETV6::ABL1 
fusion was reported to occur in 0.17% of pediatric B-ALL 
[14], and 0.38% of adult B-ALL, and comprised approxi-
mately 1–2% Ph-like B-ALL [12]. The two aforemen-
tioned T-ALL cases also occurred in pediatric patients 
as de novo disease. These cases should be categorized as 
Ph-like B-ALL and de novo T-ALL with ETV6::ABL1 if 
there is not a prior, concurrent or post-treatment myeloid 
neoplasm, and not as M/LN-eo.

Cases that should be considered for categorization as 
M/LN-eo most often present as CMN and rarely as AML 
with ETV6::ABL1. CMN with ETV6::ABL1 shows clin-
icopathological features reminiscent of chronic myeloid 
leukemia (CML) with eosinophilia; however, some cases 
may resemble atypical CML (aCML) or essential thrombo-
cythemia [9]. Patients often present with an elevated WBC, 
eosinophilia (> 90% cases), and many also with increased 
basophils (> 1%, up to 10%). Eosinophilia may not be 
prominent at initial diagnosis but eventually emerges at 
relapse or disease progression. Common findings in the 
BM include hypercellularity, a markedly increased M:E 
ratio and increased eosinophils. Megakaryocyte morphol-
ogy is highly variable and ranges from normal forms to 
small, large, or a mixture of small and large forms. Dys-
granulopoiesis and dyserythropoiesis are uncommon, 
while increased fibrosis is quite common. Most patients 
present in chronic phase, and, to a much lesser extent, in 
myeloblastic or lymphoblastic phase. A few cases of AML 
or myeloid sarcoma (Fig. 1) with this fusion are reported, 
all associated with eosinophilia. However, it is unclear if 
these cases arose de novo or as a myeloblastic phase of 
myeloproliferative neoplasm (MPN).

ETV6::ABL1 fusion results from a complex rear-
rangement involving a translocation and inversion or an 
insertion of ETV6 in 9q34 or ABL1 in 12p13. The fusion 
is often cryptic; thus, fluorescence in  situ hybridiza-
tion (FISH) analysis using ETV6 and ABL1 break-apart 
probes and/or RNA-sequencing (RNA seq) technology 
are needed for detection. The alternative splicing gen-
erates two fusion transcripts—type A (without ETV6 
exon 5) and type B (with exon 5); the latter of which is 
significantly more common. Although both transcripts 
result in constitutive chimeric TK functionality, type B 
has higher kinase activity due to a direct SH2 domain of 
the GRB2 binding site on ETV6 exon 5, enhancing the 
PI3-kinase and MAP-kinase pathways [15]. ABL1 has also 
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been reported to fuse with alternate partners [16]; how-
ever, most of these cases present as Ph–like B-ALL [17] 
or de novo T-ALL [18]. Therefore, for the time being, 
only ETV6::ABL1 M/LN-eo is included in this category. 
With the increased use of RNA seq in clinical samples, 
ABL1 fusions with other partner genes (including cryp-
tic lesions) with clinical features of M/LN-eo may be 
discovered.

Somatic mutations detected by next generation sequenc-
ing (NGS) are reported in approximately 50% of cases [9, 11, 
19], including ARID2, TP53, SETD2, CDKN1B, PTPN11, 
and SMC1A genes. Due to the rarity of this disease and only 
a few cases being tested, the biological role of these muta-
tions is unclear.

Patients with ETV6::ABL1 have shown various 
responses to TKI targeted therapy [9–13]. Second- or 
3rd-generation TKI [10] appear to be superior to the first-
generation imatinib. Durable hematological and molecular 
remissions have been observed in a significant number 
of patients presenting in chronic phase but not CMN in 
blast phase. Disease progression is reported in around 30% 
patients, which can progress to myeloblastic or lympho-
blastic phase or myeloid sarcoma, and in such occasions, 
the prognosis is dismal despite the addition of TKI to the 
standard chemotherapy.

Myeloid/lymphoid neoplasms with FLT3/t(v;13q12) 
rearrangements

FLT3 is located on chromosome 13q12 and belongs to 
the receptor TK (RTK) subclass III family. FLT3 rear-
rangement in hematolymphoid neoplasms is uncommon 
with around 30 cases reported [20–34]. The most com-
mon is ETV6::FLT3/t(12;13)(p13;q12), which is not 
cryptic if adequate metaphases are obtained for analysis. 
Other partner genes reported are ZMYM2/13q12  [25, 28], 
TRIP11/14q32 [24], SPTBN1/2p16 [30], GOLGB1/3q13 
[23], CCDC88C/14q32 [31], MYO18A/17q12 [29], and 
BCR/22q11. There are a number of uncharacterized partner 

genes, for example, rearrangement t(13q12;v) (3q27, 5q15, 
5q35, 7q36, 13q22) [32, 34]. Some of the fusions are cryp-
tic, such as ZMYM2::FLT3 [25, 28], and require FISH or 
RNA seq for identification.

FLT3-rearranged cases often present as MPN with 
eosinophilia, or as MDS/MPN resembling chronic myelo-
monocytic leukemia (CMML), a typical CML (aCML), 
juvenile myelomonocytic leukemia, or systemic mas-
tocytosis associated with hematological malignancy. 
Extramedullary involvement is very frequent and 
includes diagnostic entities including T-ALL/LBL, 
mixed phenotype leukemia, myeloid sarcoma, and, rarely, 
T cell lymphoma or B-ALL/LBL.

Mutations detected by NGS have been assessed in a small 
number of cases. Such aberrations occur in approximately 
40–50% of cases [34], including ASXL1, PTPN11, RUNX1, 
SETBP1, SRSF2, STAT5B, TET2, TP53, and U2AF1 genes. 
The significance of these mutations is unknown.

Of the reported cases, 9 patients received a FLT3 
inhibitor, sunitinib or sorafenib [21, 25, 26, 28, 31, 33, 
34]. Rapid hematological improvements with or without 
complete cytogenetic response to sunitinib or sorafenib 
monotherapy have been observed. Some patients 
achieved a sustained remission; some lived with stable 
disease; and some received allogeneic hematopoietic cell 
transplant (HSCT). Loss of response may occur due to 
acquired FLT3 N841K mutation in the activation loop of 
the TK domain [21].

Myeloid/lymphoid neoplasms 
with PCM1::JAK2/t(8;9)(p22;p24.1) fusion

M/LN-eo with PCM1::JAK2 fusion [35-37] and its 
genetic variants was proposed as a provisional entity in 
the 2016 WHO classification. Subsequently, several stud-
ies have described the disease spectrum and histopatho-
logical and molecular genetic features of these disorders 
[10, 38–41]. Affected patients are mostly in the later 40s 
(years of age), exhibit a pronounced male predominance, 

Fig. 1   A “Sarcomatous” 
appearing eosinophilic spindle-
cell tumor destroying the tibia 
of a 61-year-old male patient 
that was diagnosed as an 
ETV6::ABL1-fused M/LN-eo 
(H&E stain, original magnifi-
cation 600 × . B: Diffuse MF1 
fibrosis with woven pattern 
accompanying the case from 
Fig. 1A (Gömöri staining on 
an automated stainer, original 
magnification 600 ×)
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and approximately 60% present with MPN or MDS/MPN 
[42], which is commonly accompanied by eosinophilia, 
hepatosplenomegaly, and occasionally basophilia. Some 
cases may initially present as B-lymphoblastic crisis. 
Extramedullary disease involvement is common. It is 
known that PCM1::JAK2 can be acquired at disease pro-
gression, such as an AML at relapse. Importantly, these 
should not be considered in the category of M/LN-eo [38, 
39]. De novo AML is extremely rare. For patients present-
ing as CMN, the disease may be indolent, with a reported 
5-year survival around 80% [36, 38, 39, 42]. However, for 
patients who present with increased blasts or blast phase 
or progress to acute leukemia, the prognosis is poor. Tar-
geted therapy with JAK2 inhibitors such as ruxolitinib 
has produced clinical responses in patients presenting in 
chronic phase but the response may be short lived with 
limited survival benefit [10, 38, 43–45]. HSCT provides 
ultimate cure for these patients.

The BM of PCM1::JAK2 is usually hypercellular with 
increased eosinophils, increased immature erythroid 
precursors (pronormoblasts) in aggregates or sheets, and 

increased fibrosis. The presence of “erythroid microtu-
mors” accompanied by eosinophilia and increased fibro-
sis in a male patient presenting with a MPN or MDS/
MPN-like disorder is virtually pathognomonic and should 
prompt a presumptive diagnosis of M/LN-eo with JAK2-
fusion (Fig. 2). “Erythroid microtumors” are also fre-
quently observed in extramedullary lesions, and some 
have been diagnosed as erythroblastic sarcoma [38–40].

M/LN-eo with alternate partners to JAK2 such 
as t(9;12)(p24.1;p13.2)/ETV6::JAK2  and t(9;22)
(p24.1;q11.2)/BCR::JAK2 [10, 38, 39, 41] show less dis-
tinctive histopathological features, such as the characteristic 
large immature erythroid islands. However, they demon-
strate similar clinical and genetic features, and are consid-
ered as genetic variants of t(8;9)(p22;p24.1)/PCM1::JAK2. 
JAK2 fusions with other partner genes, such as t(5;9)(q14.1; 
p24.1)/STRN3::JAK2 [46], and PAX5::JAK2 [47] are usu-
ally seen in Ph-like B-ALL; which are, per definition, not 
M/LN-eo.

Mutations detected by NGS in PCM1::JAK2 M/LN-eo 
are reported to range from 14 to 50% of cases studied [38, 

Fig. 2   A Erythroid microtumors in a lymph node of a 45-year-old 
male patient suffering from PCM1::JAK2-fused M/LN-eo image 
(H&E stain, original magnification 100 ×). B Split red and green fluo-
rescent in situ hybridization (FISH) signals with the break-part probe 
for the JAK2-locus in cells from the case on Fig. 1A; note the fused 
yellow-orange signals of the non-rearranged allele (FISH with DAPI-
counterstain; original magnification 1000). C Erythroid microtumor 
in a relapsing PCM1::JAK2-fused M/LN-eo after allogeneic hemat-
opoietic cell transplantation in comparison to an normal erythroids 

on the left side of the image; note that the affected erythroid cells 
are at least four times larger than the normal counterparts (immu-
noperoxidase staining on an automated stainer with the antibody 
clone EP700Y against E-cadherin, original magnification 600 ×). D 
Pathologic overexpression of phosphorylated STAT5 in the erythroid 
microtumor shown on Fig.  2C compared to the weak expression in 
the background unaffected erythropoiesis (immunoperoxidase stain-
ing on an automated stainer with the antibody clone 8–5-2, original 
magnification 400 ×)
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39, 48] and include ASXL1, TET2, and BCOR genes. Muta-
tions appear to be lower in cases presenting as MPN and 
higher in cases presenting as acute leukemia.

M/LN-eo with t(8;9)(p22;p24.1)/PCM1::JAK2 is 
now accepted as a formal entity under M/LN-eo with 
TK fusion by ICC, and t(9;12)(p24.1;p13.2)/ETV6::JAK2 
and t(9;22)(p24.1;q11.2)/BCR::JAK2 are recognized as 
genetic variants.

M/LN‑eo with PDGFRA, PBGFRB, and FGFR1 
rearrangements

M/LN-eo with PDGFRA, PBGFRB, and FGFR1 rear-
rangements represent the three original members in the 
category of M/LN-eo. Since their initial inclusion, there 
has been an expanded understanding of the clinical fea-
tures and cytogenetic characteristics. PDGFRA-rear-
ranged cases are by far the most common in this category 
of M/LN-eo and show a very striking male predominance 
(male-to-female ratio of 17:1). The usual age at onset is in 
the late 40s, but pediatric patients may be affected [49], 
and the disease may occur in the therapy-related setting. 

Eosinophilia is common, 70–90%, frequently with hyper-
eosinophilia. High level of vitamin B12 is often observed, 
and serum tryptase may be elevated. BM is often hyper-
cellular with eosinophilia. Megakaryocytes are often 
decreased, may or may not exhibit dyspoietic changes, 
and fibrosis is common (Fig. 3A and B). Splenomegaly 
occurs in approximately 60% patients, and extramedul-
lary tumors in approximately 50%. The latter are mostly 
myeloid, either mature or immature (myeloid sarcoma), 
and occasional lymphoblastic, commonly involving epi-
dural and paraspinal space or lymph nodes.

The disease-defining interstitial deletion of approxi-
mately 800 kb (including CHIC2) on chromosome 4q12 
that leads to the FIP1L1::PDGFRA fusion is below the 
level of resolution of conventional cytogenetics (e.g., cryp-
tic). Routine detection of the interstitial deletion is best 
achieved by FISH or RT-PCR. On the other hand, fusions 
with 6 other partner genes, including CDK5RAP2::PDGFRA, 
ETV6::PDGFRA, FOXP1::PDGFRA, KIF5B::PDGFRA, 
STRN::PDGFRA, and TNKS2::PDGFRA, are often not 
cryptic. BCR::PDGFRA/ t(4;22)(q12;q11) cases may have a 
clinical presentation similar to CML or aCML with marked 

Fig. 3   A Typical morphological appearance of a myeloid/lymphoid 
neoplasms with eosinophilia (M/LN-eo) and FIP1L1::PDGFRA-
fusion in a 48-year-old male patient; hypercellular bone marrow with 
myeloid hyperplasia and accompanying 40% eosinophilia as well as 
one dysplastic megakaryocyte with nuclear separation in the upper, 
right-middle part of the image (H&E stain, original magnification 
200 ×). B Diffuse MF1 fibrosis that is common in  M/LN-eo (same 
case as Fig.  1A) (Gömöri staining, original magnification 200 ×). 

C Increase of spindle-shaped atypical mast cells that weakly co-
express CD25 (Insert) in a 52-year-old male patient suffering from 
ETV6::PDGFRB-fused M/LN-eo; note that there are no mast cell 
clusters. D In a case of FIP1L1::PDGFRA-fusion, the mast cell pro-
liferation forms dense clusters mixed with many background eosino-
phils, which was initially thought as systemic mastocytosis until the 
demonstration of FIP1L1::PDGFRA fusion. KIT D816V mutation 
was negative
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leukocytosis [50]. Cases with activating point mutations of 
PDGFRA have been reported [51]; however, it is unsure if all 
CMN with PDGFRA are within the spectrum of M/LN-eo.

Almost all patients with a PDGFRA fusion are sensitive to 
imatinib. Primary or secondary resistance is unusual, but if 
it occurs, it is linked to the T674I or D842V mutation within 
the ATP-binding domain of PDGFRA [52, 53]. Such patients 
have been shown to be responsive to 2nd- or 3rd- generation 
TKI [54] or FLT3 inhibitors [53].

Within the category of M/LN-eo, PDGFRB rearranged cases 
are the second most common. There is a male-to-female ratio of 
2:1 with the usual age of onset also being in the late 40s (similar 
to PDGFRA). In addition, it also can occur in the therapy-related 
setting. In contrast to PDGFRA- rearranged cases, M/LN-eo 
with PDGFRB fusions may present with monocytosis, resem-
bling CMML, and some may display a cytopenic presentation 
without eosinophilia, resembling MDS [39].

The PDGFRB gene is located at 5q31 ~ 33, and more 
than 30 partner fusion genes have been described to 
date [3]. Typically, PDGFRB  rearranged M/LN-Eo 
should demonstrate a 5q32 abnormality by con-
ventional cytogenetic analysis if 20 adequate meta-
phases are obtained for analysis. However, recent 
studies have shown that cryptic PDGFRB rearrange-
ments are common [39, 55] and often occur in partner 
genes other than t(5;12)(q32;p13.2)/ETV6::PDGFRB, 
such as DIAPH1::PDGFRB  [28], BCR::PDGFRB 
[56], AFAP1L1::PDGFRB, SART3::PDGFRB and 
G3BP1::PDGFRB [57]. Importantly, some of the fusions 
may not even be detected by FISH, and consequently 
RNA seq is required for identification. All reported PDG-
FRB rearranged cases, regardless of partner genes, are 
sensitive for TKI therapy.

M/LN-eo with FGFR1 rearangement is very uncommon. 
The male-to-female ratio is 1.5:1. The usual age at onset 
is in the 30s [58, 59]. B-symptoms, lymphadenopathy, and 
hepatosplenomegaly are common, especially in patients with 
T-LBL/ALL. Accompanying eosinophilia is seen in 60–70% 
of cases, especially in patients with a MPN-like presentation. 
Cases with an acute leukemic presentation or extramedul-
lary lesions may fulfill criteria of T-ALL, B-ALL, or mixed 
phenotype acute leukamia (MPAL). In such instances, the 
background features of MPN may be obscured by the blasts 
and become more obvious post myeloablative treatment. M/
LN-eo associated with t(8;13)(p11;q12)/ZMYM2::FGFR1 
frequently presents with nodal (or extranodal) disease with 
a T-LBL component admixed with scattered or perivascular 
myeloid blasts, termed “bilineal lymphoma” [39, 60]; an 
eosinophilic infiltrate is frequently present and may provide 
a hint for the diagnosis.

Conventional cytogenetic analysis is reliable in dem-
onstrating translocations at 8p11. The t(8;13) is the most 
common translocation, and, thus, ZMYM2 is the most 

common fusion-partner of FGFR1, but there are 14 addi-
tional fusion partners. The clinicopathological manifes-
tations may differ according to these; e.g., patients with 
t(8;22)(p11.2;q11.2)/BCR::FGFR1 usually manifest 
with monocytosis and B-ALL (B-lymphoblastic phase) 
[61], while approximately half of the affected with t(8;9) 
(p12;q33)/CEP110::FGFR1 display monocytosis and ton-
sil hypertrophy [62].

Unlike M/LN-eo with PDGFRA and PDGFRB fusions, 
FGFR1- rearranged neoplasms are usually not responsive to 
imatinib. Clinical trials with 3rd-generation TKI (ponatinib) 
and the FGFR inhibitor pemigatinib are promising [63], yet 
HSCT remains the only curative option [64].

Mutations detected by NGS are reported in 20–50% of 
cases with PDGFRA M/LN-eo [39, 48] including ASXL1, 
BCOR, DNMT3A, ETV6, SRSF2, and RUNX1 genes. A simi-
lar mutation frequency is reported in PDGFRB M/LN-eo, 
30–50%, involving ASXL1, TET2, BCOR, ETV6, STAG2, and 
RUNX1 genes [39, 48, 65]. Mutations in FGFR1 rearranged 
cases are highly frequent, detected in 70–80% of cases, and 
typically (80%) involve RUNX1 [48, 66]. RUNX1 mutations 
have been significantly associated with an acute leukemic 
presentation or progression [66].  The common  clinical 
presentations, molecular genetic alternations, responses to 
TKI treatment of M/LN-eo are summarized in Table 1.

Addressing the overlap of M/LN‑eo‑TK with other 
entities

It is known that an abnormal mast cell proliferation can be 
seen in M/LN-eo with any of the recurrent fusion genes, 
particularly in PDGFRA fusion cases (Fig. 3C). In most 
instances, the mast cells are scattered, are spindle shaped, 
and show aberrant CD25 expression. In some cases, the 
mast cell proliferation may form dense clusters, show-
ing histopathological features of systemic mastocytosis 
(SM) (Fig. 3D) [24, 34, 39, 67–69]. Pardanani and col-
leagues [69] studied 19 cases of SM with concomitant 
hypereosinophilia, and over 50% of cases (10/19, 56%) 
were found to have the FIP1L1::PDGFRA fusion. Impor-
tantly, these cases consistently lacked the KIT D816V 
mutation and did not behave or exhibit features of typical 
SM. Therefore, categorization of these rare cases as SM 
is problematic. In the current ICC, such cases are clas-
sified under M/LN-eo if one of the TK gene fusions is 
detected [6]. As such, it is highly recommended to test 
cases of mast cell disease for rearrangements of the TK 
genes when SM is associated with eosinophilia or the KIT 
D816V mutation is absent.

M/LN-eo also can overlap with Ph-like B-ALL/LBL or 
de novo T-ALL with rearrangements involving one of the 
TK genes. For example, while the most common genetic 
variant of PDGFRB, t(5;12)(q32;p13.2)/ETV6::PDGFRB, 
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often manifests with multilineage involvement and features 
of M/LN-eo, PDGFRB rearrangements with alternate part-
ners such as EBF1, SSBP2, TNIP1, ZEB2, and ATF7IP 
often present as de novo B-ALL, and are thus best classi-
fied as Ph-like B-ALL [70]. ETV6::JAK2 is now formally 
accepted as a genetic variant of PCM1::JAK2, and the entity 
should be limited to cases with an involvement of mye-
loid cells. If a case with a lymphoblastic presentation, an 
underlying myeloid neoplasm needs to be demonstrated. In 
fact, of the reported cases of hematopoietic neoplasms with 
ETV6::JAK2 fusion, more than half were de novo B-ALL 
or de novo T-ALL [36, 71] without an associated CMN, 
and such cases should be classified as Ph-like B-ALL or 
de novo T-ALL [70, 72]. As a rule, cases being classified 
as M/LN-eo-TK with presentation as B- or T-ALL, the TK 
fusion genes should involve the myeloid lineage in addition 
to lymphoblasts. Often, patients have a CMN that manifests 
either prior to, concomitantly, or post therapy for ALL. In 
performing FISH, the fusion signals are not only observed 
in blasts but also in segmented neutrophils, providing strong 
evidence of multilineage involvement [73]. A road map 
(Fig. 4) is provided to illustrate the basic principles in dis-
tinguishing these two categories of diseases.

Chronic eosinophilic leukemia, 
not otherwise specified and idiopathic 
hypereosinophilia/hypereosinophilic 
syndrome

CEL, NOS is a myeloid neoplasm included in the cat-
egory of MPN. It is characterized by persistent eosin-
ophilia not meeting the criteria for other genetically 

defined entities. Idiopathic hypereosinophilic syndrome 
(iHES) is defined as persistent HE (≥ 6 months) with 
associated tissue/organ damage/injury due directly to 
eosinophil-released cytokines or enzymes, and the under-
lying cause, either reactive or a distinct clonal myeloid 
process, cannot be identified. Idiopathic HE or HE of 
unknown significance (HEus) [74] is referred to as per-
sistent HE of unknown etiology without related organ/
tissue damage. In the 2008 WHO classification, CEL, 
NOS was distinguished from idiopathic HE/HES by the 
presence of increased blasts and/or the presence of clonal 
karyotypic abnormalities. With the advent of NGS in 
hematopoietic neoplasms, somatic mutations associated 
with myeloid neoplasms have been detected in 25–30% of 
patients who have persistent hypereosinophilia [75–78], 
a normal karyotype, and no increase in blasts, and who 
would be otherwise considered as “iHES.” Mutations 
detected by NGS were found mostly in genes involved 
in DNA methylation and chromatin modification, such 
as ASXL1, TET2, EZH2, and DNMT3A, but also in other 
genes such as SRSF2, TP53, and SETBP1 [75–77, 79]. 
STAT5B N642H [78] has been reported in some patients 
with a referral diagnosis of eosinophilia (1.6%), includ-
ing patients who would be otherwise diagnosed with 
iHES. While STAT5B mutations can help to estab-
lish clonality and facilitate a diagnosis of CEL, NOS, 
STAT5B mutations can be seen in other myeloid neo-
plasms without a prominent eosinophilic proliferation 
and are felt not unique for CEL, NOS.

Overall, while a positive mutation by NGS provides 
evidence of clonality, such mutations have also been 
reported in aging individuals lacking evidence of a mye-
loid neoplasm. Indeed, some cases with a very typical 

Fig. 4   How to differentiate myeloid/lymphoid neoplasm with eosino-
philia and tyrosine kinase fusion from Ph-like B-lymphoblastic leu-
kemia (Ph-like B-ALL) or de novo T-ALL. *It is known that certain 
partner genes, such as EBF1, SSBP2, TNIP1, ZEB2, and ATF7IP with 

PDGFRB, partner genes other than PCM1, BCR, ETV6 with JAK2, and 
partner genes other than ETV6 with ABL1, most likely occur in Ph-like 
B-ALL or de novo T-ALL. Abbrevations: CMN, chronic myeloid neo-
plasm; FISH, fluorescence in situ hybridization
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clinical course of iHES/HEus and normal BM morphology 
have been reported to carry somatic mutations [79, 80]. 
On the other hand, some true CEL, NOS, even the ones 
with karyotypic abnormalities, may not show detectable 
mutation tested by the myeloid neoplasm-targeted NGS 
panels [2, 79, 80].

In CEL, NOS, the BM is usually markedly hypercel-
lular due to a prominent proliferation of eosinophils and 
granulocytic cells. Megakaryocytes are almost always 
abnormal, frequently showing MDS-type small hypolo-
bated forms or a mixture of MDS-like and MPN-like 
megakaryocytes (Fig. 5). Given that the eosinophil pro-
liferation can be quite significant, it is critical to care-
fully search for abnormal megakaryocytes in such cases. 
Dysgranulopoiesis and/or dyserythropoiesis may be 
present in some cases. MF2 or MF3 fibrosis is seen in 
20–30% patients. These features were similar to those 

seen in MDS or MDS/MPN. Although not entirely spe-
cific, significant cytologic abnormalities in eosinophils 
(≥ 20% of eosinophils) are frequently observed in CEL, 
NOS patients [79, 80], including abnormal granulation 
(hypogranular, uneven granulation), abnormal nuclear 
lobation (multilobation, hypolobation, nuclear branch-
ing), and large or markedly left-shifted forms (Fig. 5). 
Such BM features have been found extremely valuable 
in identifying cases with clinical and biological fea-
tures, and the natural history of a myeloid neoplasm 
[80]. In contrast, the BM of iHES and HEus is, except 
for increased eosinophils, largely morphologically unre-
markable (Fig. 6) [79–81]. A key update in the ICC is that 
abnormal BM histopathology is now incorporated into the 
diagnostic criteria for CEL, NOS Table 2). This allows for 
a more evidence-based support of the neoplastic nature 
of CEL, NOS [6], and a more definitive separation from 

Fig. 5   Abnormal morpho-
logical features observed in 
chronic eosinophilic leukemia 
(CEL), NOS. Peripheral blood 
frequently show very abnor-
mal eosinophils (A and B), 
with abnormal nuclei that can 
be hypolobated or hyperseg-
mented (in the current two 
cases), abnormal granulation 
(hopogranular A and hyper-
granular B). Bone marrow is 
almost always hypercellular (C 
and D), megakaryocytes can be 
decreased (C), normal in num-
bers or occasionally increased, 
frequently dysplastic (MDS-like 
small megakaryocytes) (both 
cases C and D), occasionally 
can be mixed with small and 
large megakaryocytes. Bone 
marrow aspirate confirms the 
presence of a small monolo-
bated megakaryocyte (E) and 
eosinophilia. In some cases, 
eosinophils are left-shifted with 
many eosinophilic myelocytes 
(F)
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iHES/HEus (Table 3). Of note, the somatic mutations in 
iHES/iHES are often present as either a single gene alter-
ation (often involving the DTA genes DNMT3A, TET2 
and ASXL1) and/or at a relatively low variant allele fre-
quency (VAF) [79, 80]. Clinical features may also help 
to distinguish CEL, NOS from iHES [75, 79, 80]: CEL, 
NOS patients are older, with higher WBCs and absolute 
eosinophil counts, often display cytopenia(s), exhibit fre-
quent constitutional symptoms, hepatosplenomegaly, and 
high LDH. In contrast, iHES patients are significantly 
younger, with more allergic or rheumatoid symptoms, and 

skin rash, pulmonary, gastrointestinal, and /or endocrine 
involvement. Ideally, a diagnosis of CEL, NOS is sup-
ported by the presence of clonal molecular genetic abnor-
malities and abnormal BM findings or increased blasts. 
However, in some cases, clonal cytogenetic or molecular 
alterations may not be demonstrated with current testing 
methods. In such instances, after other causes of eosino-
philia have been exhaustively excluded, abnormal BM 
findings reminiscent of MDS or MDS/MPN suffice to 
establish a diagnosis of CEL, NOS in the presence of 
persistent and unrelenting hypereosinophilia.

Fig. 6   Idiopathic hypere-
osinophilic syndrome (iHES). 
Peripheral blood smears show 
eosinophilia (A), most of 
the eosinophils are normally 
bilobated forms, with occa-
sional eosinophils showing 
mild uneven granulation. Bone 
marrow aspirate smears show 
normal appearing eosinophils 
and precursors with no dyspla-
sia in erythroids and myeloids 
(B). Bone marrow biopsies 
show increased eosinophils, but 
otherwise normal cellularity, 
normal appearing megakaryo-
cytes and normal bone marrow 
topography (two different cases 
C and D)

Table 2   Diagnostic criteria for chronic eosinophilic leukemia, not otherwise specified (CEL, NOS)

*AML with recurrent genetic abnormalities with < 20% blasts is excluded.
**CEL, NOS may occur as SM-AMN (systemic mastocytosis associated with myeloid malignancies).
***In the absence of a clonal cytogenetic abnormality and/or somatic mutation(s) or increased blasts, bone marrow findings supportive of the 
diagnosis will suffice in the presence of persistent eosinophilia, provided other causes of eosinophilia having been excluded.

Peripheral blood hypereosinophilia (eosinophil count ≥ 1.5 × 109/L and eosinophils ≥ 10% of white blood cells)
Blasts constitute < 20% cells in peripheral blood and bone marrow, not meeting any other diagnostic criteria for AML*
No tyrosine kinase gene fusion including BCR::ABL1, other ABL1, PDGFRA, PDGFRB, FGFR1, JAK2, FLT3 fusions
Not meeting criteria for other well-defined MPN; chronic myelomonocytic leukemia, or systemic mastocytosis**
Bone marrow shows increased cellularity with dysplastic megakaryocytes with or without dysplastic features in other lineages and often signifi-

cant fibrosis, associated with an eosinophilic infiltrate OR
• There are increased blasts ≥ 5% in the bone marrow and/or ≥ 2% in the peripheral blood
Demonstration of a clonal cytogenetic abnormality and/or somatic mutation(s) ***
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There is a caveat when interpreting a “high” eosino-
phil count. When the WBC is high, a small percentage of 
eosinophils may, by default, amount to an absolute eosin-
ophil count ≥ 1.5 × 109/L. In the ICC update, both CEL, 
NOS and iHES/HEus are now required not only to show an 
absolute eosinophil count ≥ 1.5 × 109/L, but also relative 
eosinophilia (≥ 10%). This change emphasizes that there 
needs to be a characteristic feature of eosinophilic prolif-
eration in such disorders. As a result, if a CMN shows a 
relative and absolute eosinophilia without defining genetic 
lesions, a diagnosis of CEL, NOS would supersede a diag-
nosis of aCML, MDS/MPN-U, or MPN-U.

In summary, the changes and updates related to 
eosinophilic disorders in the ICC are highlighted and 
elaborated with literature support in this review. The 
updates in M/LN-eo involve the following: (1) change 
of the category name from M/LN-eo with gene rear-
rangement to myeloid/lymphoid neoplasm with eosin-
ophilia and tyrosine kinase gene fusion; (2) additions 
of ETV6::ABLI  and FLT3  fusions as new members; 
(3) recognition of PCM1::JAK2 and its genetic variant 
BCR::JAK2 and ETV6::JAK2 as formal entity; and (4) 
provide guidance in distinguishing M/LN-eo from Ph-
like B-ALL and de novo T-ALL, and address the issue of 
mast cell proliferation with TK fusions. The changes in 
CEL, NOS and iHES/HEus are to include BM morphol-
ogy in the diagnostic criteria and require not only abso-
lute but also relative eosinophilia in the definition. These 
changes are evidence based; reflect a consensus based on 
disease genetic, histopathological, and clinical features; 
and will impact the diagnosis and clinical management 
of patients (Table 2 and 3).
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