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Abstract
Glutaminase 1 (GLS) is a therapeutic target for breast cancer; although GLS inhibitors have been developed, only a few 
subjects responded well to the therapy. Considering that the expression of histone H3 lysine 27 trimethylation (H3K27me3) 
and menopausal status was closely linked to GLS, we examined the effects of H3K27me3 and menopausal status on GLS 
to breast cancer prognosis. Data for 962 women diagnosed with primary invasive breast cancer were analyzed. H3K27me3 
and GLS expression in tumors were evaluated with tissue microarrays by immunohistochemistry. Hazard ratios (HRs) and 
their 95% confidence intervals (CIs) for overall survival and progression-free survival were estimated using Cox regression 
models. Statistical interaction was assessed on multiplicative scale. There was a beneficial prognostic effect of GLS expres-
sion on overall survival for those with low H3K27me3 level (HR = 0.50, 95% CI: 0.20–1.28) but an adverse prognostic effect 
for those with high H3K27me3 level (HR = 3.90, 95% CI: 1.29–11.78) among premenopausal women, and the statistical 
interaction was significant (Pinteraction = 0.003). Similar pattern was further observed for progression-free survival (HR = 0.44, 
95% CI: 0.20–0.95 for low H3K27me3 level, HR = 1.35, 95% CI: 0.74–2.48 for high H3K27me3 level, Pinteraction = 0.024). 
The statistical interaction did not occur among postmenopausal women. Our study showed that the prognostic effects of 
GLS on breast cancer correlated to the expression level of H3K27me3 and menopausal status, which would help optimize 
the medication strategies of GLS inhibitors.
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Introduction

Glutaminase 1 (GLS) is a key enzyme in glutamine catabo-
lism which is critical for the proliferation of various tumors 
[1–3]. Many studies have found that GLS overexpression 
was associated with the poor prognostic characteristics 
of breast cancer [4–6]. Thereafter, GLS inhibitors have 
emerged as a therapeutic avenue for breast cancer [7–9]. 

However, the results of clinical trials were not promising 
[10]: the objective response rates were only 22% in the Phase 
I study and 6% in the Phase II study [11, 12]. Actually, the 
findings of the association between GLS expression and 
breast cancer prognosis were not consistent. For example, 
a higher expression of GLS was observed to be related to 
a better prognosis [13]. Therefore, we hypothesize that the 
effects of GLS or the inhibitors on breast cancer may be 
affected by other factors.

It was found that breast cancer cells which resisted GLS 
inhibitors mobilized more fatty acids into mitochondria for 
oxidation [14]. Moreover, the increased fatty acid catabo-
lism was associated with a decrease of histone H3 lysine 
27 trimethylation (H3K27me3) [15, 16] which was also an 
independent prognostic factor for breast cancer [17, 18]. Fur-
thermore, many studies have found that the decreased level 
of H3K27me3 suppressed the transcription of oncogene 
MYC which was essential for the expression of GLS [19, 
20]. Thus, the relationship between GLS and H3K27me3 
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was intriguing, which may affect the prognostic role of GLS 
on breast cancer.

In addition, it was found that women with high proges-
terone level have higher level of H3K27me3 [21, 22] and 
estrogen has the effect of up-regulating GLS [23], which 
suggested that the relationship between GLS and H3K27me3 
may be differentiated by menopause. Therefore, in the pre-
sent study, we examined the effects of H3K27me3 on GLS 
to breast cancer prognosis by menopausal status.

Materials and methods

Study population

A total of 1062 female patients with pathologically diag-
nosed primary invasive breast cancer and > 1 cm of tumor 
size in diameter between January 2008 and December 2015 
were recruited from the Cancer Center of Sun Yat-sen Uni-
versity in Guangzhou, China. Patients with metastatic tumor 
and missing information of H3K27me3 and GLS (N = 88) 
were excluded. Most (98.8%) of the included patients were 
successfully followed up until Dec 31, 2019. This study was 
approved by the Ethics Committee of the School of Public 
Health at Sun Yat-sen University. Informed consent was 
obtained from each participant.

Baseline data collection

Information on demographic and clinicopathologic charac-
teristics was collected at diagnosis using structured ques-
tionnaire and from patients’ medical records, including age, 
menopausal status, body mass index (BMI), family history 
of breast cancer, clinical stage, histological grade, estrogen 
receptor (ER), progesterone receptor (PR), human epidermal 
growth factor receptor 2 (HER2) status, and proliferation 
index factor Ki67 (Ki67). The definition of ER, PR, and 
HER2 status was described in detail previously [24].

Tissue microarray and immunohistochemistry

The expression levels of H3K27me3 and GLS were evalu-
ated with tissue microarrays (TMAs) by immunohistochem-
istry (IHC). TMAs were constructed as previously described 
[25]. The TMAs were baked at 60  °C for 2 h and then 
dewaxed with xylene and ethanol. Then, antigen retrieval 
was accomplished using EDTA (PH 9.0) in super-pressure 
kettle and endogenous peroxide was blocked using 3% H2O2. 
Antigen–antibody reactions for H3K27me3 and GLS were 
performed separately. For H3K27me3, slides were incubated 
in mouse monoclonal to H3K27me3 [mAbcam 6002]-ChIP 
Grade (ab6002, diluted 1:100, Abcam) and then labeled with 
the EnVision Detection System (Peroxidase/DAB, Rabbit/

Mouse) (Dako K5007). For GLS, slides were incubated in 
rabbit monoclonal to GLS [EP7212] (ab156876, diluted 
1:100, Abcam). Then, slides were developed by diaminoben-
zidine (DAB) and counterstained by hematoxylin. These 
slides were finally dehydrated and mounted.

IHC-stained sections were digitally imaged using Pan-
noramic Scanner and CaseViewer software. IHC staining 
was analyzed by an experienced pathologist and scored 
for staining intensity (0-no staining, 1-weak, 2-moder-
ate, and 3-strong) and percentage of tumor cell staining 
(0–100). Representative immunohistochemical staining of 
H3K27me3 and GLS is shown in Fig. 1. IHC scoring was 
done by H-score which was calculated by multiplying the 
staining intensity by the percentage of positive cells. Thus, 
the minimal H-score was 0, whereas the maximum H-score 
was 300. To avoid the observation variability, the mean 
value of duplicate scores was adapted for further analysis.

Follow‑up and outcomes

Patients were followed up by phone calls or out-patient visits 
every 3 months in the first year, every 6 months in the sec-
ond and third year after diagnosis, and annually thereafter. 
Outcomes of interest were overall survival (OS) and progres-
sion-free survival (PFS). OS was defined as the time from 
diagnosis to death and PFS was the time from diagnosis to 
disease progression including recurrence, metastasis, and 
death. Survival status was censored at the latest follow-up 
date or Dec 31, 2019.

Statistical analysis

The expressions of H3K27me3 and GLS were treated as 
binary variables. The optimal cut-off value of H3K27me3 
was determined by the minimum P value from log-rank chi-
square statistics based on PFS using the X-tile 3.6.1 software 
(Yale University, New Haven, CT, USA) [26]. For GLS, 
in fact, nearly half (44.2%) of the H-score of GLS was 0. 
Therefore, the cut-off value of GLS was determined by the 
H-score = 0 or not. Next, GLS H-score = 0 was considered 
negative and GLS H-score > 0 was considered positive. Fre-
quency distribution was used to compare demographic and 
clinicopathologic characteristics according to H3K27me3 
and GLS category. Kaplan–Meier method was used to esti-
mate the 5-year survival. Cox proportional hazard model 
was used to estimate hazard ratios (HRs) and their 95% con-
fidence intervals (CIs) for the associations between demo-
graphic and clinicopathologic characteristics and survival 
(OS and PFS) and the associations between H3K27me3 and 
GLS and survival.

The statistical interaction between H3K27me3 and GLS 
on survival was evaluated on the multiplicative scale. HRs 
(95% CIs) for the association between GLS and survival 
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within H3K27me3 strata were calculated. Furthermore, the 
statistical interaction was separately tested in premenopau-
sal and postmenopausal patients. All the analyses were con-
ducted using R 3.6.3 and a two-sided P-value below 0.05 
was considered statistically significant.

Results

Demographic and clinicopathological characteristics 
and the associations with breast cancer prognosis 
and the expression levels of H3K27me3 and GLS

Of 974 eligible women, 962 (98.8%) were included in 
the statistical analysis after excluding women with loss 
of follow-up (Fig. 2). Almost all (99.2%) of them were 
pathologically diagnosed with invasive ductal carci-
noma (IDC). The median age at diagnosis was 48 years 
(interquartile range: 42–56). More than half (57.9%) of 

the women were premenopausal and 56.1% of them had 
a BMI between 18.5 and 23.9 kg/m2. The majority of the 
women were diagnosed with low histological grade (grade 
I/II: 73.1%), early clinical stage (stage I/II: 71.7%), ER-
positive (73.1%), PR-positive (72.2%), or HER2-negative 
(66.5%) (Table 1).

The optimal cut-off value of H3K27me3 H-score was 175 
according to the X-tile plot (Online Supplementary Infor-
mation, Supplementary Fig. S1). A great part (71.5%) of 
the women had the H-score > 175 of H3K27me3 and the 
percentage of GLS negativity was 44.2%. For H3K27me3, 
women with the H-score ≤ 175 were more likely to be pre-
menopausal and have grade III, ER-negative, PR-negative, 
and Ki67 > 14% tumors than the subjects with H-score > 175. 
For GLS, women with GLS negativity were more likely to 
have grade I/II, ER-positive, and Ki67 ≤ 14% tumors than the 
subjects with GLS positivity (Table 1). Univariable analysis 
showed that age, BMI, histological grade, clinical stage, and 
ER were associated with OS and clinical stage and ER were 

Fig. 1   Representative immu-
nohistochemical staining of 
H3K27me3 and GLS. a–d The 
staining of H3K27me3 in differ-
ent intensity (a, no staining; b, 
weak; c, moderate; d, strong). 
e–h The staining of GLS in dif-
ferent intensity (e, no staining; 
f, weak; g, moderate; h, strong). 
GLS glutaminase 1, H3K27me3 
histone H3 lysine 27 trimethyla-
tion
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associated with PFS (Online Supplementary Information, 
Supplementary Table S1).

Prognostic effects of H3K27me3 and GLS on breast 
cancer

Of the 962 eligible women, 102 died and 187 experi-
enced disease progression with a median follow-up time of 
70.6 months (interquartile range: 45.6–103.9). Five-year OS 
rate and PFS rate were 91.4% and 84.8%, respectively. A 
consistent relation between H3K27me3 and survival (OS 
and PFS) was observed from both univariable and multivari-
able analyses (Table 2). After adjustment for confounders, 
women with H3K27me3 H-score > 175 (HR = 0.61, 95% 
CI: 0.39–0.95) had a better OS compared to H-score ≤ 175. 
A similar pattern of association was observed for PFS 
(HR = 0.67, 95% CI: 0.48–0.94) (Table 2). For GLS, no 
significant association with the prognosis was observed in 
both univariate analysis (HR = 1.24, 95% CI: 0.83–1.86 for 
OS; HR = 1.05, 95% CI: 0.79–1.40 for PFS) and multivariate 
analysis (HR = 1.06, 95% CI: 0.69–1.62 for OS; HR = 0.92, 
95% CI: 0.68–1.26 for PFS) (Table 2).

Statistical interaction

The statistical interaction between H3K27me3 and GLS was 
significant among premenopausal women (Pinteraction = 0.003 
for OS; Pinteraction = 0.024 for PFS) but not postmenopausal 
women (Pinteraction = 0.730 for OS; Pinteraction = 0.720 for PFS) 
(Table 3). GLS positivity was significantly associated with 
a poorer OS compared to GLS negativity (HR = 3.90, 95% 
CI: 1.29–11.78) in patients with H3K27me3 H-score > 175, 
while it was related to a better OS (HR = 0.50, 95% CI: 
0.20–1.28) in patients with H3K27me3 H-score ≤ 175 

among premenopausal women. Similar pattern was also 
observed for PFS.

Discussion

In the present study, we found that a higher GLS expression 
level was associated with more aggressive characteristics of 
breast cancer, such as higher histological grade, ER negative, 
and Ki67 overexpression. There was also a statistical interac-
tion between H3K27me3 and GLS on breast cancer progno-
sis, particularly among premenopausal women. Compared 
with the GLS negativity, GLS positivity was associated with 
a protective effect on the survival of patients with a lower 
H3K27me3 expression, while it was associated with an 
adverse effect on the survival of patients with a higher level 
of H3K27me3 expression among premenopausal women. 
Our results suggested that the prognostic effects of GLS on 
breast cancer may correlate to the H3K27me3 expression 
level in the tumor tissues and the menopausal status.

In consistent with our study, several previous population 
studies have also found that the level of GLS expression was 
higher in TNBC than in other subtypes of breast cancer and 
GLS tended to be negativity in ER and PR-positive tumors 
[4, 27]. Cellular experiments revealed that levels and activ-
ity of GLS were significantly increased in TNBC and HER2 
positive breast cancer cell lines [28]; in our study, the HER2 
positive patients also tended to be GLS positivity. In terms 
of breast cancer outcomes, the prognostic role of GLS in 
the total patients was not significant in these studies [4, 27], 
which was also consistent with our findings.

It was interesting and pragmatic that there was an oppo-
site prognostic effect of GLS among premenopausal women 
with high and low levels of H3K27me3 expression. Previous 

Fig. 2   Flow chart of the study 
cohort. GLS glutaminase 1, 
H3K27me3 histone H3 lysine 27 
trimethylation. Note: there were 
two people who missed the data 
of both H3K27me3 and GLS 
expression
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Table 1   Demographic and clinicopathological characteristics and the associations with H3K27me3 and GLS [N (%)]

Characteristics Total N = 962 H3K27me3 GLS

 ≤ 175 (n = 274)  > 175 (n = 688) P valuea Negativity (n = 425) Positivity (n = 537) P valuea

Age (years) 0.340 0.678
 ≤ 35 095 (9.9) 033 (12.0) 062 (9.0) 046 (10.8) 049 (9.1)
36–50 459 (47.7) 130 (47.4) 329 (47.8) 200 (47.1) 259 (48.2)
 > 50 408 (42.4) 111 (40.5) 297 (43.2) 179 (42.1) 229 (42.6)
Menopause 0.066 0.714
Pre- 533 (57.9) 166 (62.6) 367 (56.0) 242 (58.6) 291 (57.4)
Post- 387 (42.1) 099 (37.4) 288 (44.0) 171 (41.4) 216 (42.6)
Missing 042 009 033 012 030
Age at menarche (years) 0.512 0.100
 ≤ 12 079 (8.5) 025 (9.4) 054 (8.1) 042 (10.2) 037 (7.1)
 > 12 852 (91.5) 240 (90.6) 612 (91.9) 371 (89.8) 481 (92.9)
Missing 031 009 022 012 019
BMI (kg/m2) 0.692 0.418
 < 18.5 050 (5.5) 017 (6.5) 033 (5.1) 019 (4.7) 031 (6.1)
18.5–23.9 512 (56.1) 146 (55.7) 366 (56.2) 223 (54.9) 289 (57.0)
 ≥ 24.0 351 (38.4) 099 (37.8) 252 (38.7) 164 (40.4) 187 (36.9)
Missing 049 012 037 019 030
Family history 0.418 0.647
No 841 (89.7) 241 (90.9) 600 (89.2) 376 (90.2) 465 (89.3)
Yes 097 (10.3) 024 (9.1) 073 (10.8) 041 (9.8) 056 (10.7)
Missing 024 009 015 008 016
Parity 0.331 0.228
0 036 (3.9) 014 (5.2) 022 (3.3) 011 (2.7) 025 (4.8)
1–2 659 (70.8) 183 (68.5) 476 (71.7) 292 (71.0) 367 (70.6)
 ≥ 3 236 (25.3) 070 (26.2) 166 (25.0) 108 (26.3) 128 (24.6)
Missing 031 007 024 014 017
Histological grade  < 0.001  < 0.001
I/II 647 (73.1) 158 (63.2) 489 (77.0) 303 (79.3) 344 (68.4)
III 238 (26.9) 092 (36.8) 146 (23.0) 079 (20.7) 159 (31.6)
Missing 077 024 053 043 034
Tumor size (cm) 0.175 0.471
 ≤ 2 294 (30.6) 075 (27.4) 219 (31.8) 135 (31.8) 159 (29.6)
 > 2 668 (69.4) 199 (72.6) 469 (68.2) 290 (68.2) 378 (70.4)
Nodal status 0.881 0.615
Negative 432 (44.9) 122 (44.5) 310 (45.1) 187 (44.0) 245 (45.6)
Positive 530 (55.1) 152 (55.5) 378 (54.9) 238 (56.0) 292 (54.4)
Clinical stage 0.623 0.483
I 174 (18.1) 046 (16.8) 128 (18.6) 072 (16.9) 102 (19.0)
II 516 (53.6) 145 (52.9) 371 (53.9) 237 (55.8) 279 (52.0)
III 272 (28.3) 083 (30.3) 189 (27.5) 116 (27.3) 156 (29.1)
ER  < 0.001  < 0.001
Negative 248 (26.9) 113 (42.6) 135 (20.5) 087 (21.1) 161 (31.5)
Positive 675 (73.1) 152 (57.4) 523 (79.5) 325 (78.9) 350 (68.5)
Missing 039 009 030 013 026
PR  < 0.001 0.091
Negative 257 (27.8) 102 (38.3) 155 (23.6) 103 (25.1) 154 (30.1)
Positive 666 (72.2) 164 (61.7) 502 (76.4) 308 (74.9) 358 (69.9)
Missing 039 008 031 014 025
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studies have found that a low level of H3K27me3 expression 
was associated with an increased fatty acid catabolism [15, 
16]. Considering that fatty acids were utilized as an alter-
native energy source after glutamine deprivation in breast 
cancer cells [29], the low level of H3K27me3 suggested the 
deprivation of glutamine and the effect of GLS on catalyzing 
glutamine catabolism (which was recognized to be related 
to a poor prognosis) would be depressed, inducing a bet-
ter prognosis of breast cancer. In turn, among women with 
a higher H3K27me3 expression, GLS would largely play 
its role with sufficient glutamine and led a poor progno-
sis. Moreover, it has been found that the breast cancer cells 
which resisted GLS inhibitors mobilized more fatty acids 
to catabolize [14], which also supported our hypothesis. In 
addition, compared with postmenopausal women, premeno-
pausal women had a significantly lower serum concentration 
of glutamine [30], which would accelerate the deprivation of 
glutamine, supporting that the statistical interaction between 
H3K27me3 and GLS was evident among premenopausal 
women. Furthermore, it may also partially explain why the 
statistical interaction only existed in premenopausal women 
that the overall metabolism capacity of premenopausal 
women was higher than postmenopausal women [31, 32].

Our study has several limitations that need to be taken 
into consideration. First, we were unable to separately eval-
uate the three isoforms of GLS (KGA, GAC, and GAM) 
expression [6, 33] and their associations with breast can-
cer prognosis. However, these three isoforms of GLS play 
the same role in breast cancer, so it is feasible to assess 
its relationship with breast cancer prognosis using the total 
GLS protein expression, as has been done in previous litera-
tures [1, 6]. Second, only patients with tumor > 1 cm were 

Table 1   (continued)

Characteristics Total N = 962 H3K27me3 GLS

 ≤ 175 (n = 274)  > 175 (n = 688) P valuea Negativity (n = 425) Positivity (n = 537) P valuea

HER2 0.132 0.503
Negative 640 (66.5) 169 (61.7) 471 (68.5) 291 (68.5) 349 (65.0)
Equivocal 079 (8.2) 026 (9.5) 053 (7.7) 034 (8.0) 045 (8.4)
Positive 243 (25.3) 079 (28.8) 164 (23.8) 100 (23.5) 143 (26.6)
Ki67  < 0.001  < 0.001
 ≤ 14% 208 (28.8) 031 (14.6) 177 (34.6) 118 (36.5) 090 (22.5)
 > 14% 515 (71.2) 181 (85.4) 334 (65.4) 205 (63.5) 310 (77.5)
Missing 239 062 177 102 137
TNBC  < 0.001 0.031
No 795 (92.7) 204 (84.0) 591 (96.1) 364 (94.8) 431 (90.9)
Yes 063 (7.3) 039 (16.0) 024 (3.9) 020 (5.2) 043 (9.1)
Missing 104 031 073 041 063

a  P value for chi-square test
BMI body mass index, ER estrogen receptor, GLS glutaminase 1, H3K27me3 histone H3 lysine 27 trimethylation, HER2 human epidermal 
growth factor receptor 2, Ki67 proliferation index factor Ki67, PR progesterone receptor, TNBC triple-negative breast cancer

Table 2   Hazard ratios for the association between H3K27me3 and 
GLS and the outcomes

a Adjusted for age at diagnosis, clinical stage, histological grade, ER 
status
CI confidence interval, GLS glutaminase 1, H3K27me3 histone H3 
lysine 27 trimethylation, HR Hazard ratio, OS overall survival, PFS 
progression-free survival
Bold characters indicate statistically significant result

Markers Total (%) Events (%) Crude
HR (95% CI)

Adjusted
HR (95% CI)a

H3K27me3
OS
 ≤ 175 274 (28.5) 045 (44.1) 1.00 (refer-

ence)
1.00 (refer-

ence)
 > 175 688 (71.5) 057 (55.9) 0.46 (0.31, 

0.68)
0.61 (0.39, 

0.95)
PFS
 ≤ 175 274 (28.5) 072 (38.5) 1.00 (refer-

ence)
1.00 (refer-

ence)
 > 175 688 (71.5) 115 (61.5) 0.57 (0.42, 

0.77)
0.67 (0.48, 

0.94)
GLS
OS
Negative 425 (44.2) 039 (38.2) 1.00 (refer-

ence)
1.00 (refer-

ence)
Positive 537 (55.8) 063 (61.8) 1.24 (0.83, 

1.86)
1.06 (0.69, 

1.62)
PFS
Negative 425 (44.2) 079 (42.2) 1.00 (refer-

ence)
1.00 (refer-

ence)
Positive 537 (55.8) 108 (57.8) 1.05 (0.79, 

1.40)
0.92 (0.68, 

1.26)
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included, which may lead to selective bias. However, GLS 
expression was independent of tumor size in this study and 
the selection may not affect our findings. Finally, we did not 
collect the information of treatment which was associated 
with the outcomes. However, since the treatment was deter-
mined according to the clinicopathological characteristics, 
adjustment of these characteristics in the analysis was able 
to largely control the confounding effects of the treatment.

In conclusion, this study firstly demonstrated that the 
prognostic roles of GLS in breast cancer correlated to the 
level of H3K27me3 expression and this statistical interaction 
occurred only if the patients were premenopausal rather than 
postmenopausal. When the premenopausal women express a 
low H3K27me3 level, the overexpression of GLS may be a 
protective factor according to this study; thus, these patients 
may not be suitable for the treatment of GLS inhibitors. In 
turn, GLS inhibitors may be more effective for premenopau-
sal women with the high H3K27me3 expression. Therefore, 
it is necessary to consider the level of H3K27me3 expression 
and the menopausal status when applying GLS inhibitors.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00428-​021-​03210-6.
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Table 3   Effects of H3K27me3 on the association between GLS and outcomes by menopausal status

a Adjusted for age at diagnosis, clinical stage, histological grade, ER status
CI confidence interval, GLS glutaminase 1, H3K27me3 histone H3 lysine 27 trimethylation, HR Hazard ratio, OS overall survival, PFS progres-
sion-free survival
Bold characters indicate statistically significant result

H3K27me3 GLS Pre-menopause  Post-menopause

Events/total HR (95% CI)a Pinteraction Events/total HR (95% CI)a Pinteraction

OS 0.003 0.730
 ≤ 175 Negative 13/79 1.00 (reference) 08/49 1.00 (reference)

Positive 12/87 0.50 (0.20, 1.28) 09/50 0.59 (0.17, 2.09)
 > 175 Negative 04/163 1.00 (reference) 13/122 1.00 (reference)

Positive 19/204 3.90 (1.29, 11.78) 20/166 1.00 (0.48, 2.06)
PFS 0.024 0.720
 ≤ 175 Negative 22/79 1.00 (reference) 14/49 1.00 (reference)

Positive 18/87 0.44 (0.20, 0.95) 15/50 0.76 (0.32, 1.82)
 > 175 Negative 20/163 1.00 (reference) 21/122 1.00 (reference)

Positive 34/204 1.35 (0.74, 2.48) 34/166 1.09 (0.62, 1.91)
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