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Abstract
Although traditional morphological evaluation remains the cornerstone for the diagnosis of soft tissue tumors, ancillary diag-
nostic modalities such as immunohistochemistry and molecular genetic analysis are of ever-increasing importance in this field.
New insights into the molecular pathogenesis of soft tissue tumors, often obtained from high-throughput sequencing technolo-
gies, has enabled significant progress in the characterization and biologic stratification of mesenchymal neoplasms, expanding
the spectrum of immunohistochemical tests (often aimed towards recently discovered genetic events) and molecular genetic
assays (most often fluorescence in situ hybridization and reverse transcription-polymerase chain reaction). This review discusses
selected novel molecular and immunohistochemical assays with diagnostic applicability in mesenchymal neoplasms, with
emphasis on diagnosis, refinement of tumor classification, and treatment stratification.

Keywords Immunohistochemistry . Molecular diagnosis . Sarcoma . Soft tissue tumors . BCOR . CIC-DUX4 . EWSR1 .

NTRK . SMARCB1 . SMARCA4 . Pathology . Genetics . Targeted therapy

Introduction

Mesenchymal neoplasms are frequently morphologically
he t e rogeneous and of t en d i sp l ay incons i s t en t
immunoprofiles or immunoprofiles that overlap with other
mesenchymal or non-mesenchymal tumors. In recent
years, aided by the more widespread application of high-
throughput sequencing technologies, there has been
marked progress in the molecular characterization of mes-
enchymal tumors. This has led to an expanded spectrum
of commercially available antibodies, often aimed towards
identification of immunohistochemical surrogates for var-
ious molecular genetic alterations, and new molecular
tests (most often fluorescence in situ hybridization
(FISH) probes and reverse transcription-polymerase chain

reaction (RT-PCR) assays). Immunohistochemistry, the
use of antibodies to detect specific epitopes in tissue sec-
tions, plays a central role in the diagnosis of most soft
tissue neoplasms. While older markers typically delineat-
ed the line of differentiation of tumors by detecting cyto-
plasmic proteins such as intermediate filaments, lineage-
associated membrane markers (e.g., CD31 for endotheli-
um) or lineage-associated transcription factors (e.g.,
myogenin and MyoD1 for skeletal muscle), more recent
molecular genetic discoveries have pointed towards newer
markers that directly or indirectly detect tumor-specific
genetic abnormalities. These include the protein products
of gene fusions (e.g., BCOR and CCNB3 in Ewing-like
small round cell sarcomas and CAMTA1, FOSB, and
TFE3 in vascular tumors); the protein correlates of genetic
mutations, deletions, and amplifications (e.g., aberrant
beta-catenin expression in desmoid fibromatosis, loss of
SMARCB1 and SMARCA4 in epithelioid sarcoma and
related tumors, and MDM2 and CDK4 overexpression in
a typ i c a l l i poma tous tumor /we l l - d i f f e r en t i a t ed
liposarcoma); identification of the protein products of
genes noted to be overexpressed by expression profiling
(e.g., MUC4 in low-grade fibromyxoid sarcoma); and im-
munohistochemical detection of epigenetic events (e.g.,
loss of trimethylation of H3K27me3 in malignant
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peripheral nerve sheath tumors (MPNST)). An emerging
further application of immunohistochemistry is the detec-
tion of mutations in tumors or the germline of patients
with neoplasia associated with hereditary cancer predispo-
sition syndromes (e.g., fumarate hydratase deficiency in
hereditary renal cell carcinoma-leiomyomatosis syn-
drome) [1].

The limitations associated with the use of immunohis-
tochemistry should be considered when making any diag-
nosis; the vast majority of markers show limited specific-
ity, with many antigens expressed by more than one tumor
type. Both benign and malignant neoplasms can show
anomalous antigen expression, no markers or marker
combinations exist that distinguish benign from malignant
tumors, and immunohistochemistry should always be
interpreted in the context of the complete panel and the
morphologic and clinical findings.

Ancillary molecular techniques using formalin-fixed,
paraffin-embedded tissues are in widespread routine use in
soft tissue tumors diagnosis, with molecular services frequent-
ly integrated into or closely affiliated with anatomic pathology
laboratories. A subset of soft tissue neoplasms, principally
those of uncertain differentiation and which do not have a
normal cell counterpart, are better defined by their molecular
rather than their immunohistochemical profile. Most diagnos-
tic laboratories utilize FISH to assess for gene rearrangements
or fusions and RT-PCR to detect specific fusion transcripts.
These techniques are easily applicable on limited material
(including core biopsies, cell blocks, and cytologic prepara-
tions), and both the turnaround times and cost for these tech-
niques have begun to approximate those for diagnostic immu-
nohistochemistry. It is increasingly evident that the majority of
recurrent genetic aberrations are not tumor-specific, even
those that have until recently been considered specific for a
given entity. For example, PAX3-FOXO1 fusions, previously
thought to be specific for alveolar rhabdomyosarcoma, are
seen in a subset of biphenotypic sinonasal sarcomas [2, 3]
and EWSR1-WT1 fusions, initially thought specific for
desmoplastic small round cell tumor, have been described in
rare pediatric intra-abdominal spindle cell neoplasms resem-
bling leiomyosarcomas [4] and in a very rare, low-grade,
small round cell tumor of the cauda equina [5]. Thus, as with
immunohistochemistry, molecular genetic findings must be
integrated with the clinical, histologic, and immunohisto-
chemical findings.

In this review, we will provide an overview of the
recent immunohistochemical and molecular advances
made in selected groups of mesenchymal neoplasms, fo-
cusing on tests that are of practical significance in their
diagnostic work-up. More detailed discussion of many of
these immunohistochemical and molecular genetic assays
will also be found in the following articles in this spe-
cial issue.

Epithelioid neoplasms with SMARCB1
and SMARCA4 deficiency

SMARCB1 (INI1/SNF5) and SMARCA4 (BRG1) proteins
are subunits of the switch/sucrose non-fermenting (SWI/
SNF) chromatin-remodeling complex, which is ubiquitously
expressed in all normal cells. This complex plays an essential
role in the regulation of transcriptional activity, through ATP-
dependent modification of nucleosomes [6, 7]. Other units in
this complex include SMARCF1 (ARID1a), SMARCC1
(BAF155), and SMARCC2 (BAF170) [7]. Many SWI/SNF
subunits have a tumor-suppressor function, with biallelic in-
activation demonstrated as a recurring phenomenon in many
cancers, often manifesting with epithelioid or rhabdoid
morphology.

SMARCB1 is the product of the INI1/SMARCB1/BAF47/
hSNF5 gene on ch romosome 22q11 . 2 [8–10 ] .
Immunohistochemical loss of SMARCB1 protein is seen in
nearly all (~ 98%) renal/extrarenal rhabdoid tumors, in > 90%
of (both classical and proximal-type) epithelioid sarcomas
[11–20], approximately 70% of epithelioid MPNST [20, 21],
in subsets of schwannomas (particularly those associated with
schwannomatosis) [21, 22], in approximately 40% of epithe-
lioid schwannomas [23], in ‘poorly differentiated’ chordomas
[24], in about 15% of extraskeletal myxoid chondrosarcoma,
and in all renal medullary carcinoma [20]. Demonstration of
SMARCB1 loss is of particular value in the distinction of
epithelioid sarcoma from poorly differentiated carcinomas,
the overwhelming majority of which show retained expres-
sion (Fig. 1a, b), and in the distinction of epithelioid malignant
peripheral nerve sheath tumors from melanomas, which do
not show SMARCB1 loss (Fig. 2a, b).

Although the spectrum of neoplasms harboring SMARCB1
alterations is incompletely understood, characterization of in-
dividual SMARCB1-deficient tumors is important because of
emerging therapeutic strategies for these tumors, such as in-
hibitors of EZH2, a histone-lysine N-methyltransferase en-
zyme involved in transcriptional repression and DNA meth-
ylation, inactivation of which in in vivo models has shown
blockade of SMARCB1 loss-driven tumorigenesis [25, 26].

A small proportion of rhabdoid tumors and epithelioid sar-
comas that show retained (normal) expression of SMARCB1
instead demonstrate loss of SMARCA4 expression (Fig.
3a, b) [27, 28]. Inactivating mutations of SMARCA4 leading
to loss of nuclear SMARCA4 expression are also commonly
found in subsets of rare, aggressive neoplasms often showing
rhabdoid morphology, including ovarian “small cell carcino-
ma of hypercalcemic type,” [29] undifferentiated carcinomas
of various primary sites [30–32],, and in SMARCA4-deficient
thoracic sarcomas [33–35].

SMARCA4-deficient thoracic sarcomas are primitive mes-
enchymal neoplasms arising as compressive mediastinal and/
or pulmonarymasses in adults, particularly males, often with a
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history of smoking. Morphologically, these consist of sheets
or patternless arrays of relatively discohesive, epithelioid and
rounded, often rhabdoid cells with prominent nucleoli and
frequent necrosis, sometimes with stromal myxoid change or
desmoplasia. Most show keratin or epithelial membrane anti-
gen expression, as well as SOX2 expression, with CD34 and
SALL4 expression in roughly 60% and 30% of cases, respec-
tively. SMARCB1 loss is not seen [36]. Although SMARCA4
loss is seen in roughly 10% of poorly differentiated pulmonary
carcinomas, expression profiling studies show SMARCA4-
deficient thoracic sarcomas to be distinct from lung carcino-
mas, but related to malignant rhabdoid tumors and small cell
carcinomas of hypercalcemic type [35],. Additionally,
SMARCA4-deficient thoracic sarcomas differ from most
(but not all) carcinomas by virtue of concurrent inactivation
of SMARCA2 and overexpression of SOX2.

Ewing sarcoma-like undifferentiated round
cell sarcomas

CIC- and BCOR-associated undifferentiated round cell sarco-
mas represent two emerging classes of primitive round cell
sarcomas which show some histologic and immunohisto-
chemical overlap with Ewing sarcoma or atypical Ewing sar-
coma, but lack molecular evidence of EWSR1 gene rearrange-
ments. The distinction between these neoplasms and Ewing
sarcoma is prognostically important, asCIC-rearranged sarco-
mas behave more aggressively than Ewing sarcoma (5-year

overall survival of 43% compared with 79%) and are associ-
ated with poorer responses to Ewing sarcoma-based chemo-
therapeutic regimens [37–40], whereas BCOR-associated sar-
comas have a similar 5-year overall survival to Ewing sarco-
ma (72%) [40].

CIC-DUX4 fusions appear to represent the most frequent
genetic abnormality in primitive small round cell sarcomas
lacking EWSR1 rearrangements, comprising up to two thirds
of EWSR1 rearrangement-negative undifferentiated round cell
sarcomas of pediatric and young adult patients [37–39]. In
these tumors, CIC on 19q13.2 fuses with one of the DUX4
retrogenes on 4q35 or 10q26.3 [37]. Typically, these show
t(4;19)(q35;q13.1) or t(10;19)(q26;q13.1), leading to CIC-
DUX4 fusions [38, 39, 41–43], while smaller numbers harbor
CIC-FOXO4 fusions [42, 44]. CIC-rearranged sarcomas have
transcriptional profiles distinct from Ewing sarcoma, suggest-
ing a distinct pathogenesis, [45] and have a preponderance for
extremity or truncal soft tissue sites of young adults.
Histologically, they are composed of sheets of small to medi-
um-sized, ovoid, rounded to more rarely spindled cells with
prominent nucleoli and a moderate amount of pale eosinophil-
ic cytoplasm. Mitotic activity and necrosis may be prominent,
and in general, these tumors show greater morphological het-
erogeneity than does Ewing sarcoma [37]. By immunohisto-
chemistry, roughly 75% of CIC-rearranged sarcomas express
CD99, although not generally in the diffuse, membranous
pattern seen in Ewing sarcoma [38]. A total of > 95% of
CIC-rearranged Ewing sarcoma-like sarcomas are positive
for WT1 (typically with both nuclear and cytoplasmic

Fig. 2 Although the
morphological features of
epithelioid malignant peripheral
nerve sheath tumor (a) overlap
significantly with those of
malignant melanoma, loss of
SMARCB1is seen in many
epithelioid malignant peripheral
nerve sheath tumors (b), but not in
melanoma

Fig. 1 Epithelioid sarcoma (a),
showing complete loss of
SMARCB1 expression (b)
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expression), using the amino-terminus antibody, [45–49] like-
ly due to transcriptional upregulation ofWT1 (Fig. 4a, b) [45].
This contrasts with the absence of WT1 expression in both
Ewing sarcoma and BCOR-rearranged primitive sarcomas,
such that WT1 is helpful in this differential diagnosis [46,
48, 49].

Recently, gene expression profiling studies have identified
ETV4 overexpression in CIC-rearranged tumors, [38, 45] with
diffuse nuclear expression of ETV4 seen in > 90% of CIC-
rearranged sarcomas (Fig. 5a, b). ETV4 expression is not seen
in BCOR-rearranged sarcomas and is present in only a minor-
ity of other round cell sarcomas [46, 49, 50]. Another poten-
tially useful reagent in this differential diagnosis is a mono-
clonal antibody to the C-terminus of the DUX4 protein, which
has been reported to show strong nuclear staining in 5/5 CIC-
DUX4 fusion-positive round cell tumors, with absent expres-
sion in all other round cell sarcomas tested (including 20
Ewing sarcomas) [51].

The BCOR gene encodes the BCL6 transcriptional re-
pressor [52]. BCOR-rearranged sarcomas occur largely in
bone or sometimes the deep soft tissues of adolescents or
young adults, particularly males [52, 53]. Most cases har-
bor BCOR-CCNB3 fusions resulting from inv(X) (p11);
other related tumors (which demonstrate similar transcrip-
tional signatures, including high BCOR mRNA expres-
sion) include those harboring BCOR-MAML3, BCOR in-
ternal tandem duplications, YWHAE-NUTM2B and
ZC3H7B-BCOR [40, 52, 54–57]. These tumors are com-
posed of undifferentiated small round, ovoid, or spindled
cells with monomorphic nuclei and fine chromatin, in a

highly vascular, myxoid to collagenous stroma [53] In
addition to Ewing sarcoma, BCOR-rearranged sarcomas
can mimic poorly differentiated or monophasic synovial
sarcomas. Immunohistochemically, BCOR-rearranged sar-
comas typically show some combination of CD99, TLE1
and bcl-2 expression, an immunoprofile that overlaps sig-
nificantly with Ewing sarcoma, and synovial sarcoma.
CyclinD1 and SATB2 are also expressed by most tumors.

CCNB3 protein has recently emerged as a potentially
useful marker of BCOR-rearranged sarcomas, with > 90%
of BCOR-CCNB3 tumors showing nuclear expression [48,
52, 58, 59]. For tumors lacking CCNB3 rearrangements,
strong nuclear expression of BCOR protein has been
shown in some studies to be a valuable diagnostic ad-
junct, present in > 95% of neoplasms harboring BCOR-
CCNB3, BCOR-MAML3, or BCOR internal tandem dupli-
cations, and in related YWHAE-NUTM2B tumors (Fig.
6a, b) [48, 58, 60]. The results of BCOR immunohisto-
chemistry have varied somewhat in different studies, with
one large study showing BCOR expression in 100% of
BCOR sarcomas and only 4% of 412 other tumors, includ-
ing some solitary fibrous tumors, Ewing sarcomas, syno-
vial sarcomas, small cell osteosarcomas, lymphomas and
small cell carcinomas [59], and another demonstrating
BCOR expression in 49% of synovial sarcomas, including
all poorly differentiated forms [40]. Various molecular
techniques can be used to assess for BCOR gene rear-
rangements and internal tandem duplications, although
these are unlikely to be available outside of tertiary
centers.

Fig. 3 Malignant rhabdoid tumor,
presenting in the back of a
middle-aged woman (a).
Surprisingly, this tumor had
retained expression of
SMARCB1 (not shown) but
exhibited complete loss of
SMARCA4 expression (b)

Fig. 4 CIC-rearranged sarcoma
(a), showing diffuse nuclear
expression of WT1 protein (b).
WT1 expression in a round cell
tumor should suggest the
possibility of CIC-rearranged
sarcoma
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Epithelioid vascular neoplasms

The morphological and immunohistochemical features of ep-
ithelioid hemangioma, epithelioid hemangioendothelioma,
p s e u d omy o g e n i c ( e p i t h e l i o i d s a r c om a - l i k e )
hemangioendothelioma, and epithelioid angiosarcoma over-
lap to a degree with each other, as well as with those of various
non-endothelial, epithelioid neoplasms (e.g., epithelioid sar-
coma, carcinoma). Thus, there has been considerable interest
in the discovery of novel markers that may assist in this
sometimes-difficult differential diagnosis. Recently, the dis-
covery of characteristic, recurrent cytogenetic alterations in
these tumors has been translated into useful ancillary molec-
ular genetic and immunohistochemical tests for routine
diagnosis.

WWTR1-CAMTA1 and YAP1-TFE3 gene fusions
in epithelioid hemangioendothelioma

Epithelioid hemangioendothelioma (EHE) is a low-grade
malignant vascular endothelial neoplasm which can arise
at a variety of sites, including the somatic soft tissues, and
in lung, liver, and bone, where it is often multifocal.
Morphologically, these are composed of cords of epithe-
lioid endothelial cells with pale eosinophilic cytoplasm
and often intracytoplasmic vacuoles, within a myxo-
chondroid or hyalinized matrix. EHE express “pan-endo-
thelial” markers, such as CD31, FLI1, and ERG, and are

also often keratin-positive, a significant pitfall when the
differential diagnosis includes carcinoma. A subset of
EHE also shows high nuclear grade and may be difficult
to distinguish from conventional angiosarcoma.

EHE is characterized genetically by WWTR1-CAMTA1
gene fusions, resulting from the reciprocal t (1; 3) (p36;
q23-25) [61, 62]. CAMTA1 encodes a transcription factor
expressed normally only in brain tissue [63]. Diffuse nu-
clear immunohistochemical expression of CAMTA1 using
a rabbit polyclonal antibody (Novus Biologicals,
Littleton, CO) is highly sensitive and specific for EHE
and has been found in > 85% (including both convention-
al types and those with morphologically high-grade fea-
tures), while absent in morphologic mimics such as epi-
thelioid angiosarcoma (Fig. 7a, b) [64, 65]. It is important
to use this particular polyclonal antibody, as other
CAMTA1 antibodies lack specificity [66]. A smaller sub-
set of EHE are associated with YAP1-TFE3 gene fusions;
these typically present in young adults and are morpho-
logically distinct, with a greater propensity for solid
growth, cells containing voluminous eosinophilic cyto-
plasm and in some cases well-formed vascular channels,
a feature absent in classical EHE [67]. These neoplasms
are immunohistochemically negative for CAMTA1, and
instead show diffuse nuclear expression of TFE3 [65]. It
should be cautioned, however, that TFE3 immunohisto-
chemistry is not at all specific for TFE3 rearrangement,
and FISH is the preferred test for the demonstration of
this molecular genetic event [68].

Fig. 5 CIC-rearranged sarcoma
(a), showing strong nuclear
expression of ETV4 (b)

Fig. 6 BCOR-rearranged
primitive myxoid sarcoma (a),
strongly positive for BCOR
protein by immunohistochemistry
(b)
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FOSB gene rearrangements
in pseudomyogenic (epithelioid sarcoma-like)
hemangioendothelioma and epithelioid
hemangioma

Pseudomyogenic hemangioendothelioma is a neoplasm of in-
termediate biologic potential that typically presents in the
limbs of young adult males, characteristically occurring in a
multicentric distribution in different tissue planes.
Histologically, it is composed of loose fascicles of plump
spindled and epithelioid cells with eosinophilic cytoplasm
and expresses both keratins and endothelial markers, but not
CD34 [69, 70]. It can be confused with a variety of neoplasms,
including epithelioid sarcoma and various myoid tumors, al-
though it demonstrates retained SMARCB1 expression and
generally lacks expression of myogenous markers.

The FOSB gene shows recurrent rearrangements in
pseudomyogenic hemangioendothelioma and in epithelioid
hemangioma, and this gene and its paralogue FOS are also
recurrently rearranged in osteoblastomas [71]. FOSB is a
member of the Fos transcription factor family (which includes
FOS, FOSL1, and FOSL2) and takes part in a range wide of
biologic processes, including adaption to stress and oncogen-
esis [72]. SERPINE1-FOSB fusions associated with t (7; 19)
(q22; q13) are characterist ic of pseudomyogenic
hemangioendothelioma, [73, 74]; a yet to be fully defined
percentage of cases show FOSB rearrangements with ACTB
orWWTR1 instead [75, 76]. SERPINE1 is highly expressed in
vascular cells; fusion with FOSB leads to its overexpression
by placing it under transcriptional control of the SERPINE1

promoter [77]. FOSB rearrangements are also present in epi-
thelioid hemangiomas, especially those with atypical histolog-
ic features such as solid growth pattern, increased cellularity,
nuclear atypia and necrosis, withmost cases showing fusion to
ZFP36, or more rarely to WWTR1 or an unknown partner
[78],. FOS rearrangements occur in approximately up to one
third of epithelioid hemangiomas, most frequently those in
bone or showing solid/cellular histology. These rearrange-
ments do not seem to be a feature of cutaneous
“angiolymphoid hyperplasia with eosinophilia” [79].

FOSB immunohistochemistry has been shown to be a useful
surrogate marker for the presence of FOSB rearrangements in
pseudomyogenic hemangioendothelioma and epithelioid hem-
angiomas [80–82]. Strong and diffuse nuclear expression is
present in > 95% of pseudomyogenic hemangioendotheliomas,
with weaker expression noted in small numbers of
angiosarcomas, EHE, and nodular/proliferative fasciitis (Fig.
8a, b) [82]. FOSB expression has also been shown in 54–
100% of epithelioid hemangiomas [83], including cutaneous
neoplasms, with absent expression in various benign and ma-
lignant mimics (Fig. 9a, b).

Non-Ewing sarcoma tumors with EWSR1 gene
rearrangements

First shown to be rearranged in Ewing sarcoma and thought
specific for this neoplasm, it is now established that the
EWSR1 gene can fuse with a broad variety of partners. The
FUS gene is highly homologous with EWSR1, and these can

Fig. 7 Epithelioid
hemangioendothelioma (a),
positive for CAMTA1 by
immunohistochemistry (b).
CAMTA1 expression is highly
specific for epithelioid
hemangioendothelioma, among
endothelial tumors

Fig. 8 Pseudomyogenic
hemangioendothelioma (a),
displaying diffuse FOSB
expression (b), reflecting the
underlying SERPINE1-FOSB
fusions usually seen in these rare
lesions
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serve as alternative binding partners in a number of
translocation-associated tumors, [84] including angiomatoid
fibrous histiocytoma (AFH), myxoid liposarcoma, low-grade
fibromyxoid sarcoma, and sclerosing epithelioid fibrosarco-
ma. It is increasingly evident that most gene fusions are rarely
specific for a given tumor type, and that the same fusion can
generate neoplasms that are clinically and pathologically di-
verse; identical gene fusions might lead to the formation of
phenotypically different neoplasms due to specific influences
of different anatomic locations on similar progenitor cells
[85], or due to occurrence within different progenitor cells that
activate specific sets of transcription factors. This is illustrated
by the finding of EWSR1-ATF1 and/or EWSR1-CREB1 gene
fusions in AFH [86–89], clear cell sarcoma (of tendons and
aponeuroses ) (CCS) , mal ignant gas t ro in tes t ina l
neuroectodermal tumor (MGNET) [51, 90–92], primary pul-
monary myxoid sarcoma [93], and hyalinizing clear cell car-
cinoma (HCCC) of salivary gland [94]. EWSR1-ATF1 fusion
has also been reported in a soft tissue myoepithelial tumor

[95], and an angiosarcoma of the parotid gland [96]. EWSR1
has a propensity for fusing with genes encoding members of
the CREB family of transcription factors. The ATF1 gene
encodes the cyclic AMP-dependent transcription factor
ATF1, a member of the cyclic-AMP response element binding
protein (CREB)-ATF transcription factor family, which bind
to cAMP-inducible promoters. CREB proteins are related
functionally to ATF, and CREB1 is an alternative gene to
ATF1 in AFH and CCS [89].

More recently, a novel group of myxoid mesenchymal neo-
plasms has been described [97] that predominantly arises at
intracranial sites in children or young adults and are associated
with either EWSR1-CREM or EWSR1-CREB1 fusions [97,
98]. These tumors are lobulated and typically composed of
cords or reticular arrangements of uniform ovoid cells within
prominent myxoid/microcystic stroma, with rare mitotic fig-
ures [98], and often “sunburst” amianthoid fibers. These tu-
mors show variable expression of desmin, epithelial mem-
brane antigen, GLUT1 and CD99. EWSR1-CREM fusions

Fig. 9 Epithelioid hemangioma
(a), demonstrating FOSB
expression (b)

Fig. 10 EWSR1-SMAD3
fibroblastic tumor, presenting in
the foot of a young woman (a).
Higher power view of this same
tumor, showing an infiltrative
proliferation of compact fascicles
of cytologically uniform spindled
cells (b). Diffuse expression of
ERG protein is characteristic of
EWSR1-SMAD3 tumors, for
unknown reasons, and may be a
valuable diagnostic clue (c)
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are also found in some clear cell carcinomas in the tongue,
lung, and nasopharynx with the morphology of HCCC, and
CREM likely serves as an alternative gene to CREB1 and ATF
in partnering with EWSR1 [99].

EWSR1-NFATC2 sarcomas present as primary bone or soft
tissue tumors, with a predilection for the long bones of adult
males, and have potential for local and distant recurrence, with
FUS-NFATC2 tumors reported exclusively within the long
bones [100]. Their histology is variable, from round cells in
a trabecular or pseudoacinar pattern in a myxoid or collage-
nous matrix, to tumors of short spindle cells with nuclear
pleomorphism. There is variable expression of CD99, with
frequent keratin positivity, and consistent high-level amplifi-
cation of the EWSR1-NFATC2 fusion gene. These tumors
have different gene expression profile patterns from Ewing
sarcoma, share a distinct DNA methylation signature and har-
bor characteristic copy number alterations, and are resistant to
Ewing sarcoma-specific chemotherapy, such that these should
be considered separately from Ewing sarcomas [101–103].

EWSR1-SMAD3 fusions have recently been reported in a
small number of clinicopathologically distinctive fibroblastic/
myofibroblastic neoplasms [104, 105]. These are typically
small tumors which occur in superficial soft tissue, predomi-
nantly in acral sites or the lower limb, with a wide age range
(but predominantly in adult women). These neoplasms can
recur locally, although metastases have not been as yet report-
ed. Histologically, tumors often display a nodular growth pat-
tern with zonation, with peripheral hypercellular areas of
bland, fibroblastic-like spindle cells in short fascicles, and
hypocellular central areas of hyalinization, small calcifica-
tions, and sometimes infarction. For unknown reasons, these
unusual tumors are characterized by strong, diffuse nuclear
expression of ERG protein, but are negative for smooth mus-
cle actin, S100 protein, CD31 and CD34 (Fig. 10a–c) [104,
105].

Recently, EWSR1/FUS–TFCP2 fusions have been identi-
fied in an aggressive group of primary intraosseous rhabdo-
myosarcomas predominantly occurring in young adults at

Fig. 11 FUS-TFCP2 fusion-
positive epithelioid
rhabdomyosarcoma of the
mandible (a), strongly positive for
MyoD1 (b), and ALK protein (c).
ALK expression is commonly
seen in these very rare, recently
described rhabdomyosarcomas of
bone

Fig. 12 NTRK-rearranged spindle
cell tumor of the small intestine in
a child (a), positive for TRK
protein by immunohistochemistry
(b)
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multiple osseous sites including the pelvis, femur, chest wall,
maxilla, skull, and sphenoid bone [100, 106, 107]. These dis-
tinctive rhabdomyosarcomas are composed of sheets and
short fascicles of epithelioid cells with monotonous rounded
nuclei and prominent nucleoli, with variably fibrous stroma
and focal sclerosis, or may display hybrid spindled and epi-
thelioid features, with moderate amounts of eosinophilic cy-
toplasm and mild atypia [100, 106]. Rarer cases withMEIS1-
NCOA2 fusions have more primitive, fascicular spindle cell
features [106]. As would be expected, these novel rhabdo-
myosarcoma subtypes express desmin, MyoD1, and
myogenin. Cases with TFCP2 fusions can also express epi-
thelial markers, ALK and TERT, the latter representing poten-
tial therapeutic targets (Fig. 11a–c) [100, 106]. By expression
profiling, these rare tumors do not cluster with other rhabdo-
myosarcomas, or with other neoplasms having EWSR1/FUS
fusions [100].

Mesenchymal tumors with NTRK fusions

NTRK1, NTRK2, and NTRK3 are neurotrophic receptor ty-
rosine kinase genes that, respectively, encode the tropomyosin
receptor kinases, TRKA, TRKB, and TRKC. Identification of
NTRK gene rearrangements is of clinical importance, as the
development of selective NTRK inhibitors has enabled the
potential for targeted therapy of neoplasms with NTRK rear-
rangements [108]. This group encompasses infantile fibrosar-
coma with ETV6-NTRK3 fusion (also found in mesoblastic
nephroma, secretory carcinoma of breast and salivary glands,
and leukemias, and, much more rarely, small numbers of in-
flammatory myofibroblastic tumors, gastrointestinal stromal
tumors, and Ewing sarcoma), and various other neoplasms
typically comprising fibroblastic-appearing spindle cells with
a spectrum of histologic appearances and clinical behaviors.
Members of this family of tumors include the recently de-
scribed “lipofibromatosis-like neural tumor”, which arises in
the subcutis in various locations, shows NTRK1 gene rear-
rangements variably fused to ETV6, TFG, or TPM4, and re-
tains the NTRK3 kinase domain [108]. These lesions show
variable histologic features ranging from low- to intermediate-
grade morphology with a patternless proliferation of mono-
morphic spindle cells with stromal bands and perivascular
hyalinized collagen, to those with high-grade fascicular spin-
dle cell sarcoma morphology, somewhat resembling fibrosar-
coma or MPNST [108]. Tumors with LMNA-NTRK1 or
TPM3-NTRK1 fusions and various other NTRK-rearranged
sarcomas have been reported at various locations (including
in soft tissue, bone, and viscera) and show a variety of histo-
logic patterns. Despite their variable morphology, NTRK-
rearranged sarcomas typically show patchy positivity for
CD34 and S100 protein, without SOX10 expression.
Immunohistochemistry using a pan-TRK antibody has shown

diffuse expression of pan-TRK to be highly sensitive, al-
though not entirely specific, for neoplasms with NTRK rear-
rangements (Fig. 12a, b) [109–111]. Variant staining patterns
are seen in tumors with NTRK1 and NTRK2 fusions and those
with fusions of NTRK3 [110]. As small molecule inhibitors of
TRK activity such as larotrectinib have shown promising ef-
ficacy in the treatment of patients with NTRK-rearranged neo-
plasms [112], diffuse pan-TRK expression by immunohisto-
chemistry may represent a potential means of rapid selection
of patients amenable to TRK-targeted therapy, although data
is very limited.

Conclusions

The spectrum of diagnostic immunohistochemical markers di-
rected at protein surrogates of recurrent molecular genetic aber-
rations in soft tissue tumors continues to expand and has already
had significant diagnostic impact. Immunohistochemistry for
these “molecular surrogates”may also serve to potentially guide
targeted therapy. In selected cases, immunohistochemistry may
even be able to replace molecular diagnostic confirmation of
certain genetic events, although as with any technique, perfect
sensitivity and specificity are lacking, and these tests must be
interpreted in the context of all other available clinical, morpho-
logic, and ancillary information.
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