
REVIEW ARTICLE

Immunosuppressive circuits in tumor microenvironment and their
influence on cancer treatment efficacy

Alessandra Tuccitto1
& Eriomina Shahaj1 & Elisabetta Vergani1 & Simona Ferro1

& Veronica Huber1 &Monica Rodolfo1
&

Chiara Castelli1 & Licia Rivoltini1 & Viviana Vallacchi1

Received: 23 July 2018 /Revised: 10 October 2018 /Accepted: 14 October 2018 /Published online: 29 October 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
It has been for long conceived that hallmarks of cancer were intrinsic genetic features driving tumor development, proliferation,
and progression, and that targeting such cell-autonomous pathways could be sufficient to achieve therapeutic cancer control.
Clinical ex vivo data demonstrated that treatment efficacy often relied on the contribution of host immune responses, hence
introducing the concept of tumor microenvironment (TME), namely the existence, along with tumor cells, of non-tumor com-
ponents that could significantly influence tumor growth and survival. Among the complex network of TME-driving forces,
immunity plays a key role and the balance between antitumor and protumor immune responses is a major driver in contrasting or
promoting cancer spreading. TME is usually a very immunosuppressed milieu because of a vast array of local alterations
contrasting antitumor adaptive immunity, where metabolic changes contribute to cancer dissemination by impairing T cell
infiltration and favoring the accrual and activation of regulatory cells. Subcellular structures known as extracellular vesicles then
help spreading immunosuppression at systemic levels by distributing genetic and protein tumor repertoire in distant tissues. A
major improvement in the knowledge of TME is now pointing the attention back to tumor cells; indeed, recent findings are
showing how oncogenic pathways and specific mutations in tumor cells can actually dictate the nature and the function of
immune infiltrate. As our information on the reciprocal interactions regulating TME increases, finding a strategy to interfere with
TME crosstalk becomes more complex and challenging. Nevertheless, TME interactions represent a promising field for the
discovery of novel biomarkers and therapeutic targets for improving treatment efficacy in cancer.
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Introduction

Cancer cells need nutrients to proliferate, differentiate, in-
crease the tumor mass, and invade the surrounding tissue.
During tumor development, several genetic and epigenetic
alterations occur in cancer cells leading to the activation of
oncogenic signals that are involved in the reprogramming of
tumor metabolism. The metabolic reprogramming mediated
by the activation of oncogenes and signaling pathways en-
sures that tumor cells have all the elements necessary to grow

autonomously [1]. Dysregulated metabolism and oncogenic
mutations of cells lead to the activation of inflammatory sig-
nals, which in turn sustain the growth and aggressiveness of
cancer. Specifically, the dysfunctional metabolisms induce the
release of cytokines, chemokines, growth factors, and acid
metabolites including protons (H+) and lactate. These are fun-
damental factors for recruiting immunosuppressive cells, such
as Tregs, tumor-associated macrophages (TAMs), and
myeloid-derived suppressor cells (MDSCs) at tumor site,
and fostering their immunosuppressive functions [2].
Moreover, the alteration of oncogenic pathways is correlated
with lower or higher immune infiltration [3] and promotes
immune evasion [4] and poor response to immunotherapy
[5, 6]. In addition, tumor cells release immune-related factors
and extracellular vesicles (EVs), among which exosomes, in-
volved in intercellular crosstalk by the transfer of various mo-
lecular constituents. These tumor EVs target immune cells and
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induce a reprogramming toward an immunosuppressive phe-
notype [7]. Thus, by the release of immune-related factors and
exosomes in the blood, cancer cells stimulate the bonemarrow
myelopoiesis toward the generation of dysfunctional myeloid
cells such asMDSCs [8]. Once recruited at the tumor site from
the circulation, together with TAMs, these cells support tumor
growth and proliferation through the production of factors that
stimulate the formation of new tumor vessels and metastatiza-
tion and impair T and natural killer (NK) cell effector func-
tions [9]. The increment of MDSCs in cancer patients is asso-
ciated with tumor aggressiveness and poor prognosis [10] and
thus MSDCs are deemed as target cells to improve the re-
sponse to immune checkpoint inhibitors (ICIs) [11]. In this
review, we summarize recent findings about the role of cancer
cells in shaping the metabolic and cellular composition of the
TME, focusing our attention on tumor immunosuppression.

Oncogenes and tumor mutations influence
the immune microenvironment and response
to immunotherapy

Activation of oncogenic pathways in tumor cells
promotes immune evasion

The function of aberrant oncogenes and tumor suppressor
genes has been investigated as a cell-intrinsic tumor charac-
teristic in the setting of an immunosuppressive microenviron-
ment. Most of the causal evidence comes from studies with
genetically engineered mouse tumor models uncovering the
molecular pathways by which tumor mutations impact the
immune contexture of the TME [4]. Alterations involving
TP53, PTEN, RAS, MYC, and CTNNB1 genes have been
shown to shape the immune infiltrate by increasing tumor cell
production of cytokines and chemokines promoting the re-
cruitment and activation of macrophages, monocytes, neutro-
phils, mast cells, or Tregs while concurrently reducing CD8+
T cell levels [4]. Such evidence has been obtained for several
tumor types, including malignant melanoma, non-small cell
lung cancer (NSCLC), colorectal cancer (CRC), breast cancer,
hepatocellular carcinoma (HCC), prostate cancer, pancreatic
cancer, and the production of factors such as TGF-β, IL-1β,
CCL-2, CCL-5, CCL-9, and CCL-17 recruiting myeloid cells
to the tumor has been involved in these studies [4].

The reshaping of the secretome of tumor cells consequent
to aberrant signaling of specific genes is a well-known effect
in human cancer. A variety of oncogenic pathways has been
associated with production of cytokines or chemokines able to
regulate the recruitment of immunosuppressive cells. Classic
examples are genemutations hyperactivating theMAPK path-
way occurring in RAS, BRAF, and RET oncogenes, which
characterize several solid tumor types. Constitutive activation
of MAPK pathway by BRAF mutation in melanoma was

shown to regulate the expression of a plethora of genes which
by increasing immunosuppressive cytokines and reducing
MHC/melanoma antigen complexes impair antitumor immu-
nity by promoting an immunosuppressive environment with
low numbers of activated T cells, dendritic cells (DCs), and
NK cells [12]. Conversely, inhibition of MAPK pathway
through BRAF and MEK inhibitors showed favorable effects
on TME, including decreased immunosuppressive cytokines,
increased antigen expression, and recruitment of a CD8+ T
cell infiltrate [13–15]. In this context, we showed that the
production of CCL-2 is increased in both patient tumor and
serum and contributes to treatment resistance and that co-
targeting of CCL-2 or downstreammiRNAsmay be beneficial
[16].

Oncogenes expressed in immune cells of the tumor
microenvironment

It has been recently proposed that oncogenic pathways in im-
mune cells can be implicated in the spontaneous regression of
tumors, and thus, proto-oncogenes might represent novel ther-
apeutic targets for cancer treatment [17]. MYC oncogene is a
main physiological regulator of the immune system and of
immune cell functions in the context of cancer. MYC and
KIT pathways are important for the cytotoxic activity of NK
cells, and their decreased expression was implicated in the
poor antitumor activity of NK cells in cancer patients [18].
MYC also regulates macrophage functions, and the activation
of MYC controls the macrophage polarization into M2 type
and promotes macrophage protumoral activity [19]. The po-
larization of macrophages into M2 type is also regulated by
p53; the usage of genetically engineered mouse models re-
vealed that a low expression of p53 is associated with the
stabilization ofMYC and consequently an increased transcrip-
tion of M2 genes [20]. The tumor suppressor gene TP53 is
also involved in the regulation of T cell differentiation, and
p53 and MYC may act synergistically in the regulation of T
cell proliferation [21].

Tumor genetic profile shapes antitumor immune
response

The association between tumor genetics and immune infiltrate
has been studied in the context of the high-resolution mapping
of tumor immune landscape by RNA-based information and
genetic data from The Cancer Genome Atlas (TCGA) [22]. A
recent study identified immune subtypes spanning cancer tis-
sue types and impacting prognosis, where the relation to ge-
nome state (including aneuploidy, copy number variation, loss
of heterozygosity) was determined and specific driver muta-
tions correlated with lower (CTNNB1, NRAS, IDH1) or higher
(BRAF, TP53, CASP8) immune infiltration [3]. Indeed, spe-
cific mutations in EGFR, ALK, and JAK genes have been
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associated to poor response to immunotherapy and to a poor
immune TME in NSCLC and MM respectively [5, 6]
(reviewed in Table 1).

Tumor genomic instability can determine the gain or loss of
large genomic regions, resulting in somatic copy number al-
terations. The aneuploid setting has been associated to im-
mune escape and to poor response to immunotherapy with
anti CTLA-4 and PD-1 in several tumor types, including met-
astatic melanoma [29, 30]. Genetic deletions in the tumor cells
may deeply influence the characteristics of the leukocytes in-
filtrating the tumor. Two seminal examples are the deletion of
IL15 in CRC [33] and the deletion of IFNG locus in melano-
ma [31, 34] determining poor lymphocyte infiltration in the
TME. In particular, the latter is of major importance given the
role of IFN signaling in cytotoxic immune cells and in the
regulation of the expression of immune checkpoints (ICs)
[35], and in consideration of the dysregulation of IFN-
stimulated genes in several cancer types and in resistance to
ICIs [36].

Tumor mutational burden (TMB), defined as the number of
mutations per coding area of a tumor genome, reflects the
genomic instability of tumor cells and it is usually associated
to neoantigen formation, thus determining increased tumor
immunogenicity. For this reason, high TMB and neoantigen
formation are considered crucial factors for the shaping of the
immune infiltrate and predictors of response to immunother-
apy in diverse cancers [23, 37]. Notably, a correlation between
TMB, as the number of coding mutations per megabase (Mb),
and the objective response rate to anti PD-1 and PD-L1 ther-
apy has been reportedwhen the data from 27 tumor types were
analyzed [24]. However, it is also clear that there are a number
of patients in which response or treatment resistance cannot be
associated to TMB [27, 38]. Neoantigen formation can result
also from small-scale insertion and deletion mutations (indel),
which may generate highly immunogenic neoantigens by

creating novel open reading frames. Different types of renal
cell carcinoma were reported to have the highest indel rate
compared to other tumor types, and the indel number was
reported to be associated with checkpoint inhibitor response
in melanoma [25].

Melanoma is the tumor with the highest TMB among the
cancer types analyzed by TCGA, with a meanmutation rate of
16.8 mutations/Mb; in particular, melanoma has a high frac-
tion of C>T transitions at dipyrimidines consistent with UV
radiation’s signature [39]. Several studies have reported an
association between TMB with high predicted neoantigen
load and response to immunotherapy in melanoma [40–42].

The degree of similarity of the mutational landscape or
more in general of the whole genomic alterations of primary
and metastatic tumors remains an unsolved question, giving
rise to a number of recently published studies [43–45].
Although the results are in some instances contradictory, it
could be concluded that a different genetic profile could be
found in 40% of matched primary versus metastatic cancers
[45]. The majority of metastatic cancer tissues retain the ge-
nomic features of their corresponding primary tumor.
However, the gene mutation rate is higher in the metastatic
forms, as evidenced in six different metastatic cancers (CRC,
NSCLC, soft tissue sarcoma, bladder, thyroid, and ovarian
cancers) [43, 44], leading to the acquisition of new signatures
associated to cancer progression. Among others, TP53 is the
most frequent altered gene in metastatic lesions [43]. In pan-
creatic and colon adenocarcinoma, the second most common
altered gene in metastatic tissues is KRAS [43]. Moreover,
mutational exclusiveness of ALK-BRAF and ERBB4-BRAF
was found in metastatic melanoma and also EGFR-JAK3
and CTNNB1-TP53 only in metastatic NSCLC [44].

Collectively, these data support the view that integrated
analysis of genetic and immune makeup of tumors may im-
prove precision medicine. Taken together, the studies

Table 1 Intrinsic tumor genetic features associated to response to immunotherapy

Genetic alteration Tumor type aFq bICIs ICI outcome TME Ref

Mutational load Melanoma and 27 tumor types fND CTLA-4, PD-1, PD-L1 Response gImmune signatures in R [23, 24]
Indel number Melanoma ND PD-1 Response ND [25]
cDNA MMR dMMRD colorectal cancer ND PD-1 Response High CD8 and PD-L1 [26]
BRCA2 Melanoma 28% PD-1 Response gImmune signatures in R [27]
TP53 Lung adenocarcinoma 33% PD-1 Response high CD8 and PD-L1 [28]
Aneuploidy Melanoma ND CTLA-4 Poor response hImmune signature in NR [29]
Copy number loss Melanoma ND CTLA-4 and PD-1 Poor response hImmune signature in NR [30]
IFNG-related gene loss Melanoma 50% CTLA-4 Poor response ND [31]
EGFR eNSCLC ND PD-1 Poor response Low CD8 and PD-L1 staining [5]
ALK NSCLC ND PD-1 Poor response Low CD8 and PD-L1 staining [5]
JAK1 Melanoma < 5% PD-1 Poor response Absence of CD8 PD-L1 PD-1 staining [6]
JAK2 Colorectal cancer < 10% PD-1 Poor response Absence of CD8 PD-L1 PD-1 staining [6]
STK11/LKB1 Lung adenocarcinoma 16% PD-1 Poor response Absence of PD-L1 staining [32]

aFq, frequency; b ICIs, immune checkpoint inhibitors; cDNA MMR, DNA mismatch repair; dMMRD, mismatch repair-deficient; eNSCLC, non-small
cell lung cancer; fND, not determined; g Increased expression of genes associated to adaptive immunity in responders (R); h Reduced expression of genes
associated to adaptive immunity in non-responders (NR)
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highlight tumor genetic profile as a key factor for selecting
patients that will benefit from immunotherapy. However, tu-
mor specimens are not always available for genetic character-
ization and whole exome sequencing (WES) for the determi-
nation of TMB is expensive and time consuming. For these
reasons, alternative strategies are needed to measure TMB,
such as targeted sequencing, or strategies able to surrogate it,
such as assessment of circulating biomarkers. Initial data on
TMB assessment through sequencing of circulating DNA
have been recently discussed at the American Society of
Clinical Oncology (ASCO) meeting [46]. Moreover, the opti-
mization of a pipeline aimed at precisely defining the thresh-
old of high and low TMB and evaluating the immunogenicity
of neoantigens generated by TMB is also still required.

Tumor-driven biochemical remodeling
of the tumor microenvironment and its role
in immune suppression

Metabolic reprogramming and immune evasion are two im-
portant hallmarks of cancer. The metabolic reprogramming
supports the high proliferation rate and growth of tumor cells
by providing the required energy and the carbonic precursors
necessary for the synthesis of new biomolecules. Conversely,
by immune evasion, tumor cells grow escaping the immune
surveillance operated by different immune cell subsets, be-
longing to innate or adaptive immunity subsets. These two
hallmarks, cancer dysmetabolism and immune evasion, are
interdependent and linked via the tumor-driven metabolic
changes occurring in TME. Activated oncogenes and
inactivated tumor suppressors regulate the metabolic
reprogramming of tumor cells that in turn changes the avail-
ability of nutrients and leads to the accumulation of metabo-
lites in the TME. This altered metabolic environment imposes
the biochemical remodeling of tumor infiltrating stromal and
immune cells and affects their phenotype and functional spec-
ification. Thus, besides the secretion of specific cytokines,
chemokines, and growth factors, the competition for nutrients
and the metabolic milieu enriched in tumor-derived metabo-
lites favors the setting of an immunosuppressive and protumor
environment.

Metabolic changes in cancer cells

In cancer cells, glucose is one of the primary sources of energy
and it is metabolized via aerobic glycolysis, a process known
as Warburg effect. This metabolic dysfunction is crucial for
tumor maintenance and progression since, in addition to pro-
vide energy in the form of ATP (although with low efficacy as
compared to oxidative phosphorylation (OXPHOS), compen-
sated by enhanced glucose uptake), it also ensures the accu-
mulation of precursors for macromolecule synthesis and

opens the possible commitment of mitochondria to anabolic
metabolism.

Oncogenic mutations and the activation of several path-
ways important for cell proliferation regulate the aerobic gly-
colysis. For example, BRAF suppresses the OXPHOS in mel-
anoma, RAS increases the transcription of glucose transporter
1 (GLUT1), and PI3K/AKT controls the uptake of glucose
increasing the GLUT-1 on the cell surface. Oncogenic
KRAS induces activation of MYC through Raf/Mek/Erk
pathway enhancing glucose consumption. Furthermore,
MYC also increases lactate production boosting the expres-
sion of lactate dehydrogenase A (LDHA) [1].

As a consequence of tumor development, the oxygen and
nutrients supplied from normal vasculature are not sufficient
to support the high metabolic rate of tumor cells, thus, low O2

(hypoxia) and nutrient availability, high apoptosis, and necro-
sis characterize fast-growing tumors. Hypoxia restricts
OXPHOS and it further pushes the tumor cell metabolism
toward the conversion of glucose to lactate by O2-independent
glycolysis (Warburg effect). Thus, lactate, carbonic dioxide
(CO2), and protons (H+), produced by cancer cells and accu-
mulated in the extracellular milieu, are the main causes of low
pH and acidity in the TME [2]. Moreover, the necrotic tumor
cells release their intracellular potassium (K+) producing a
high concentration of K+ in the TME [47].

The growth of cancer cells is not only dependent on glu-
cose, as for their active proliferation, cancer cells require lipids
and amino acids, whose synthesis or uptake is also regulated
by oncogenes or signaling pathways. For example, KRAS
regulates the glutamine metabolism in pancreatic cancer [1]
and BRAF inhibitors favor the overgrowth and proliferation
of glutamine-dependent melanoma cells [48]. The oncogene
MYC is involved in the promotion of glutamine uptake and in
the conversion of glutamine into acetyl-CoA in the mitochon-
dria through the upregulation of glutamine transporters like
SLC1A5 (ASCT2) and glutaminase 1 (GLS1), respectively
[49]. The glutamine converted into glutamate is an important
source for the glutathione-based anti-oxidant system, and it
provides nitrogen used for the synthesis of asparagines and
precursors of nucleic acids. Moreover, the glutamine can be
converted into α-ketoglutarate (α-KG) and, in condition of
hypoxia, α-KG can be used as precursor of cholesterol syn-
thesis [50]. To satisfy their lipid requirement, tumor cells en-
hance lipid and cholesterol synthesis through the activity of
sterol regulatory element-binding protein (SREBP1) regulated
by the PI3k/Akt/mTORC1 pathway [51].

Tumor-derived metabolites and competition
for nutrients favor the establishment of a protumor
environment

Immune cells are highly plastic, and in response to external
stimuli, they polarize toward different functional states. The
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competence for different effector functions is regulated by pro-
grammed changes in the cellular metabolism. Importantly, the
metabolic environment in which the immune cells operate in-
fluences the metabolism of immune cells and, consequently,
their functions. In this perspective, the tumor-driven metabolic
milieu imposes a metabolic reprogramming to infiltrating im-
mune cells, which leads to the acquisition of protumor and
immune suppressive features.

Hypoxia, acidity, K+, and metabolites such as lactate accu-
mulated in the TME as result of metabolic dysfunctions of
cancer cells affect the survival, proliferation, and effector
functions of immune cell populations (T cells, Tregs, macro-
phages, and MDSCs) creating an immunosuppressive and
protumorigenic microenvironment.

Although evidence mainly produced by in vitro experiments
indicated that hypoxia and the consequent expression of
hypoxia-inducible factor 1 α (HIF-1α) enhances the effector
functions of Tcells [52], this condition is not met in the hypoxic
TME. Indeed, complex hypoxia-driven interactions occur in the
TME which result in the setting of T cell immune suppression.
Hypoxia stimulates the expression of PD-L1 in tumor cells,
TAMs, MDSCs, and the PD-L1/PD-1 axis leads to anergy in
T cells [53]. Moreover, the secretion of IL-2 and IFNγ from T
cells is impaired by the high acidity and K+ level, which char-
acterize the highly hypoxic TME [47, 54]. Hypoxia and acidity
also promote an environment that stimulates the immunosup-
pressive properties of Tregs and TAMs which actively block T
cell functions. HIF-1α induces the expression of Foxp3 in
Tregs favoring their survival in an acidic TME [55, 56].
Hypoxia not only supports Tregs, but, by inducing the produc-
tion of the CCL-28 and CCL-2 chemokines in cancer cells, it
also facilitates the recruitment of CCR10-positive Tregs and
CCR2-positive MDSCs [57, 58]. HIF-1α promotes the release
of the immune suppressive cytokine IL-10 in PD-L1-positive
MDSCs and increases the expression of CD39 and CD73,
ectoenzymes involved in the conversion of ATP to adenosine,
which exerts immune suppressive function [53, 59]. Tumor
zones with a low O2 are highly infiltrated with M2-type
TAMs [60] and hypoxia regulates the proangiogenic phenotype
of M2 cells [61]. HIF-1α and acidic TME increase the immu-
nosuppressive capacity of TAMs by the production of vascular
endothelial growth factor (VEGF), arginase 1 (Arg1), and nitric
oxide synthase (iNos) [62]. We demonstrated that limiting the
extrusion of H+ by the usage of omeprazole, a proton pump
inhibitor, the viability and aggressive features of tumor cells and
concomitantly the protumor and immunosuppressive functions
exerted by the TAMs were reduced in HCC, likely favoring an
antitumor response mediated by T cells [63].

In addition to low pH, tumor metabolic-conditioned TME
includes the accumulation of lactate which mediates pleiotro-
pic immune suppression activities. The selective uptake of
lactate by macrophages induces their conversion from pro-
inflammatory M1 into immune suppressive M2 subtype

[62]. Moreover, lactate limits the proliferation and the func-
tions of conventional T cells [64]. Conversely, the immune
suppressive Tregs will survive in a microenvironment rich in
lactate and poor in glucose. In fact, Tregs reprogram their
metabolism by Foxp3 transcription which suppresses MYC
and glycolysis and potentiates the OXPHOS [56].

In this hostile environment, cancer and immune and stro-
mal cells compete for glucose and glutamine nutrients and
cancer cells limit the availability of glucose to tumor-
infiltrating lymphocytes (TILs) [65, 66]. Thus, by promoting
their own proliferation, cancer cells simultaneously counteract
immune surveillance.

Cancer cells are particularly addicted to glutamine. The
high request of glutamine by tumor cells can be supported
by cancer-associated fibroblasts (CAFs) and TME-educated
TAMs that are able to supply glutamine and support tumor
growth [67, 68], thereby exerting a strong protumor function.

It was also recently reported that nutrient readiness af-
fects epigenetic regulation of cancer cells and TME.
Specifically, in melanoma, low amount of glutamine pro-
motes epigenetic changes associated with histone hyper-
methylation, resulting in the induction of an aggressive,
dedifferentiated, and BRAF inhibitor–resistant phenotype
[69]. Moreover, epigenetic reprogramming associated with
nutrient availability was also reported to be associated
with immunosuppression. The conversion of glutamine
into α-KG is linked to increased oxidation of fatty acids
and the transcription of M2 genes in macrophages by the
epigenetic regulation exerted by Jmid3 [70]. Furthermore,
another epigenetic regulator, the methyltransferase EZH2,
regulates the glycolysis and effector functions of T cells.
Ovarian cancer cells restrict the expression of EZH2 on T
cells, thus improving immune evasion [71].

In conclusion, the metabolic interplay between tumor and
immune cells in the TME is crucial for the regulation of the
antitumor immune response. The microenviromental metabo-
lism driven by metabolically dysfunctional cancer cells im-
poses the reprogramming of immune and stromal cells leading
to the acquisition of protumor and immune suppressive func-
tions. Thus, Bmetabolic checkpoints^ regulating tumor immu-
nity might define new targets for therapeutic interventions
(Fig. 1).

The role of extracellular vesicles
in tumor-induced immunosuppression
targeting immune cells

EVs are membrane surrounded structures that can be released
bymost types of cells. EVs are important carriers of biological
materials and can be found in body fluids, including plasma,
serum, lymph, urine, saliva, tears, and milk. The family of
EVs is composed by different types of vesicles called
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exosomes, microvesicles, and apoptotic bodies that differ for
their biogenesis, size, and cargo. Discovered in the early
1980s, EVs attracted attention only after a decade later, when
Raposo and colleagues described that exosomes have immu-
nomodulatory properties [72]. Originating from the
endosomal compartment through the degranulation of
multivesicular bodies, exosomes mediate intercellular
crosstalk working as carriers for the active transfer of func-
tional nucleic acids, such as miRNAs, proteins, and lipids, a
process with several immunoregulatory effects [73].

Tumor cells release a considerable amount of EVs which
are responsible for the setting of a protumorigenic and immu-
nosuppressive TME. In fact, these vesicles can act on different
immune cell subsets of both innate and adaptive immunity and
can induce their functional commitment to immune suppres-
sion through several mechanisms [74]. Their modulatory po-
tential may derive from their heterogeneity in size, thereby
generating a vast variety of subpopulations. These differences
in dimensions might in turn be linked to particular molecular
compositions that induce specific biological effects [75].
Indeed, it has been reported that the presence of tetraspanins
and integrins, the cargo of nucleic acids, or the protein content
can direct EVadhesion or uptake by specific recipient immune
cells and guide their acquisition of immunosuppressive fea-
tures [76, 77]. In hematological malignancies, it was found
that large vesicles, as well as the small exosomes, are impor-
tant actors in the crosstalk between the tumor and the micro-
environment [78]. In this regard, our group recently showed
that plasma samples from melanoma patients contain a higher
concentration and larger EVs compared to healthy donors.
In vitro studies demonstrated that these EVs have immuno-
modulatory properties and are able to confer a MDSC pheno-
type to CD14+ cells [79].

In summary, tumor-derived circulating EVs can promote
immunosuppressive circuits that contribute to the generation
of suppressive myeloid cells, which represent key targets for

therapeutic intervention to restore antitumor immunity [80].
Table 2 summarizes the immune suppressive effects of tumor
EVs on immune cells.

Effect of tumor-derived extracellular vesicles
on functional activities of myeloid cells

Our group has focused on the study of the role of tumor EVs in
tumor immune escape mechanisms and inhibition of immune
response. We first described that tumor EVs have immuno-
modulatory properties by impairing monocyte differentiation
into DCs and promoting the generation of MDSCs [80, 100].
Specifically, we showed that CD14+ monocytes isolated from
healthy donors exposed to melanoma EVs, even in the pres-
ence of IL-4 and GM-CSF (cytokine known to induce DC
differentiation), maintained the CD14 expression and change
into cells with HLA-DR(-/low) and low expression of the
costimulatory molecules CD80 and CD86. This phenotype
is associated to the release of immunosuppressive cytokines
(IL-6 and TGF-β), and to a strong suppressive activity on T
cell-proliferation and cytolytic functions [7]. Moreover, tumor
EVs interact with DCs via miR-203 and contribute to the
dysfunction of DCs by controlling TLR4 expression and pro-
duction of cytokines, such as TNF and IL-12 [81]. In addition,
tumor exosomes promote IL-6 secretion from DCs via TLR2
and TLR4 signaling through a membrane-associated mecha-
nism that relies on HSP72 expressed by the exosomes [82].

Additionally, tumor exosomes promote also MDSC differ-
entiation. Breast, lung, and ovarian cancer exosomes that ex-
press membrane HSP70 can interact and activate MDSCs via
TLR2. Importantly, the frequency of HSP70-expressing
exosomes is higher in cancer patients compared with healthy
donors [83]. Furthermore, in renal cell carcinoma, exosomal
HSP70 can determine the suppressive activity of MDSCs via
phosphorylation of STAT3 in a TLR2-MyD88-dependent man-
ner, justifying exosomal HSP70 as a significant target in this

Fig. 1 Biochemical remodeling of the tumor microenvironment (TME).
Oncogenes, signaling pathways, and hypoxia can reprogram tumor cell
metabolism. The metabolic reprogramming contributes to the generation

of metabolites involved in the acidification of TME. Acidic TME,
necrosis induction, and cytokine/chemokine productionmediated by hyp-
oxia generate an immunosuppressive milieu
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context [84]. Finally, tumor exosomes can mediate an increased
proliferation of MDSCs in the bone marrow of multiple mye-
loma-naïve mice via STAT3 [85] and a decrease of normal
hematopoiesis in acute myeloid leukemia (AML) [101].

However, in some tumors like glioblastoma, tumor
exosomes have a predilection for targeting monocytes
and inducing a M2 phenotype and PD-L1 upregulation
via STAT3 pathway [91]. In addition, M2 polarization is
also induced by breast cancer EVs via gp130/STAT3 acti-
vation causing a decrease of IFNG gene expression and
increase the mRNA level of IL1B, IL6, IL10, CCL2, and
CXCR4 genes [86]. Moreover, breast cancer EVs modulate
macrophage activity via TLR2 and NF-kB pathway [87].
Additionally, gastric cancer EVs are involved in the induc-
tion of a protumorigenic M2 phenotype by PD-1 expres-
sion in macrophages that are actually accumulated in
advanced-stage gastric cancer [90].

A crucial role in immunomodulation is also played by the
exosomal miRNA cargo. Specifically, miR-222 and miR-
301a in ovarian and pancreatic cancers, respectively, induce
anM2 phenotype in macrophages by SOCS3/STAT3 pathway
or in a HIF-1α- or HIF-2α-dependent manner [88, 89].
Moreover, tumor exosomes are involved in the resistance to
chemotherapy via miRNA by targeting human monocytes in
neuroblastoma through miR-21/TLR8-NF-кB and miR-155/
TERF1 pathways [92].

Role of extracellular vesicles in the T and NK cell
modulation

The detrimental effects of cancer EVs involve also the TandNK
cells. Indeed, tumor exosomesmay directly affect Tcell function
by controlling the recruitment of Tregs via CCL-20 [93] and by
increasing their immunosuppressive activity through the induc-
tion of Ca2+ influx [102]. Regulatory Tcell-related genes such as
TGF-β are upregulated by colorectal cancer EVs [94, 95]. In
addition, exosomes derived from murine breast cancer cells can
inhibit T cell proliferation, while EVs derived from human head
and neck cancer induce a suppressor phenotype in humanCD8+
T cells by loss of CD27/CD28 [96, 97].

Concerning NK cells, exosomes isolated from plasma of
AML patients, enriched in TGF-β1/LAP, CD39/CD73, PD-1/
PD-L1, or Fas/FasL proteins, all molecules exerting immuno-
suppressive activities, when incubated with NK-92 cells reduce
the expression of NK cell cytotoxicity-related molecule
NKG2D [98]. Moreover, in vitro murine breast cancer EVs
reduced the lysis of tumor cells mediated by NK [97] and
exosomes derived from lung carcinoma cultured in hypoxic
conditions displayed strong inhibitory effects on NK cell cyto-
lytic activity. The inhibitory activity of these hypoxic exosomes
correlated to their enhanced levels of miR-23a and TGF-β [99].

In conclusion, since EVs reflect the dysregulations of the
originating cells and since they are endowed with a

Table 2 Tumor extracellular
vesicles target immune cells and
suppress the immune system

Target cell Tumor Effects/mechanisms Ref

Dendritic cell Melanoma c↑Immunosuppressive activity via IL-6 and TGF-β [7]

Pancreatic cancer d↓TLR4 expression and cytokines via miR-203 [81]

Melanoma ↑IL6 via HSP72/ HSP105 in a TLR2/4 manner [82]
aMDSC Breast/lung/ovarian ↑Activation via HSP70/TLR association [83]

Renal cell carcinoma ↑Immunosuppressive activity via p-STAT3 [84]

Multiple myeloma ↑Proliferation activation via STAT3 [85]

Macrophage Breast ↑M2 phenotype via STAT3 transferring gp130 [86]

Breast ↑Pro-inflammatory activity via TLR2/NF-kB [87]

Ovarian ↑M2 phenotype via miR-222 [88]

Pancreatic cancer ↑M2 phenotype via miR-301a [89]

Gastric cancer ↑PD-1 and M2 phenotype [90]

Monocyte Glioblastoma ↑M2 phenotype and PD-L1 [91]

Neuroblastoma ↑Chemotherapy resistance by miR-21, miR-155 [92]

Melanoma ↑MDSC phenotype [79]

Treg Nasopharyngeal ↑Cell recruitment via CCL20 [93]

Head and neck ↑TGF-β, IL-10, COX-2, CD39, CD73 [94]

Colorectal cancer ↑Treg induction via TGF-β [95]

T CD8+ Head and neck ↑Suppressor phenotype by loss of CD27/CD28 [96]

Breast ↓Proliferation [97]
bNK Acute myeloid leukemia ↓NKG2D expression and cytolytic activity [98]

Breast ↓Cytotoxic activity [97]

Lung carcinoma ↓Activity via TGF-β, miR23a [99]

aMDSC, myeloid-derived suppressor cell; bNK, natural killer cells; c Increase; dDecrease
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remarkable stability in the body fluids, they represent ideal
non-invasive biomarkers to measure the systemic immune
suppression status in cancer patients [103, 104]. Thus,
exosomes are considered as a valuable target to identify novel
biomarkers of cancer-induced immunosuppression that could
potentially be used in the clinics to predict patient outcomes or
treatment responses.

Myeloid cells in cancer, accrual of protumor
effectors

A perfect example of how cancer can engage host responses to
promote its own survival is the systemic crosstalk that tumor
establishes with myeloid cells. The secretion into the blood
stream of cytokines (GM-CSF, IL-6, CCL2), genetic material,
membrane vesicles, and other factors by cancer triggers subtle
but persistent stimulation of signaling pathways such as STAT3,
PI3K, IRF8, NOTCH, adenosine receptor, and Rb1 in myeloid
cells [8]. Bone marrow myelopoiesis is hence modified with the
release in the peripheral circulation of immature and dysfunc-
tional cells; concomitantly, differentiated monocytes and neutro-
phils in other immune organs (spleen, lymph nodes, blood) are
reprogrammed to acquire a regulatory function. The whole pro-
cess, leading to the generation of potently immunosuppressive
effectors, is part of a homeostatic response aimed at protecting
tissues from excessive immunity and inflammation [105].

Dysfunctional myeloid cells are globally defined asMDSCs.
They include a heterogeneous population of monocytic- and
granulocytic-like elements morphologically and phenotypically
resembling their normal counterparts (defined in human periph-
eral blood mononuclear cells as CD14+HLA-DRneg and
CD15+HLA-DRneg for monocytic and granulocytic MDSCs,
respectively) but differing for the broad protumor activity.
Recent studies elucidating MDSC generation are showing that
the process is made possible by the high plasticity of the mye-
loid subset that can be finely tuned and redirected to multiple
differentiation programs by transcriptional, epigenetic, andmet-
abolic regulation [106, 107].

Together with tissue resident macrophages, myeloid cells
exert in TME a tight and pleiotropic support to tumor growth
involving, among others, (1) the release of proangiogenic fac-
tors and the transdifferentiation into endothelial cells, to sustain
tumor neoangogenesis [108]; (2) the remodeling of the stroma
component, through the action of TGF-β and metalloprotein-
ases, thus favoring tumor cells spreading and metastatization;
(3) the conditioning of local fibroblasts and their increment by
the transdifferentiation of MDSCs into fibrocytes exerting
indoleamine-pyrrole 2,3-dioxygenase (IDO)-mediated immu-
nosuppressive activity [109]; (4) impairment of T and NK cell
function via metabolic block (mediated by Arg1, NO, and
IDO), T cell receptor signaling impairment by reactive oxygen
species, inhibition of T cell function and Treg recruitment

(through TGF-β and IL-10), and induction of T cell anergy
by means of PD-L1 [110]; and (5) direct support of tumor cell
proliferation via novel pathways involving caspase 1 and
tumor-intrinsic MyD88-dependent carcinogenesis [111].

In addition to MDSCs, other myeloid cell populations
exerting protumor activities found at the tumor site include
TAMs, tumor-associated neutrophils (TANs), whose relation-
ship with monocytic (M) and polymorphonuclear (PMN)
MDSCs is still a debated issue, tolerogenic DCs, and mast
cells (MCs). All these exert normal physiological functions
in tissue homeostasis, but in cancer, they are exploited by
the tumor cells to support their own growth and progression
[112]. These cells share suppressive functions with MDSCs
and they are active in attracting and stimulating the protumor
activity of Tregs. Moreover, they produce factors which sup-
port the recruitment of immature myeloid cells, thus ensuring
the constant replenishment of the TME with immune suppres-
sive dysfunctional myeloid cells [112, 113]. Of note, a syner-
gistic interaction can also occur between MCs and MDSCs at
the tumor site. In fact, it has been shown thatMCs are spatially
associated with MDSCs in the human TME of colorectal car-
cinoma, and in an experimental model, MCs were found to
increase the immunosuppressive capacity of MDSCs [113].

MDSCs as biomarker of systemic immunosuppression
and new therapeutic target

The chronic cancer-myeloid interaction occurring with disease
progression causes the incremental accumulation of myeloid
cells in blood and TME of cancer patients, which is constantly
a sign of aggressive disease and bad prognosis in virtually all
cancers analyzed [10]. Recently, data are also emerging about
the potential role of MDSCs in reducing response to ICIs [11].
Albeit no evidence about the pure predictive role of systemic
myeloid accumulation in resistance to ICIs has been reported, it
is conceivable that an increased level of systemic immunosup-
pression may not only worsen the disease course but also re-
duce the immunostimulating activity of immunotherapy.

Indeed, a local and systemic enrichment in myeloid cells is
usually associated with poor tumor T cell infiltrate, an
epithelial-to-mesenchymal transition profile, and poor response
to ICIs [27, 114]. Similarly, the physical or functional removal
of MDSCs represents a strategy to recover ICI activity in pre-
clinical tumor models [115].

Despite the abovementioned evidence and the recent de-
scription of novel biomarkers specifically defining MDSCs
[116], the quantification of these cells in blood or TME still
needs to be acknowledged as a valid approach in clinical prac-
tice to assess cancer-associated systemic immunosuppression
and predict resistance to therapy. Nevertheless, clinicians have
recently reported that an increase in neutrophil and monocyte
blood counts, or their relative ratios to lymphocytes, is asso-
ciated with progression during ICI administration [117].
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These parameters, known for long time to be a negative prog-
nostic factor in several cancers [118], are likely reflecting the
expansion of granulocytic or monocytic MDSCs, as indirectly
demonstrated by recent preclinical in vitro studies [119].

As MDSC expansion represents a central mechanism for
cancer tomediate immunosuppression at systemic level, drugs
interfering with the generation or function of these cells could
significantly improve the benefit of immunological therapies.
The heterogeneous nature of these cells and their immunosup-
pressive pathways make a selective targeting rather problem-
atic, but several molecules interfering with key MDSC medi-
ators (for instance Arg1, CSF1, IDO, STATs, TRAILR) are
under study or in clinical development [120, 121]. However, it
is here worth to mention that standard cancer therapies such as
certain chemotherapeutics or antiangiogenics can profoundly
interfere with MDSC accrual through their well-known
myelotoxicity [122, 123]. In line with this observation is the
very recent evidence that ICI efficacy is remarkably increased
by combination with these therapeutic strategies [124, 125].

Conclusions

The extraordinary success achieved by immunotherapy dem-
onstrates how modifying the balance of immune components
in TME can lead to a remarkable tumor control. In spite of
that, the efficacy is still obtainable in a subset of patients,
while the vast majority is receiving marginal or no benefit
from treatment. Predictive biomarkers identify and direct re-
sistant patients to alternative or combinatorial therapies, and
the discovery of the mechanisms underlying resistance is a
priority of current cancer research. In this review, we illustrat-
ed how some pillar pathways should be taken into account for
developing new potential strategies limiting immunosuppres-
sion and favoring the efficacy of immunotherapy: (1) onco-
genic pathways involved in the promotion of tumor evasion
by altering the recruitment, cellular composition, and func-
tions of immune infiltration, and as such influencing the re-
sponse to immunotherapy; (2) oncogene-driven cancer
dysmetabolism and Bmetabolic checkpoints^ of cancer and
immune cells, which contribute to the establishment of an
immunosuppressive and protumorigenic environment; (3)
the contribution of tumor EVs in the generation of immuno-
suppressive cells; (4) the crosstalk between myeloid and can-
cer cells, reminiscent of a physiological mechanism of wound
healing turning into a strong protumor force. Finally, we can
conclude that after the discovery of ICs, cancer-related immu-
nosuppression in TME and at systemic level seems to be the
ultimate barrier to maximize the therapeutic potential of can-
cer immunotherapy.
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