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Abstract
The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs)
are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is
not known.We have investigated c-MYC gene amplification in a series of 35 ACCs and 4MANECs to evaluate its frequency and
a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis
simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expressionwas immunohistochemically
investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of
chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with
chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC ampli-
fication. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six
cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC
amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification
and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset
of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not
associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a
role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.
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Introduction

Acinar cell carcinomas (ACCs) of the pancreas are a hetero-
geneous group of cancers showing different morphological
features and clinical presentations [1]. In addition, about
10–20% of cases showing a significant neuroendocrine
component (> 30% of the tumor burden) are defined
mixed acinar-neuroendocrine carcinomas (MANECs).
Together with mixed ductal-neuroendocrine carcinomas,
they belong to the group of mixed neuroendocrine/non-
neuroendocrine neoplasms (MiNENs) [2, 3]. Approximately
50% of ACCs/MANECs are metastatic at the time of
diagnosis, and about 40% of cases recur as local and/
or metastatic disease after surgical resection [4, 5]. The
prognosis is poor with 5-year survival rates ranging be-
tween 25 and 50% without difference between ACCs
and MANECs [5]. Although several attempts have been
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made to search for morphological, immunohistochemi-
cal, and molecular prognostic factors, tumor stage still
seems to be the best prognosticator in resectable cases
[5].

Our knowledge on molecular alterations of ACCs has been
greatly expanded in the last years, and several molecular al-
terations involved in tumor development and progression
have been recently identified [1]. Some of them are typical
of ACCs, like alterations in the APC/β-catenin pathway and
fusion in RAF genes [6, 7], while others involve genes (i.e.,
TP53 and BRCA2) which play a crucial role in the develop-
ment and progression of a wide spectrum of different cancers
[1]. Interestingly, recently published data have suggested that
some molecular alterations, like those involving TP53, may
identify ACC subtypes showing a more aggressive behavior
[8].

It has been recently reported that about 17% of ACCs show
c-MYC amplification, but the prognostic role of this alteration
remains to be clarified [9]. The oncogene c-MYC is a tran-
scription factor implicated in about one third of human malig-
nancies by promoting tumor growth increasing DNA replica-
tion and transcription, protein synthesis, cellular metabolism,
and proliferation [10]. c-MYC overexpression is frequently
associated with poor clinical outcome [11], and it has been
demonstrated that c-MYC plays a pivotal role in the molecular
mechanisms underlying the aggressiveness of pancreatic duc-
tal adenocarcinoma [10, 11].

In the present study, we have investigated c-MYC gene
amplification in a series of 39 pancreatic ACCs/MANECs in
order to evaluate its frequency and a possible prognostic role.

Materials and methods

Cases

Thirty-nine cases were selected from our previously reported
series of 62 well-characterized pancreatic ACCs [5]. Tumor
selection mainly depended on the availability of sufficient
material to perform immunohistochemical and fluorescence
in situ hybridization (FISH) analyses together with complete
clinical information. The main clinicopathologic characteris-
tics are summarized in Table 1. All tissues were fixed in buff-
ered formalin (formaldehyde 4% w/v and acetate buffer
0.05 M) and routinely processed to paraffin wax.

Immunohistochemistry

For immunohistochemistry, 3-μm-thick sections were
mounted on poly-L-lysine-coated slides, deparaffinized, and
hydrated through graded alcohols to water. After endogenous
peroxidase activity inhibition, performed by dipping sections
in 3% hydrogen peroxide for 10 min, incubation with primary

rabbit monoclonal anti-c-myc antibody (Y69, Abcam,
Cambridge, UK) was carried out at 4 °C for 18–20 h, followed
by the avidin–biot in complex (ABC) procedure.
Immunoreactions were developed using 0.03% 3,3’diamino-
benzidine tetrahydrochloride and then sections were counter-
stained with Harris’ hematoxylin.

Fluorescence in situ hybridization

Interphasic FISH analysis was performed on 3–4-μm-thick
sections used for conventional histologic examination as re-
ported in the guidelines of the European Cytogeneticists
Association [12], and the cytogenetic interpretation of data
agrees with the International System for human Cytogenetic
Nomenclature (ISCN) [13]. FISH analysis was performed
using direct viewing on a standard fluorescence microscope
at × 100 magnification. FISH results were evaluated on repre-
sentative areas of each tumor identified on hematoxylin- and
eosin-stained slides. To ensure a representative sample and to
permit an assessment of the extent of tumor heterogeneity, c-
MYC amplification and chromosome 8 polysomies were
scored in more than 200 interphasic nuclei from at least five
to eight separate areas of each tumor by two independent
operators (BB and MGT). Only experiments with 90% hy-
bridization efficiency were considered. c-MYC amplification
was investigated simultaneously hybridizing c-MYC (red sig-
nal) and the centromere of chromosome 8 (green signal)
probes (Zytolight SPEC MYC/CEN8 Dual Color Probe,
Zytovision GmbH, Bremerhaven, Germany). Cases were de-
fined as amplified when the ratio (R) between red (c-MYC)
and green (CEN8) signals was > 2.0. Cases were defined as
polysomic for chromosome 8 when at least 20% of neoplastic
cells showed three or more copies of CEN8 signals (green
signals).

Statistical analysis

Comparisons of continuous data were performed using
Student’s t tests, and discrete variables were compared with
χ2 test or Fisher’s exact test. Univariate survival analysis was
performed using Kaplan–Meier curves and log-rank test. Data
were statistically analyzed using MedCalc® Version 12.5.0.0
and GraphPad Prism Version 5.00 software, and p value
< 0.05 was considered significant.

Results

ACCs and MANECs were more frequently observed in males
(29 cases) than in females (10 cases), and the average age at
diagnosis was 59.7 years (range 33–84 years). Tumors were
more frequently located in the pancreatic head (15 cases)
followed by the tail (12 cases) and the body region (12 cases).
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The mean size was 8 cm with a range between 1.6 and 29 cm.
Thirty-five out of 39 (89%) cases were pure ACCs, while four
cases showing a neuroendocrine cell population > 30% were
defined as MANECs [3]. The mean follow-up time was

33 months (range 6–135 months). Twenty-seven patients died
of disease after a mean follow-up time of 18.6 months, while 11
patients were alive at the last follow-up control (mean follow-
up time of 67.5 months). One patient was lost to follow-up.

Table 1 Clinicopathologic and FISH features of the 39 ACCs/MANECs investigated

Case Sex Age Type Site Size (cm) Follow-up
(months)

MTS MYC protein
expression

c-MYC
amplification

Chr. 8
polysomy*

1 M 49 ACC B/T 6.2 DOD (24) No 0 No No

2 M 51 ACC H 7.5 DOD (6) Yes 0 No 22%

3 M 57 ACC B/T 14 AWD (56) No 0 No No

4 M 44 ACC B/T 13 AWD (36) No 0 No 50%

5 M 70 ACC B 5 AFD (135) No 0 R = 2.87 25%

6 M 70 ACC B/T 25 DOD (6) Yes 15 R = 2.66 38%

7 M 74 ACC T 4 AFD (89) No 0 No No

8 F 75 ACC T 3.8 DOD (16) No 0 No 42.5%

9 M 63 ACC H 3 DOD (14) No 0 No 54.5%

10 M 69 MANEC H 7 DOD (9) No 0 R = 2.22 54.8

11 F 37 MANEC B 6.2 AFD (111) No 10 No 66%

12 M 71 ACC B/T 7 AFD (84) No 0 No No

13 M 47 ACC T 6 AFD (84) No 0 No 97%

14 F 63 ACC T 10 DOD (12) Yes 10 No No

15 M 76 ACC H 4 DOD (36) Yes 0 No No

16 M 49 ACC H 1.6 DOD (79) No 0 No No

17 M 55 MANEC H 5 DOD (6) Yes 0 R = 2.83 45%

18 M 67 ACC T 29 DOD (6) Yes 80 No 22.3%

19 M 67 ACC T 3 DOD (6) Yes 0 No No

20 M 71 ACC H 5 DOD (26) Yes 0 No 100%

21 M 62 ACC H 4.5 AFD (24) No 0 No No

22 M 53 ACC H NA L Yes 0 No No

23 F 42 ACC B/T 10 DOD (22) Yes 0 No 93%

24 M 60 ACC H 5 AFD (76) No 0 No 100%

25 F 45 ACC H 11.5 DOD (16) No 0 No No

26 M 70 ACC B 8 DOD (19) No 0 No 20.6

27 M 47 ACC T 10 DOD (10) Yes 0 No 15%

28 M 59 ACC H 3 DOD (22) Yes 0 R = 2.77 No

29 M 53 ACC T 2.5 DOD (8) Yes 0 No No

30 F 69 ACC B 5 DOD (30) No 0 No 13.5%

31 F 72 ACC B/T 8 DOD (20) No 0 No 77%

32 M 55 ACC T 2 DOD (34) Yes 30 No No

33 M 84 ACC B/T 7 DOD (9) No 0 No 85%

34 M 60 ACC H 4 DOD (13) No 0 No No

35 M 46 MANEC T 16 DOD (12) Yes 0 No 41.5%

36 M 82 ACC T 11 DOD (26) Yes 60 No 36.4%

37 F 50 ACC T 4 AWD (32) Yes 0 No 100%

38 F 33 ACC H 8 DOD (16) No 0 No 62%

39 F 61 ACC H 3 AFD (16) No 0 No 77%

MTS, metastasis; F, female;M, male; ACC, acinar cell carcinoma;MANECs, mixed acinar-neuroendocrine carcinomas; AFD, alive free of disease;
AWD, alive with disease; DOD, died of disease; L, lost at follow-up; H, head; B, body; T, tail; R, ratio of c-MYC and chromosome 8
centromere; NA, not available

*Percentage of polysomic cells
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Six cases (15.3%) showed nuclear immunoreactivity for c-
myc, in a cell population ranging from 10 to 80% neoplastic
cells (Fig. 1).

All 39 cases were scored for both c-MYC amplifica-
tion (Fig. 2a) and chromosome 8 polysomy (Fig. 2b): in
detail, 20 ACCs had clones with different polysomies
of chromosome 8 in absence of c-MYC amplification,
and 5 cases had one amplified clone and other clones
with chromosome 8 polysomy. The remaining 14 cases
were diploid for chromosome 8 and lacked c-MYC am-
plification. FISH data of five c-MYC amplified cases
are reported in Table 2. The clones with c-MYC ampli-
fication ranged from 33.1 to 77.4% of neoplastic cells.
The ratio of c-MYC and chromosome 8 centromere
ranged from 2.22 to 2.87 indicating presence of low
level of c-MYC amplification in all cases. Polysomic

cases showed different levels of polysomies ranging
from three to ten chromosome 8 resulting in gain of
MYC copies. Figure 2b shows a polysomic ACC show-
ing nuclei with six to ten chromosome 8. Interestingly,
all MANECs showed c-MYC amplification and/or
polysomy, which were observed in 19 out 35 (54%)
pure ACCs. Four out of the 39 cases investigated
showed simultaneous c-MYC amplification/polysomy
and a nuclear protein expression. As in most cases of
mixed acinar-neuroendocrine carcinomas [3, 5], the two
components were not clearly separated or identifiable
on morphological analysis and their identification was
performed using immunohistochemistry.

c-myc immunoreactivity as well as c-MYC amplification
and/or chromosome 8 polysomy was not statistically associ-
ated with prognosis (p = 0.04) (Fig. 3).

Fig. 1 c-myc nuclear
immunoreactivity in the majority
of neoplastic cells of a pancreatic
acinar cell carcinoma

Fig. 2 FISH analysis usingMYC probe (red signals) and chromosome 8 centromere (green signals). A subgroup of acinar cell carcinomas and all mixed
acinar-neuroendocrine carcinomas showed c-MYC amplification (a) and/or chromosome 8 polysomy (b)
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Discussion

The molecular signature of ACCs is different from that of
pancreatic ductal adenocarcinomas and neuroendocrine neo-
plasms andmore frequently includes alterations in the APC/β-
catenin pathway, while gene alterations frequently involved in

ductal adenocarcinomas like mutations in KRAS, DPC4, and
p16 are absent or very rarely present [1, 14]. Alterations of
TP53 gene (mutation of one allele and loss of the other alleles)
were recently found to be associated with worse survival [8]
suggesting the possibility that specific subtypes of ACC may
show specific molecular features with prognostic relevance. In

Table 2 Correlation between c-
MYC amplification and
chromosome 8 polysomy in
acinar cell carcinomas

Case Amplified
cells (%)

Ratio
MYC/CEN

MYCmean value
of signals

CEN 8 mean value
of signals

5 38.5 2.87 6.11 2.13

6 60.2 2.66 5.49 2.07

10 33.1 2.22 5.09 2.29

17 77.4 2.83 6.74 2.38

28 44.0 2.77 4.68 1.69

CEN, centromere

Fig. 3 C-myc protein expression (a) was not statistically associated with prognosis as well as c-MYC amplification (b), chromosome 8 polysomy (c), or
their combination (d)
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this context, the recent identification that a subset of ACC
shows c-MYC amplification [9] has suggested us to explore
the prognostic role of c-MYC alterations in pancreatic ACCs.

c-MYC, whose function is tightly controlled by growth
factor-dependent signals in normal adult cells [15, 16], plays
a pivotal role in organogenesis and, in particular, in pancreatic
acinar cell development and maturation [17]. However, its ex-
pression can be deregulated and enhanced via multiple mech-
anisms in tumor cells and is implicated in the pathogenesis,
progression, and aggressiveness of several human tumors. In
particular, c-MYC protein expression and c-MYC gene activa-
tion by amplification have been found to be associated with
tumor aggressiveness and poor prognosis of several cancers
[11, 15, 18–20] including pancreatic ductal adenocarcinoma
(PDAC) [10, 11]. Most of genetic and epigenetic alterations
playing a role in the pathogenesis and progression of PDACs
involve c-MYC activations. c-MYC overexpression occurs in
about 40% of advance PDACs, although comprehensive ge-
netic analysis demonstrated that c-MYC is generally amplified
at low levels [21]. Mechanisms involved in c-MYC deregula-
tion in PDACs include genetic events or transcriptional, post-
transcriptional signaling, or post-translational mechanisms.
Genetic aberrations include mutation of the TGFβ-inhibitory
elements controlling c-MYC promoter or c-MYC amplification.
Transcriptional mechanisms include the activation of transcrip-
tion factors inducing c-MYC transcription or enhancement of c-
MYC transcriptional elongation by CDK9-mediated phosphor-
ylation of RNA-polymerase. Alterations in post-transcriptional
signaling include the attenuation of c-MYC-inhibitingmiRNAs
in absence of TP53 functions; post-translational mechanisms
include CK2-mediated phosphorylation of c-MYC, which pre-
vents proteasome degradation resulting in the reduction of c-
MYC ubiquitination and degradation [10].

In 20 cases of our series, we found chromosome 8 polysomy
in absence of c-MYC amplification and in five cases both c-
MYC amplification and chromosome 8 polysomy. This result
suggests that c-MYC activation by gene amplification and/or
polysomy is involved in the pathogenesis of at least a subset
of ACCs. Interestingly, we found that all MANECs showed c-
MYC amplification and/or polysomy which, on the contrary,
were observed in only 54% of pure ACCs. In this context, it
is interesting to recall that c-MYC has been found to regulate
neuroendocrine trans-differentiation of prostate adenocarcino-
ma resulting in the formation of the aggressive neuroendocrine-
differentiated subtype [22–25]. In addition, c-MYC has been
demonstrated to play a pivotal role in regulating ductal-
neuroendocrine plasticity of pancreatic ductal adenocarcinoma
leading to a neuroendocrine differentiation, which contributes
to poor outcome and therapeutic resistance [26]. Taking togeth-
er, these findings may suggest that activation of c-MYC may
lead to an acinar-neuroendocrine differentiation responsible of
MANEC development. Starting from this observation, further
studies are needed to confirm this hypothesis.

In general, we have found low level of c-MYC amplifica-
tion in our series, and this may explain the discordance ob-
served between FISH and immunohistochemistry considering
that the latter is a less sensitive method. Immunohistochemical
expression of MYC seems to predict well c-MYC alterations
when more than 50% of nuclei are MYC positive [27]. In our
series, among the five cases immunoreactive for MYC, only
two showed more than 50% of positive nuclei and both cases
showed c-MYC polysomy.

Regarding a possible prognostic role of c-MYC alterations,
it is worth noting that pancreatic ACCs and MANECs are a
group of aggressive carcinomas showing poor prognosis with
5-year survival rates ranging between 25 and 50%. To date,
tumor stage seems to be the only prognosticator in resectable
cases [5]. However, among resected cases, the search for prog-
nostic factors useful to stratify patients in different prognostic
categories is a hot topic in pancreatic pathology. To the best of
our knowledge, there are no prognostic factors for surgical
resected pancreatic ACCs and MANECs, although in recent
years, several attempts have been made to search for them.
One of our aims was to check whether c-MYC amplification
could be used as prognostic marker. Although we have ob-
served a trend of worse survival in patients with c-MYC am-
plification than in patients without it, we did not find a statis-
tical meaning.

In conclusion, our study demonstrates that a subset of
ACCs show c-MYC alterations including gene amplification
and chromosome 8 polysomy. Although they are not associ-
ated with a different prognostic signature, the fact that these
alterations are present in all MANECs suggests a role in the
acinar-neuroendocrine differentiations possibly involved in
the pathogenesis of MANECs.
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