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Abstract Digital image analysis (DIA) enables higher accu-
racy, reproducibility, and capacity to enumerate cell popula-
tions by immunohistochemistry; however, the most unique
benefits may be obtained by evaluating the spatial distribution
and intra-tissue variance of markers. The proliferative activity
of breast cancer tissue, estimated by the Ki67 labeling index
(Ki67 LI), is a prognostic and predictive biomarker requiring
robust measurement methodologies. We performed DIA on
whole-slide images (WSI) of 302 surgically removed Ki67-
stained breast cancer specimens; the tumour classifier algo-
rithm was used to automatically detect tumour tissue but was
not trained to distinguish between invasive and non-invasive
carcinoma cells. The WSI DIA-generated data were subsam-
pled by hexagonal tiling (HexT). Distribution and texture pa-
rameters were compared to conventional WSI DIA and pa-
thology report data. Factor analysis of the data set, including
total numbers of tumor cells, the Ki67 LI and Ki67

distribution, and texture indicators, extracted 4 factors, identi-
fied as entropy, proliferation, bimodality, and cellularity. The
factor scores were further utilized in cluster analysis, outlining
subcategories of heterogeneous tumors with predominant en-
tropy, bimodality, or both at different levels of proliferative
activity. The methodology also allowed the visualization of
Ki67 LI heterogeneity in tumors and the automated detection
and quantitative evaluation of Ki67 hotspots, based on the
upper quintile of the HexT data, conceptualized as the
“Pareto hotspot”. We conclude that systematic subsampling
of DIA-generated data into HexT enables comprehensive
Ki67 LI analysis that reflects aspects of intra-tumor heteroge-
neity and may serve as a methodology to improve digital
immunohistochemistry in general.
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Immunohistochemistry (IHC) is extensively used in contem-
porary pathology to visualize specific proteins in biological
tissues, and it is undergoing an evolutionary shift to meet the
requirements of personalized medicine [1]. Typically, IHC
markers are interpreted in a binary manner to support pathol-
ogy diagnosis; however, quantification of in situ protein sig-
nals is sought predominantly for anti-cancer therapy decision-
making; for these purposes, semi-quantitative scoring systems
assess the location, relative intensity, and estimated percentage
of positive cells [2]. Rather than providing data on the true
concentrations of proteins, IHC presents a binary signal indi-
cating the presence of a particular protein in the tissue struc-
tures examined. Enumeration of positive and negative signals
in the context of tissue components generates data to quantify
cell populations of interest. Importantly, this information can
be interpreted in the context of two-dimensional space and
biological tissue structures.

Conventional IHC interpretation is based on human visual
perception to identify tissue structures and regions of interest
and to produce semi-quantitative estimates of the intensity and
distribution of IHC signals and the structures labeled. While
this approach is sufficient for diagnostic pathology, it does not
meet the expectations of personalized therapies, which in-
creasingly rely on accurate biomarker measurement. This
gap is eloquently illustrated by situations in which a manual
count of IHC-positive and IHC-negative cell profiles remains
the method of choice [3].

Digital IHC, enabled by recent progress in high-resolution
scanning of microscopy slides and digital image analysis
(DIA), provides new options for improving the accuracy, re-
producibility, and capacity of analyzing the data contained in
microscopic images. Numerous studies have elaborated on
these characteristics and have shown the potential benefits of
digital technologies [4, 5]. On the other hand, complex issues
and challenges in digital IHC test validation to meet clinical
standards have been highlighted, and they remain to be re-
solved [6, 7].

It has become apparent that IHC DIA-generated data per se
cannot provide “quick fixes” and all of its expected benefits. A
set of methodologies for the validation and standardization,
quality assurance, informative metrics, and statistics of IHC
DIA remain to be developed [8]. Furthermore, the full benefits
of DIA can be realized by going beyond the simple quantifi-
cation of cell populations and retrieving information on the
spatial context and intra-tissue variance of biomarker expres-
sion. Together, these efforts have led to the emerging field of
comprehensive IHC. Furthermore, the success of new tech-
niques for highly multiplex, truly quantitative, broad dynamic
range tissue proteomics, introduced as next-gen IHC [9], will
depend on the development of methodologies in bioimage
informatics.

There are many areas of tumor pathology in which com-
prehensive IHC is urgently needed to both accurately measure

biomarker expression and to evaluate the intra-tissue hetero-
geneity of biomarkers. The proliferative activity of breast can-
cer tissue, estimated by the Ki67 labeling index (Ki67 LI), is
one particular example in which prognosis and clinical
decision-making largely depend on this biological feature;
nevertheless, its clinical utility is hindered by the absence of
a harmonizedmethodology for the test [3, 10]. The situation is
further complicated by the phenomenon of intra-tumor hetero-
geneity of Ki67 expression, raising the need for standardized
sampling of tumor tissue for DIA, including the definition,
detection, and evaluation of Ki67 hotspots.

A growing number of studies have addressed the intra-
tissue heterogeneity of IHC in breast cancer and other tumors.
While some investigators have employed texture-based met-
rics [11, 12], others have proposed automated algorithms to
detect hotspots [13], and still others have proposed methodol-
ogies based on a manual count to improve their efficiency and
account for heterogeneity [14]. The intra-tumor heterogeneity
of IHC marker expression has been estimated in a tissue mi-
croarray (TMA) study with multiple sampling of tumor tissue
[15]. Heterogeneity mapping of protein expression using
quantitative immunofluorescence for estrogen receptor and
HER2 expression has been proposed in ovarian cancer [16].
As recently reviewed [17], digital pathology methods can con-
tribute to a more comprehensive understanding of the highly
heterogeneous tumor microenvironment by mapping the spa-
tial and morphological patterns of normal and cancer cells.
Various texture and density-based spatial clustering methods
have been employed in these studies to uncover visually un-
detectable spatial cell interactions in tumors; however, the
potential of spatial statistics derived from regular lattices and
grids has not been investigated. Meanwhile, in geography,
ecology, and other fields, advanced in spatial modeling, regu-
lar polygons in arrays have been shown to bemost efficient for
mapping spatial variation and providing most common frame-
work for spatially explicit models [18, 19]. Although rectan-
gular (square) grid is most commonly used due to its relative
mathematical simplicity, a hexagonal grid has long been
known to be superior in many aspects in image processing
and machine vision related fields [20]. In particular, hexagons
have some advantages from being closer in shape to circles,
thus a shorter perimeter than a square of equal area, which
reduces sampling bias due to edge effects; more importantly,
the hexagonal grid has simpler and more symmetrical nearest
neighborhood and important advantages in visualization [18].

In this study, we propose a methodology for comprehen-
sive Ki67 IHC evaluation in whole-slide images (WSI) of
breast cancer tissue that is based on the systematic subsam-
pling of DIA-generated data into a hexagonal tiling (HexT)
array, thereby enabling the computation of texture and distri-
bution indicators for Ki67 LI intra-tumor variability.
Multivariate analyses extracted 4 major factors of variance,
defined as entropy, proliferation, bimodality, and cellularity.
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The factor scores were further used in cluster analysis, which
outlined subcategories of heterogeneous tumors with predom-
inant entropy, bimodality, or both at different levels of prolif-
erative activity. The HexT data also allowed the visualization
of Ki67 LI heterogeneity in the WSI along with automated
detection and quantitative evaluation of Ki67 hotspots that
were based on the upper quintile of the HexT data, conceptu-
alized as the “Pareto hotspot”.

Materials and methods

Study population and tumor characteristics

The tumor WSI were prospectively collected, as part of a
diagnostic routine, from 302 patients with invasive breast car-
cinoma who had been treated by surgical excision at the
National Cancer Institute. The WSI were investigated at the
National Center of Pathology during a period from 2013 to
2014. Pathology report data (patient age, tumor histological
type, grade, estrogen and progesterone receptor scoring,
HER2 (verified by a HER2 FISH test in IHC 2+ cases) and
Ki67) were collected. The Lithuanian Bioethics Committee
approved this study.

The median age of the patients was 60 years, ranging from
24 to 88. Histologically, there were 271 invasive ductal
(89.7 %), 22 invasive lobular carcinomas (7.3 %), and 9 spe-
cial types (3 %). Histological grading was performed accord-
ing to the Nottingham grading system [21]: 21 cases were
grade 1 (7 %), 123 cases were grade 2 (41 %) and 157 cases
grade 3 (52 %). The cases were categorized into the tumor T
and N stages as follows: T1 (183), T2 (123), T3 (11), T4 (9),
N0(171), N1(83), N2(28), N3(9); the T and N stage was not
established in 2 and 11 cases, respectively. Based on
immunophenotyping, the tumors were categorized into hor-
mone receptor (HR)-positive (Luminal, 189), with HER2 co-
expression (Luminal HER2, 33), HER2 positive (22), and
triple negative (TN) (55).

Ki67 immunohistochemistry, image analysis, tiling
of the tumor area, and computation of the HexT
parameters

Ki67 IHC, image acquisition, and analysis were performed as
reported in the previous study [5]; details are provided in the
Online Resource 1. Hexagonal tiling of the tumor area, design
of co-occurrence matrix for the HexT, Haralick texture param-
eters, temperature map, and Gaussian mixture models to com-
pute bimodality indicators [18, 22–28] are provided in the
Online Resource 1. A visual representation of the of tumor
analysis performed by the HexT approach is presented in the
Fig. 1.

Validation of HexT-based hotspot detection data by visual
review of the WSI

Three observers independently reviewed 50 randomly select-
ed WSI at low magnification and drew as many as 3 freeform
annotations to delineate the Ki67 hotspots in the tumor tissue,
if present. Inter-observer agreement of the visual hotspot de-
tection was evaluated. The hotspot annotations from each ob-
server were compared to the corresponding HexT data.

Statistical analysis

Summary statistics and distribution analyses were performed
with significance tests based on the paired t test, one-way
ANOVA and Duncan’s multiple range test for pairwise com-
parisons. Fisher’s exact test was used to estimate significant
associations in non-parametric statistics. Inter-observer agree-
ment was tested by kappa statistics. Pearson correlations and
single and multiple linear regression analyses were performed
to test pairwise linear relationships. Factor analysis was per-
formed using the factoring method of principal component
analysis; 4 factors were retained based on a minimum eigen-
value threshold of 1.5, and a general orthomax rotation of the
initial factors was performed. Cluster analysis was performed
using the K-means algorithm. Statistical significance was set
at p < 0.05. Statistical analysis was performed with SAS 9.3
software.

Fig. 1 Avisual representation of the of tumor analysis performed by the
HexT approach. Hexagon grid is overlaid on the original WSI of Ki67
IHC to reflect subsampling of the DIA-generated data. The magnified
hexagons illustrate side-to-side the details of the original and DIA
markup images. The hexagon colors represent different ranks of the
local Ki67 LI, also used for calculation of heterogeneity indicators and
for the 3D visualization (bottom left) of the “proliferative surface” of the
tumor
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Results

Sampling the DIA-generated data into HexT
and summary statistics

Criteria and results of sampling the DIA-generated data into
HexT and summary statistics of the data from the overall im-
age analysis of WSI, from HexT, and from pathology reports
are presented in Online Resource 2.

Correlation of the data from the overall image analysis
of WSI, from HexT, and from pathology reports

The Ki67 LI calculated by the WSI DIA and the median Ki67
LI obtained from the HexT (HexSize825) data revealed per-
fect correlation (r = 0.9967, p < 0.0001) without significant
bias detectable by linear regressionwith the Hexmedian as the
dependent variable (r2 = 0.997, model p < 0.0001, inter-
cept = −0.46808, slope = 1.02341). Notably, a relevant bias
was estimated in the regression model with the Hex Ki67 LI
90th percentile used as the dependent variable (r2 = 0.917,
model p < 0.0001, intercept = 7.40159, slope = 1.21154).
The pathology report for Ki67 LI could be predicted from
the WSI DIA Ki67 LI with some bias (r2 = 0.754, model
p < 0.0001, intercept = −4.16059, slope = 1.21154).

Aweak inverse correlation between the HexTmedian Ki67
LI and entropy was observed (r = −0.3872, p < 0.0001).
Importantly, the scatter plot (Online Resource 3) revealed a
nonlinear pattern, suggesting a positive relationship at lower
levels of proliferation and a negative relationship at higher
levels of proliferation. This trend was confirmed by the corre-
lation analyses (Online Resource 3) of samples split at the
median of the Hex Ki67 LI (less than 30 % and greater than
or equal to 30 %), with correlations of r = 0.5906, p < 0.0001,
and r = −0.4412, p < 0.0001, respectively. An example of two
tumors with similar Ki67 LI but different entropy indicators is
presented in Online Resource 4. Bimodality indicators were
not significantly related to the Ki67 LI values.

As expected, the degree of proliferation measured by var-
ious Ki67 LI indicators was associated with higher histologi-
cal grade (Fig. 2a) and more aggressive types of breast cancer
(not shown). Importantly, grade 3 tumors revealed less entro-
py than grade 1 or 2 tumors (p = 0.0104); the frequency of
grade 3 tumors within the upper quartile of entropy was
17.8 % (28/157) versus 33.3 % (7/21) or 32.8 % (39/119)
for grade 1 and 2 tumors, respectively. This finding was also
reflected by relevant ANOVA results where G3 tumors pre-
sented with lower entropy values compared to the G1 and G2
tumors (p < 0.05, Fig. 2b) and is consistent with the relation-
ship between Ki67 LI and entropy noted above (Online
Resource 3). It can be interpreted that high-grade tumors are
more spatially homogenous with respect to their proliferative
activity. While this finding can be taken as trivial, it supports

the principle of tumor entropy measurements by HexT ap-
proach. The bimodality indicators did not reveal significant
clinicopathological associations.

Factor analysis of the Ki67 indicators

Factor analysis was performed on 297 patients with a com-
plete set of data obtained from the DIA of WSI and from the
HexT (HexSize825) analysis. Ki67 LI from pathology reports
was also included in the data set. The rotated factor pattern of
the 4 factors, extracted with eigenvalues of 5.8, 5.1, 2.3, and
1.9, respectively, is presented in Fig. 3. Factor 1 was charac-
terized by strong loading of the majority of the Haralick tex-
ture parameters; the strongest positive loading was with the
entropy indicator, and factor 1 was therefore named the entro-
py factor. Factor 2 was characterized by positive loading of the
Ki67 LI indicators fromWSI, HexT, and the pathology report
accompanied by low skewness of the Ki67 LI distribution in
the HexT, and it was therefore named the proliferation factor.

Fig. 2 Association of histological grade to median Ki67 LI HexT and
entropy. Box-whisker plots representing analysis of variance results with
histological grade as explanatory variable with a median Ki67 LI HexT
(labeled as PercentPosHex_Median) and b entropy indicator
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Similarly, factor 3 was named the bimodality factor, while
factor 4 was termed the cellularity factor, based on the data
obtained from both the WSI DIA and HexT data. Factor anal-
yses using the same data set provided similar factor patterns in
the subgroups of HR-positive, HER2-positive, and TN tumors
(not shown). The results of cluster analysis are presented in
Online Resource 5.

In summary, the factor and cluster analyses present evi-
dence for two linearly independent features with respect to
the intra-tumor heterogeneity of proliferative activity as mea-
sured by Ki67 expression. The first is based on entropy and
other texture indicators, and the other is based on bimodality
indicators. Both aspects of heterogeneity are linearly indepen-
dent of the Ki67 LI of the tumor. Although a large proportion
of tumors can be considered as relatively homogeneous, those
with predominant entropy, bimodality, or a combination of
both may represent heterogeneous variants.

Automated hotspot detection and measurement—the
concept of Pareto hotspot

The DIA data, when subsampled into the HexT, provided an
opportunity to analyze the Ki67 LI distribution in the context
of the 2D space of the tumor tissue. All ranges of biomarker
expression variability in the HexT can be mapped back to the
WSI for visualization and quality control. Furthermore, the
tumor areas with high Ki67 expression can be specifically
highlighted to reveal hotspots, potentially defining the biolog-
ical behavior of the tumor.

Detection of hotspots by either visual or digital means
can be complicated by the nature of the tumor tissue:
hotspots may vary in size, shape, and contrast in hetero-
geneous tumors but be undetectable in homogeneous tu-
mors. Therefore, stable definitions and criteria are needed.
One simple approach would be to measure the Ki67 ex-
pression as a stable proportion of the tumor tissue at the
high end of the range, which may best reflect the biolog-
ical potential of the tumor to proliferate. Following the
Pareto principle (also known as the 80–20 rule), which
states that for many events, approximately 80 % of the
effects come from 20 % of the causes, we propose the

and 2; b factors 1 and 3; and c factors 1 and 4 are plotted (n = 297). Labels
are as follows. CellDensityWSI nuclear profile density per tumor area in
WSI, Ki67% Ki67 LI from pathology report, Kurtosis Ki67 LI HexT
kurtosis, PercentPosHex_P90 Ki67 LI HexT 90th percentile,
PercentPositiveHex_DispIndex Ki67 LI HexT dispersion index,
Pe rc e n tPo s i t i v eHEX_Med i a n Ki 67 L I HexT med i a n ,
PercentPositiveWSI Ki67 LI WSI, QRange Ki67 LI HexT interquartile
range, Skewness Ki67 LI HexT skewness, TotalNucleiHex_
DispersionIndex dispersion index of total nuclear profiles per Hex,
TotalNucleiHEX_Median median of total nuclear profiles per Hex in a
HexT
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concept of a Pareto hotspot, represented by the upper
quintile of the biomarker expression in the tissue.
Meanwhile, the median of the Pareto hotspot, represented
by the 90th percentile of the entire range, can be a quan-
titative indicator of the Ki67 LI inside the Pareto hotspot.

To gain insight into the potential usefulness of the Pareto
hotspot concept, we performed regression analyses on a subset
of tumors with Ashman’s D values above and below the upper
quartile. The retrospective Ki67 LI from the pathology report
was used as a dependent variable, while the median and 90th
percentile Ki67 LI obtained by the HexT analysis were tested
as explanatory variables in a multiple regression model.
Remarkably, the Ki67 LI values of the pathology reports were
somewhat better predicted by the 90th percentile than by the
median of the HexT Ki67 LI in the bimodal tumors (upper
quartile of the Ashman’s D), and vice versa (Table 1). Notably,
the retrospective Ki67 LI values in the pathology reports were
not strictly standardized in our study; however, it is expected
to reflect the pathologists’ effort to detect and estimate the
Ki67 LI in the “hottest” areas of the tumors.

While the clinical utility of the Pareto hotspot metrics are yet
to be established, the concept provides the immediate benefit of
highlighting the most prominent areas of biomarker expression
in the tumor tissue by overlaying the Hex with the fifth quintile
of Ki67 LI on the tumor tissue image, forming the Pareto web.
This visualization approach does not depend on any assump-
tions about tumor heterogeneity, as the approximately 20 % of
the tumor tissue with the highest biomarker expression levels
would bemarked in all cases. Nevertheless, the relevance of the
Pareto web must be appreciated in the context of the heteroge-
neity metrics for the individual tumor. Examples of the Pareto
web are presented in Fig. 4.

Validation of HexT data based on hotspot detection
by visual review of the WSI

While reviewing 50WSI, 3 observers identified 20, 21, and 23
tumors, eachwith at least one hotspot. The agreement between

the observers (taken pairwise) in detecting at least 1 hotspot
was estimated by kappa coefficients of 0.55, 0.63, and 0.85.
Consequently, hotspots were identified in 27, 22, or 15 tumors
by 1, 2 or all 3 observers, respectively. Analysis of the actual
areas and hotspot overlaps outlined by all 3 observers in the 15
tumors (as above) revealed that on average, hotspots repre-
sented 4.8 % of the tumor area (range, 0.6 to 17.0 %).
Meanwhile, on average, 26.0 % of the hotspot areas coincided
for all 3 observers (range, 1.7 to 70.8 %). Pairwise compari-
sons revealed hotspot area overlaps of 42.0, 43.8, and 50.1 %.

The hotspot annotations provided by the 3 individual ob-
servers revealed significantly higher Ki67 LI values by paired
t test (mean differences of 8.4 %, 8.7 %, and 10.1 %;
p < 0.0009, p < 0.0008, and p < 0.0003, respectively) com-
pared to the remaining area of the same tumors. The mean
differences in the hotspot Ki67 LI between the observers were
not significant. Hex overlapping the freeform hotspot annota-
tions provided by the 3 individual observers (Online Resource
6) revealed significantly higher Ki67 LI values by paired t test
(mean differences of 5.8 %, 5.8 %, and 6.7 %; p < 0.0003,
p < 0.0002, p < 0.0001, respectively) when compared to the
remaining Hex of the same tumors. Similarly, the Hex over-
lapping the hotspot annotations of the 3 observers were more
frequently represented by higher quintiles of Ki67 LI HexT
values (p < 0.0001); in particular, over 20% and 40% of these
Hex were in the range of the 4th and 5th quintiles, respective-
ly. Finally, the mean hotspot Ki67 LI from all 3 observers was
not significantly different (p = 0.0675) from the Ki67 LI 90th
percentile (the median of the Pareto hotspot), although it was
significantly lower (−4.4 %, p = 0.0346) in the case of only
one observer..

In summary, the experiments revealed fair inter-observer
agreement in the visual detection of hotspots along with their
variable size and spatial overlap. The hotspots revealed higher
Ki67 LI compared to the Ki67 LI of the remaining tumor
tissue; they were associated with Hex containing higher
Ki67 LI values and were comparable with the Pareto hotspot
median Ki67 LI.

Discussion

Our study demonstrates that the informative value of IHC
DIA can be greatly enhanced by the systematic subsampling of
the data into aHexT. The approach provides numerous benefits:
(1) multiple measurements of the IHC marker (or any other
histological feature of interest) enable the application of dis-
tribution statistics to supplement and ensure the quality of
marker expression measurement obtained by a single DIA of
the entire region of interest (ROI); (2) data on biomarker ex-
pression in 2D space enable the calculation of texture indica-
tors in the region of interest that reflect the global measure of
intra-tumor heterogeneity; these indicators, along with the

Table 1 Multiple regression models to predict pathology-based Ki67
LI in predominantly unimodal and bimodal tumor subsets

Variable R-square Intercept
estimate

p

Model: Ashman‘s D > 75 percentile 0.7255 <0.0001

Intercept −9.67731 0.0224

Percent Pos Hex_Median 0.50928 0.1524

Percent Pos Hex_P90 0.62569 0.0523

Model: Ashman‘s D < 75 percentile 0.7561 <0.0001

Intercept 0.96770 0.7306

Percent Pos Hex_Median 1.64738 <0.0001

Percent Pos Hex_P90 −0.46519 0.0989
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Ki67 LI: 
Pathology 70% 
WSI 52.8% 
HexT  median 51.9±17.2% 
HexT  mean 47.2±17.2% 
Pareto hotspot) 67.4% 
Entropy 2.8 
Ashman's D 4.3 

d

c
Ki67 LI: 
Pathology 30% 
WSI 40.5% 
HexT  median 39.8±7.9% 
HexT  mean 39.2±7.9% 
Pareto hotspot) 48.6% 
Entropy 1.8 
Ashman's D 3.8 

b

a

Ki67 LI: 
Pathology 20% 
WSI 17.1% 
HexT median 15.8±6.3 
HexT mean 16.8 ±6.3% 
Pareto hotspot 27.3% 
Entropy 2.5 
Ashman's D 4.0 

Ki67 LI: 
Pathology 40% 
WSI 32.2% 
HexT median 33.9±10.5% 
HexT mean 32.0±10.5% 
Pareto hotspot 43.5% 
Entropy 2.8 
Ashman's D 1.1 

Fig. 4 Examples of tumors tested
with the comprehensive Ki67
IHC methodology. The panel
includes the statistics for the
tumor and the histogram of the
HexT Ki 67 LI distribution
(upper-left quadrant), a 3-D
histogram of the HexT Ki67 LI
(lower-left quadrant), the WSI
with the Pareto web highlighting
the upper fifth quintile of the
HexT Ki67 LI distribution (for
increased detail, yellow Hex
represent the 80–90th percentile;
orange Hex represent the 90-95th
percentile; red Hex represent the
95–99th percentile; blue Hex
represent the 99-100th
percentile). a Ductal carcinoma,
HR and HER2-positive, grade 3,
cluster 2. The pathology-based
Ki67 LI is similar to the Pareto
hotspot Ki67 LI value but higher
than the average value. b Ductal
carcinoma, HR and HER2-
positive, grade 2, cluster 1; the
sample represents a tumor with
medium entropy and high
bimodality. A distinct hotspot is
detected and reflected in the Ki67
LI indicators. cDuctal carcinoma,
HR-positive, grade 2, cluster 4;
the sample represents a tumor
with medium entropy and
bimodality. The pathology-based
Ki67 LI is lower than all the DIA-
generated indicators, while the
Pareto hotspot Ki67 LI value is
much higher and was obtained
from the invasive margin of the
tumor highlighted by the Pareto
web. d Ductal carcinoma, HR-
positive, grade 3, cluster 7. The
sample represents a tumor with
high entropy and bimodality.
Importantly, the pathology-based
Ki67 LI corresponds to the Pareto
hotspot Ki67 LI value (90th
percentile).
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distribution statistics, can be used for inter-tumor comparisons
and stratification of the tumors into homogeneous and hetero-
geneous categories; (3) various percentile ranges obtained
from the HexT distribution statistics may prove to be more
biologically relevant and clinically useful indicators of tumor
proliferative activity than a simple Ki67 LI average, especially
in heterogeneous cases (the Pareto hotspot is one possible
automated indicator that mimics the current clinical practice
of Ki67 LI evaluation in hotspots); (4) automated highlighting
of potential hotspots on the WSI (e. g., with a Pareto web) can
serve as a decision support and quality assurance tool, where-
as 3D visualization of the “roughness of the proliferative sur-
face of the tumor” enables a visual representation of the spatial
heterogeneity of biomarker expression for better perception of
the disease.

DIA enables greater data retrieval from IHC slides than
could ever be achieved by manual counts. In our experiment,
121,000 tumor cell profiles were evaluated per WSI on aver-
age, with a range from 11,000 to 419,000. Interestingly, a total
of 36 million cells were “processed” in the 297 WSI, with an
overall tumor area of 15,000 mm2. From this point of view,
retrieval of only one indicator (such as Ki67 LI) in the DIA of
the WSI from each tumor section can be regarded as a sub-
stantial underutilization of the data. The first step forward,
enabled by the HexT, is the provision of the average (or me-
dian) Ki67 LI along with standard deviation, standard error,
and other distribution analytics. These analytics add value,
especially in cases where higher accuracy and precision are
critical for clinical decision-making. Remarkably, the Ki67 LI
detected by the WSI DIA and the median Ki67 LI obtained
from the HexT revealed a perfect correlation (r = 0.9967) in
our experiment; these data would allow the modeling of the
representativeness of TMA sampling techniques, which is be-
yond the scope of the present study.

In contrast to our previous study [5] based on breast cancer
TMA data, in which we found that visual evaluation of Ki67
LI tended to underestimate the standard criterion values ob-
tained by a stereology grid count, our current data, obtained
using the same DIA tool with the WSI, revealed that the pa-
thology report Ki67 LI slightly exceeded theWSI DIAvalues.
Although we did not generate another grid count-based stan-
dard criterion data in the present study, the most likely expla-
nation for this “discrepancy” comes from the fact that pathol-
ogists, in their routine practice, aimed to evaluate Ki67 LI in
the hotspots whenever feasible.

DIA with HexT and computed distribution and texture in-
dicators produced a rich data set, enabling the application of
multivariate statistical analyses to understand the sources of
variance and types of heterogeneity. We have previously
shown that a factor analysis of 10 IHC markers measured by
DIA in breast cancer TMA can be successfully used to explore
multiple relationships in an immunophenotype [29]. Our cur-
rent experiment demonstrates that single IHC biomarker

expression, when evaluated by “multiple measurements”
(HexT) in the tumor tissue that account for the spatial aspects
of expression, enables evaluation of the comprehensive IHC
characteristics of the tumor. Again, factor analysis facilitated
the interpretation of the multiple interrelationships in this
dataset by extracting intrinsic factors that represent the main
and linearly independent processes/features that are hidden
behind the variance of the data. For example, if a factor is
characterized by positive loading of entropy and dissimilarity
and negative loading of energy and homogeneity (Fig. 3), it
can be interpreted as an expression of disordered texture when
measured by these variables and may be expressed best by a
single indicator of entropy (the variable with highest loading
for this factor, in our case). Because the factor analysis results
depend on the included data, we “balanced” the data set by
including several indicators of Ki67 LI, its distribution and
texture and the absolute cell numbers per HexT and WSI.
The proliferation factor, represented by various measurements
of Ki67 LI along with negative skewness, reflected our obser-
vation that tumors with low and high Ki67 expression com-
monly present with opposite types of distribution asymmetry.
Entropy was the most informative single indicator of the tex-
ture characteristics. Remarkably, the bimodality factor, al-
though less prominent, was independent of the texture statis-
tics and was best characterized by specific bimodality indica-
tors rather than kurtosis. Notably, factor analyses on the same
data set but obtained from the HexT of HexSize550 and
HexSize1100 or from the SqxT equivalent to HexSize825
produced very similar results (not shown).

The concept of intra-tumor tissue heterogeneity is not new
and is commonly used in the context of IHC biomarker ex-
pression and microscopic and/or molecular features in gener-
al. Nevertheless, the definitions of heterogeneity are mainly
arbitrary, while objective criteria may depend on the specific
experimental design, biomarker, and tumor tissue [12, 16, 30].
Furthermore, heterogeneity may be regarded as a part of the
biological continuum of tumor variation, in which subpopula-
tions of biologically and morphologically distinct tumor cells
find their place in the tumor ecosystem. Therefore, defining
and measuring heterogeneity in the 2D space of a microscopic
section is a challenging task. Additionally, it appears that tu-
mors can be heterogeneous in different ways; for example,
they may be finely or coarsely granular.

One might argue that coarsely granular heterogeneity can
be better appreciated by visual evaluation and actually repre-
sents the hotspot concept used by pathologists; however, the
absolute and relative size, shape and contrast with the back-
ground are difficult to define and evaluate. This difficulty is
illustrated by the inter-observer variability in our hotspot val-
idation experiment; although agreement in the detection of at
least one hotspot was fair between pairs of the 3 observers
(kappa coefficients of 0.55, 0.63, and 0.85), the locations
and the absolute and relative sizes of the hotspots were
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variable: the spatial overlap of the annotated hotspots varied
among the 3 observers from 1.7 to 70.8 % of the area. Based
on the DIA data from the overlapping HexT, the pathologists
were able to contrast the hotspots with a mean difference of
5.8–6.7 % compared to the background HexT; however, this
criterion is likely to be less precise than the automated detec-
tion of the hotspots by the HexT approach. In addition, our
data support the notion that automated hotspot detection using
HexT brings the benefits of better standardization (both the
absolute and relative size of the hotspots can be controlled)
and more discriminatory evaluation of highly proliferative
areas; for example, the mean (59.3 %) of the 90th percentile
of Ki67 LI by HexT (equivalent to the median of the Pareto
hotspot) was twice as high as the mean (32.6 %) Ki67 LI by
HexT (Online Resource 2). In other words, the HexTapproach
enables a much higher dynamic range of intra-tumor Ki67 LI
variability measurements.

It is even more problematic to measure fine spatial irregu-
larity or disorder in tissue biomarker expression. Thus, it is not
surprising that the corresponding concepts of spatial entropy
and other texture indicators are not used in daily pathology
practice. To go beyond subjective impressions, one would
need to enumerate the Ki67 LI in systematically subsampled
areas of WSI or in consecutive high-magnification fields with
a conventional microscope, which becomes impractical in
terms of capacity and expected precision. Therefore, a stan-
dard criterion for spatial entropy measurements is barely fea-
sible. Validation of the HexT approach with respect to texture
measurements is more realistic for the performance of inter-
tool comparisons and clinical utility studies.

The tumor heterogeneity of HER2 expression in breast
cancer tissue by immunohistochemical detection has been ex-
tensively investigated by Potts et al. [12]. They used ecology
diversity statistics to evaluate cell-level and tumor-level het-
erogeneity and proposed a heterogeneity map to visualize in-
dividual tumor heterogeneity and HER2 expression levels in
the context of a patient population. The study was based on
200 specimens from 2 different laboratories with 3 patholo-
gists per laboratory, each of whom outlined the regions of a
tumor for scoring by DIA. Although the results were consis-
tent between the 2 laboratories, the authors did not have pa-
tient outcome data to test the clinical utility of the approach.
Importantly, they recognized that the number of sampled re-
gions might be insufficient to make determinations of tumor-
level heterogeneity; thus, the use of a methodology that sam-
ples the entire tumor sample on a slide may be required for this
type of analysis.

To the best of our knowledge, the HexTapproach is the first
proposed methodology that relies on systematic subsampling
of automated DIA-generated data by regular polygons in ar-
rays to measure the intra-tumor heterogeneity of IHC bio-
marker expression in WSI. To further highlight the benefits
and novelty of the HexTapproach, we note that: (1) it requires

only a single DIA procedure perWSI rather thanmultiple DIA
processes for subsampled tissue areas; (2) the DIA process is
not affected by the subsampling (the surrounding tissue con-
text is important for accurate tumor tissue segmentation); (3)
multiple HexT settings can be applied and tested using the
same DIA result; (4) the HexT process can be adapted to
different DIA tools; and (5) the HexT approach generates
more informative data than a SqxT approach without substan-
tial differences in computation time. Similar image microarray
technique has been proposed by Hipp et al. to extract action-
able information from WSI by systematic capture of image
tiles with constrained size and resolution [31]; although this
approach could be utilized to retrieve tumor heterogeneity
statistics, we suggest that our methodology has an important
advantage of performing DIA on continuous, “not
fragmented” tissue in a WSI while performing spatial DIA
data tiling in the post-analytical phase.

We performed cluster analysis to explore whether a mean-
ingful classification of breast cancer cases could be achieved
by accounting for the percentage of Ki67-positive tumor cells
along with the entropy and bimodality indicators. We did not
use the cellularity factor in the cluster analysis, as it was the
least important contributor to variation in the data set and was
also potentially sensitive to technical variations caused by the
variable efficiency of cell detection in tumors with variable
nuclear morphology. Notably, the extracted clusters and their
associations with breast cancer types and grades reflected the
well-known relationship between proliferative activity and
disease aggressiveness. However, we focused on exploring
the cluster distribution in two linearly independent features
of intra-tumor heterogeneity with respect to Ki67 LI, namely
entropy and bimodality. Our data indicate that although a great
proportion of the tumors can be considered as relatively ho-
mogeneous, the presence of predominant entropy or bimodal-
ity, or a combination of both, may represent heterogeneous
variants. Again, robust stratification of the tumors into homo-
geneous and heterogeneous groups would require evidence-
based definitions, preferably ones that reflect clinical out-
comes. While formal definitions for bimodality do exist (for
example, if Ashman’s D is more than 2), we would rather
consider a bottom-up approach based on the percentile distri-
bution of the real data. For example, the tumors could be
considered heterogeneous if their entropy and/or bimodality
indicators were in the upper quartile of the distribution; as seen
in our data set, the upper entropy quartile contained 51
(17.2 %) tumors, the upper Ashman’s D quartile contained
52 (17.5 %), and the combined entropy and Ashman’s D up-
per quartile contained 23 (7.7 %) tumors (not shown). By
these entropy and/or bimodality criteria, approximately 40 %
of the tumors could be considered heterogeneous.
Interestingly, Dodd et al. in a study [30] of 25 breast cancer
cases, found 8 (32 %) cases with significant and measurable
variation in MIB-1 proliferative activity in various sectors of
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the tumor. In our study, up to 27 of 50 cases could be consid-
ered heterogeneous based on an independent review of the
WSI by 3 pathologists, while this number dropped down to
22 or 15 if agreement between 2 or 3 pathologists was re-
quired, respectively.

We observed a peculiar relationship between the prolifera-
tion and entropy indicators in our experiment.While the factor
analysis extracted the proliferation and entropy factors, which
were by definition linearly independent, a weak inverse cor-
relation between the Ki67 LI indicator and the entropy param-
eter was noted. Furthermore, a non-linear relationship that was
positive at lower levels of proliferation and negative at higher
levels of proliferation could be demonstrated. This finding,
though slightly unexpected, seems meaningful and may be
interpreted as the absence of entropy in the absence of bio-
marker expression, increasing entropy with the appearance of
a biomarker at the low end of the scale, and diminishing en-
tropy when the biomarker expression (proliferation) tends to
become diffuse. Consequently, maximum entropy is observed
in the middle of the scale of biomarker expression. In other
words, the tumors can be broadly subdivided into “cold ho-
mogeneous”, “medium heterogeneous”, and “hot homoge-
neous”. In practical terms, this means that the indicator of
entropy (and other heterogeneity indicators) must be used in
the context of the degree of proliferation (biomarker expres-
sion). A similar relationship between the level of
immunohistochemically detected HER2 expression in breast
cancer cells, and its intra-tumor heterogeneity has been noted
by Potts et al. [12].

Multiple measurements of a tumor tissue provide a
choice of variables for prognostic and predictive modeling
of the disease. Brown et al. in a recent study [32] of 105
pre-surgical biopsies from breast cancer patients, per-
formed multiple Ki67 expression measurements using
quantitative immunofluorescence; the method enabled ef-
ficient analysis of the entire biopsy, removing the subjec-
tivity of hotspot selection. They found that averaging all
fields of view provided a more sensitive and specific assay
to predict the response to therapy than did the maximum
field of view value. One might argue that the maximum
values are vulnerable to biological and technical aberra-
tions; instead, we propose a simple approach based on
measuring the Ki67 expression in a stable proportion of
the tumor tissue at the high end of the range; this metric
may best reflect the biological potential of the tumor to
proliferate, both in homogeneous and heterogeneous tu-
mors. The Pareto principle could thus be applied, leading
to the definition of a Pareto hotspot as the upper quintile of
the biomarker expression in the tissue. Accordingly, the
median of the Pareto hotspot, represented by the 90th per-
centile of the distribution, can be a measure that is more
biologically relevant and less sensitive to intra-tissue het-
erogeneity and other artifacts than the median or maximum

values. The Pareto hotspot approach may provide a solu-
tion to “a dual problem of accommodating individual sam-
ple heterogeneity while optimizing counting methods”, as
noted by Romero et al. [14]. Certainly, the clinical utility of
the Pareto hotspot concept remains to be tested in appro-
priate studies.

Christgen et al. have recently reported a study focusing
on the impact of ROI size on Ki67 quantification by
computer-assisted image analysis in breast cancer [33].
After manual identification of the highly proliferative
areas on WSI, they incrementally increased the ROI size
by expanding freeform annotations, based on the number
of cells detected by the image analysis in the ROI, and
showed that the median Ki67 index decreased from 55 to
15 % by increasing the size of the ROI. This led to sig-
nificant misclassification between low- and high-
proliferative tumors dependent on the size the selected
ROI. While manual Ki67 counts in the hotspots are usu-
ally limited to some fixed number of cells, the authors
proposed that the automated image analysis should also
standardize and document the ROI size. While we
completely concur with the statement, one must take into
account the complexity of the task in defining, detecting
and measuring hotspots. We reflect on it is as a formula
with “multiple unknowns” and potential analytical biases,
starting with hotspot selection, along with the definition
of its shape and size, further complicated by variable pos-
itive cell spatial density gradients (contrast to the sur-
rounding tissue) in individual tumors and hotspots. This
can be appreciated in the examples (Online Resource 6)
where variable success of the three observers to agree in
spatial hotspot detection seems to depend on the variable
properties of the hotspots in different tumors. In other
words, either visual or computer-assisted evaluation of
hotspots, based on spatial clustering of positive cells, is
difficult in terms of standardization. In this regard, the
HexT approach is free of selection bias and generates data
enabling multiple expressions of the intra-tissue variation
to be tested against clinical outcomes. Furthermore, the
resolution of the HexT can be (self)-adjusted to different
levels of the heterogeneity granularity and types of tumors
to be tested. For example, highly cellular tumors would
enable sufficient sampling for high-resolution HexT anal-
ysis as well as multiple-size HexT testing. In other words,
the HexT resolution could be fine-tuned as a function of
tumor cellularity and architecture.

The last but not the least, the HexT approach enables
effective ways to visualize tumor heterogeneity. The Pareto
web, represented by the upper-quintile Hex overlaid on the
original image of the tumor, provides a simple way to
highlight hotspots that is based on “bottom-up” informa-
tion retrieved from an individual tumor. Importantly, the
Pareto web is generated even in homogeneous cases, and
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thus, it should be interpreted in the context of the hetero-
geneity metrics for the tumor. Furthermore, this approach
may be useful in all tumors by identifying outlier Hex,
which may contain tissue and/or image analysis artifacts,
for use in quality assurance procedures. Another important
factor is that visual perception of tumor entropy or “rough-
ness” can be facilitated by 3-D histograms of the HexT,
which can also be aligned to the original image, adding
an intuitive component to the understanding of the disease,
especially in obscure cases where the clinical decision may
benefit from understanding the “big picture”.

Our present study contains several limitations. Firstly, it
was designed to prove the principle rather than to test clin-
ical utility of the HexT approach. Patient follow-up was not
available in our data set; nevertheless, we observed some
clinicopathological associations of texture indicators to the
molecular subtypes and histological grade. Secondly, we
used relatively large surgical excision samples of breast
cancer tissue, and the approach was not tested on core
needle biopsy material. It remains to be investigated: one
can expect that core biopsy samples may be not sufficient
for texture statistics due to potential lack of 2D data in
relation to the Hex size applied. Nevertheless, highly cel-
lular tumors could potentially be tested by smaller hexagons.
Yet, the Pareto HS detection and measurement by the HexT
approach is less dependent on the 2D data and is likely to
function in the biopsy samples. Thirdly, we did not exclude
the DCIS component in our analyses. Although we did not
find evidence that DCIS could significantly impact the hotspot
detection in our study, clinical study design would require
manual or automated exclusion of DCIS. Finally, although
the HexT approach enables multiple definitions of hotspots
besides the Pareto principle, we left them out of scope of the
present study since they would be best elaborated in the con-
text of clinical outcome data.

In summary, we propose a methodology, based on HexTof
IHC DIA data, to retrieve comprehensive information about
biomarker expression, its intra-tissue variance, and spatial het-
erogeneity indicators and to provide effective ways to visual-
ize intra-tissue heterogeneity for decision support and quality
assurance. In this study, we demonstrated the concept of com-
prehensive IHC to measure the Ki67 LI in breast cancer tissue
in a way that includes aspects of intra-tumor heterogeneity;
however, this approach can potentially be applied to numerous
different IHC markers and tissues.
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