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Abstract Merkel cell polyomavirus (MCV) is frequently de-
tectable in Merkel cell carcinoma (MCC) tumors, but the
significance of MCV infection is not yet totally understood.
Thus far, no key regulatory miRNA has been identified for
MCC tumorigenesis. However, distinct miRNA expression
profiles have been suggested for MCV-positive and MCV-
negative tumors. We used microarray hybridization to identify
miRNA expression differences in MCC tumor samples ac-
cording to MCV status and further validated these results by
quantitative reverse transcription polymerase chain reaction
(qRT-PCR). When compared with MCV-negative tumors, we
detected overexpression of miR-34a, miR-30a, miR-142-3p,
and miR-1539 in those MCV positives. In addition, slight
underexpression was detectable in MCV-positive tumors of
miR-181d. We confirmed the distinct expression of miRNAs
in MCV-positive and MCV-negative tumors and confirmed
statistically significant underexpression of miR-34a in MCV-
negative tumors by both array analysis and qRT-PCR. Neither

tumor location nor development of metastases affected
miRNA expression.

Keywords Merkel cell carcinoma .Merkel cell
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Introduction

Merkel cell carcinoma (MCC) is a rare and aggressive neuro-
endocrine carcinoma of the skin. In 2008, Merkel cell poly-
omavirus (MCV) was discovered clonally integrated into the
tumor DNA both of primary tumors and of metastases, lend-
ing support for its fundamental causative role in the majority
of MCCs [1–3]. Later studies showed that after integrating
with the host genome, MCV loses its ability to replicate [4],
suggesting further that MCV infection is already contributing
in the early steps of MCC tumorigenesis. Other factors, such
UV exposure, advancing age, Caucasian race, and an immu-
nocompromised state, lead to a predisposition for MCC [5–8].

Earlier work by our group and others has revealed the
existence of two distinct subgroups, based on the amount of
MCV DNA, on differing oncogenic pathways and on clinical
presentation [1, 5, 9–11].MCVinfection associates with better
prognosis, tumor location on the extremities, and greater
genomic stability [2, 12, 13]. A key step in its viral
oncogenesis is binding and inactivation of RB by the
large T-antigen (LTA) of MCV. Loss of retinoblastoma
protein (RB) function seems, however, to be important
also in MCV-negative tumors (as they are characterized
by loss of RB expression) [9, 13, 14].

MicroRNAs (miRNAs) are non-coding single-stranded
RNAs that negatively regulate gene expression at transcrip-
tional or posttranscriptional level by binding to messenger
RNA (mRNA) [15]. A single miRNA can target multiple gene
networks involved in the oncogenesis via mRNA regulation
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[16]. Regarding MCC, to the best of our knowledge, only one
study has addressed the miRNAprofiles inMCV-negative and
MCV-positive MCC tumors [17].

We hypothesized that dysregulation of specific miRNAs
plays a part in the distinctive molecular features of such
tumors. The aim of this present study was therefore to study
the expression of miRNAs in MCC tumors by miRNA mi-
croarray and qRT-PCR analyses. Further aims were to com-
pare the miRNA profiles in MCV-negative and MCV-positive
MCC tumors, to find distinctions in miRNA expression by
viral status that might offer therapeutic targets, and to explain
the driving forces behind MCV-negative MCC.

Patients and methods

An institutional ethics committee approved the study protocol,
and permission to analyze the tissue samples came from the
National Agency for Medicolegal Affairs, Finland.

Subjects

Data on 181 patients diagnosed with MCC in Finland during
1979–2004 came from the Finnish Cancer Registry. Clinical
details were extracted from clinical files and hospital records.
Formalin-fixed, paraffin-embedded tissue blocks were re-
trieved from the pathology archives. The MCC diagnoses
were confirmed from the tissue samples. We required for
histological diagnosis of MCC that tissue morphology was
compatible with MCC in microscopy and that the cancer cells
stained positively for CK-20 and negatively for TTF-1. MCV
detection from the paraffinized tumor blocks was as described
in detail elsewhere [2]. Whenever MCV DNA copy number
per reference gene was greater than 0.1, the sample was
considered positive.

Array analysis

RNA preparation and miRNA microarrays

From our pool of 181 MCC patients, we chose 15 with MCV-
positive and 15 with MCV-negative primary MCC tumors.
Their selection was based on the amount of paraffinized tumor
sample available and their known MCV status. Total RNA
was extracted from the tumor samples and from a paraffinized
control sample of normal skin. Qiagen’s miRNeasy mini Kit
(Qiagen, Valencia, CA, USA) allowed extraction of total RNA
from the paraffin blocks, including miRNA, according to
manufacturer ’s instructions. The NanoDrop-1000
Spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE, USA) served for quantification of RNA. Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA)
served in checking of the quality of both RNA and miRNA.

We excluded two MCV-negative samples from our study due
to insufficient RNA quantity, so microarray hybridization
involved 15 MCV-positive and 13 MCV-negative samples.

Labeling and hybridization of RNA samples were with the
Agilent’s miRNA Complete Labeling and Hybridization kit
protocol version 2.4 (Agilent Technologies, Santa Clara, CA,
USA), as described earlier [18]. Briefly, the samples were
hybridized on Agilent’s miRNA Microarray System V16
(1205 human and 144 human viral miRNAs, Sanger
miRBase 16.0; Agilent Technologies, Santa Clara, CA,
USA). The microarrays were then washed with the manufac-
turer’s washing buffers. Arrays were scanned with Agilent’s
Feature Extraction (v.11.0.1.1.), and default parameters were
used to extract the data.

miRNA microarray data analysis

GeneSpring GX Analysis Software v11.0.2 (Agilent) was
used for the statistical analysis of the microarray data. The
data was preprocessed by log 2 transformation, and normali-
zation between all arrays was by the use of the 75th percentile
method. We excluded miRNAs not detected in any samples or
controls from further analysis. miRNAs not expressed in at
least 100 % of one group of samples were excluded.
Significance of differential expression between every two
groups of samples was estimated by t test for those miRNAs
with at least a 2.0-fold reduced or increased mean expression
level between the two groups. Expression of mirRNAs was
considered to differ significantly when the adjusted p value (q
value) was <0.2 (Benjamini correction for multiple testing).

We used the following databases to search for predicted
mRNA targets of the differentially expressed miRNAs:
TargetScan (http://www.targetscan.org), miRanda (http://
www.microrna.org/microrna/home.do), mirTarget2 (http://
mirdb.org/miRDB), Tarbase (http://diana.cslab.ece.ntua.gr/
tarbase), miRBase target prediction database (http://www.
mirbase.org/), and PICTAR (pictar.mdc-berlin.de). Only
those mRNA targets that were predicted by at least four of
the six programs were listed in order to minimize the
possibility of false positives. Predicted mRNA targets of the
differentially expressed miRNAs were screened by Chipster
v1.4.7 (http://chipster.csc.fi/) for significant enrichment of
over-represented pathways in the ConsensusPathDB
(CPDB) by the hypergeometric test (p<0.05).

qRT-PCR validation

qRT-PCR

Sufficient RNA for the qRT-PCR validation was extracted
from 14 MCV-positive tumors and 12 MCV-negative tumors.
Clinical data for the tumors and respective patients is summa-
rized in Table 1. Reverse transcription of the RNAwas by use
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of the miScript II RT Kit (50) (QIAGEN) according to the
manufacturer’s instructions. Quantitative RT-PCR was exe-
cuted with miScript SYBR Green PCR Kit (QIAGEN) and
LightCycler 480 (Roche Diagnostics GmbH, Mannheim,
Germany) according to the manufacturers’ protocols. The
primers for the amplification of miRNAs (miR-34a, miR-
30a, miR-181d, miR-142-3p, and miR-1539) and U6 were
purchased from QIAGEN. U6 expression served for nor-
malization in statistical analysis. PCR for each RNA sam-
ple was performed in duplicate, with a negative control
(no template of cDNA) included in every run. Melting
curve analysis was also performed to check for nonspe-
cific amplification.

Statistical analysis of the qRT-PCR data

We used the ΔΔCt method for relative quantification of
miRNA expression by the equation: ΔΔCt=(CtmiRNA−
CtU6)control skin− (CtmiRNA−CtU6)tumor sample. The relative

quantity (RQ) for each miRNA, compared with the quantity
of U6, was calculated by the equation: 2−ΔΔCt. Mean and
median RQs for MCV-positive and MCV-negative tumors
were calculated for miRNAs. Expression data of miRNAs
are represented also as fold change (fold change=log 2 RQ).
Student’s t test served to evaluate statistically significant dif-
ferences in miRNA expression between the two groups: the
MCV-negative tumors and MCV-positive tumors. Since the
distribution of the RQ values was skewed, miRNA expression
according to MCV status was confirmed with the Mann-
Whitney U test using the median RQs. In addition to compar-
ison according to MCV status, tumors were divided also
into subgroups based on the progression to metastatic
disease and the location on sun-exposed versus non-
exposed areas. Sun-exposed areas were the head and
neck and the arms. The Mann-Whitney U test served
to compare miRNA expression in these groups (location
and metastasis). p values less than 0.05 were considered
statistically significant.

Table 1 Clinical characteristics of the 26 patients whose MCC tumors were included in the qRT-PCR analysis

Patient Sex Age at diagnosis MCV status Tumor size (mm) Tumor location Preceding diseases Metastasis location

1 F 90 Negative 20 Right temple Right neck/chin

2 M 68 Positive – Right cheek Coronary disease Scalp

3 F 80 Positive 85 Back of the thigh Axillary and inguinal
lymph nodes

4 M 59 Positive 70 Chest

5 M 67 Negative 15 Left cheek Kidney transplant

6 F 72 Positive 12 Left knee Parkinson’s disease

7 F 81 Positive 20 Right cheek

8 F 83 Negative 50 Right arm

9 F 85 Negative 15 Left temple

10 F 91 Positive 30 Forehead

11 M 71 Positive 34 Right buttock

12 F 95 Positive 18 Left cheek

13 F 87 Positive 30 Left shoulder Coronary disease Axillary lymph node,
right thigh

14 F 77 Negative 20 Right cheek Diabetes. coronary disease Mediastinum, pleura
and frontal lobe

15 F 79 Negative 20 Right breast Breast cancer

16 F 72 Negative 13 Calf Inguinal lymph nodes

17 F 57 Positive 33 Right cheek

18 M 78 Negative 25 Neck Psoriasis, solar keratosis Anal canal, pancreas

19 M 79 Positive 40 Left forearm

20 F 81 Negative – Left upper back Coronary disease, osteoporosis

21 F 84 Positive 24 Right shoulder Diabetes

22 M 82 Negative 28 Neck Prostate cancer, solar keratosis

23 M 85 Positive 75 Left arm Non-Hodgkin’s lymphoma Axillary lymph nodes

24 F 84 Negative 15 Back Breast cancer

25 F 87 Positive 20 Cheek

26 F 60 Negative 10 Left arm Heart, lung
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Results

miRNA expression profiles of MCV-positive
and MCV-negative groups by microarray

We conducted a microarray analysis to define possible global
differences in miRNA expression between the MCV-positive
and MCV-negative MCC subgroups. The microarray study
comprised of 15 MCV-negative and 13 MCV-positive MCC
tumors. Clustering analysis revealed no distinct clusters for
MCV-positive and MCV-negative samples. Five miRNAs
were expressed differently between these groups: miR-34a
(FC=4.1, q=0.0097), miR-30a (FC=2.3, q=0.08), miR-
1539 (FC=4.6, q=0.13), and miR-142-3p (FC=3.8, q=0.17)
were significantly underexpressed, and miR-181d (FC=3.5,
q=0.17) was overexpressed in MCV-negative tumors as com-
pared to MCV positives (Table 2).

miRNA targets and biological pathways

We identified 184 predicted targets for the differently
expressed miRNAs in those MCV positives versus MCV
negatives (Supplementary Table 1). Further analysis of pre-
dicted target mRNAs of the differentially expressed miRNAs
showed three pathways significantly affected in MCV-
positive samples (Supplementary Table 2).

Validation of miRNA expression by qRT-PCR

The five miRNAs that were differently expressed in the array
analysis were included in the qRT-PCR. Results of qRT-PCR
showed underexpression of miR-34a, miR-30a, miR-142-3p,
and miR-1539 in MCV-negative samples. Results were in
consensus with the array results (Figs. 1 and 2). However,
only miR-34a showed statistically significant underexpression
in MCV-negative samples (Table 3). The relative expression
level of miR-34a in individual MCC tumors is depicted in
Fig. 3. The result of miR-181d was discrepant (Table 3).
Detailed information on the findings is provided in
Supplementary Table 3. No correlation emerged between the

differently expressed miRNAs and either location of the tu-
mors or their progression to metastasis.

Discussion

In this study, comparing miRNA profiles of MCV-positive
and MCV-negative primary MCC tumor samples by microar-
ray analysis, miR-34a, miR-1539, miR-30a, and miR-142-3p
were underexpressed, and miR-181d was overexpressed in
MCV-negative tumors. Underexpression of miR-34a was also
validated as statistically significant by qRT-PCR. To the best
of our knowledge, this is the largest study addressing miRNA
expression in MCC.

The definition of MCV-negative versus MCV-positive
MCC tumors is not as yet absolute. Traces of MCV genomic
material are detectable in non-cancerous and cancerous tis-
sues, representing a passenger virus without a causal role
[19–21]. Rodig and colleagues recently suggested that with
detection methods sufficiently sensitive, MCVDNA occurs in

Table 2 Differently expressed miRNAs between MCV-positive and
MCV-negative MCC tumors detected by microarray analysis

chr Fold/regulation (neg. vs pos.) p value q valuea

miR-34a 1 4.1/down 0.0005 0.0097

miR-30a 6 2.3/down 0.009 0.08

miR-1539 18 4.6/down 0.022 0.13

miR-142-3p 17 3.8/down 0.042 0.17

miR-181d 19 3.5/up 0.048 0.17

a Adjusted p value, Benjamini correction for multiple testing

Fig. 1 Microarray analysis and qPCR show underexpression of miR-
34a, miR-30a, miR-1539, andmiR-142-3p in virus-negative versus virus-
positive MCC

Fig. 2 The relative expression levels of miR-34a, miR-30a, miR-1539,
and miR-142-3p in virus-positive and virus-negative MCC groups
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all MCC tumors [22]. Here, the threshold of viral copy num-
bers determining MCV positivity was set at 0.1, which has
correlated well with LTA expression with the mouse mono-
clonal antibody CM2B4. The protocol is generally accepted
and widely used [2, 10, 12, 23]. Detection of LTA expression
with CM2B4 in studies had led to the consensus that MCV is
in fact a carcinogenic virus [1, 4]. No in vitro studies exist that
show the causality for very low copy numberMCV. Albeit the
exact threshold copy number that defines MCV status is still
uncertain, the biological, molecular, and clinical differences in
the outcome point to two distinct MCC subgroups [2, 9,
11–14, 17, 24].

miR-34a is a known tumor suppressor mediated via p53-
dependent apoptosis promotion and cell cycle regulation [25,
26]. Its commonly recognized target genes are listed in
Supplementary Table 1. miR-34a forms a positive feedback
loop with p53. The activation of p53 by miR-34a leads to
increased miR-34a production [25, 26] and to further suppres-
sion of miR-34a target genes, one of which is the SIRT1 gene.
SIRT1, an enzyme of the sirtuin protein family, deacetylates
p53, thus abolishing the tumor-suppressive effects of p53. The
tumor-suppressor properties of miR-34a are therefore partly
explained by blocking SIRT1 [26, 27]. Immunohistochemical
detection of p53 is dependent upon TP53 gene mutations that

lead to inhibition of protein degradation. In MCC, only MCV
LTA-negative MCC tumors have TP53 mutations, suggesting
p53 regulation is involved in the oncogenesis of MCV-
negative tumors [14]. Prominent miR-34a reduction has been
reported in human papillomavirus-induced cervical cancer.
The viral oncoprotein E6 reduces miR-34a expression partly
by destabilizing p53 [28]. Considering the signal loop of mir-
34a and p53, the TP53 mutations and the underexpression of
miR-34a could contribute to oncogenesis of MCV-negative
tumors. Whether viral oncoproteins are behind the upregula-
tion of miR-34a in MCC—and the possible mechanisms
underlying such an effect—remain to be deciphered.

Another transcription factor regulating miR-34a is c-Myc,
which is frequently expressed in MCC tumors [11] Unlike
p53, c-Myc suppresses miR-34a expression [29]. miR-34a
enhances tumor cell survival by reducing p53 levels in c-
Myc-overexpressed Burkitt’s lymphoma cell lines during che-
motherapy [30]. This suggests that miR-34a could have im-
plications in other tumors with c-Myc deregulation and that
miR-34a could be considered as a therapeutic target in such
malignancies [30]. Although c-Myc expression does not cor-
relate with MCV status [11], miR-34a may interact with c-
Myc in MCC. Further, the overexpression of miR-34a in
MCV-positive tumors could decrease the p53 expression.

We have reported earlier that expression of the anti-
apoptotic protein bcl-2 indicates better prognosis in MCC
patients [31]. miR-34a is a negative regulator of bcl-2 [32];
overexpression of miR-34a inhibits bcl-2, for example, in
hepatocellular carcinoma [33]. If miR-34a inhibits bcl-2 also
in MCC, this would lend support to a tumor-suppressive role
for miR-34a in MCC. However, the role of bcl-2 as a positive
prognostic factor in MCC hints that other mechanisms than
bcl-2 inhibition might be more important in MCC
oncogenesis.

In this study, we found no correlation between miRNA
expression and disease stage or survival. Interestingly, the
mir34a RQ value was 5- to 19-fold greater in the sample from
the only patient who progressed to metastatic disease than in

Table 3 Expression of mir-34a, mir-30a, mir-181d, mir-142-3p, and mir-1539 detected by qRT-PCR

MCV positivea MCV negativea Regulation p valueb

Mean RQ Median RQ Mean RQ Median RQ Neg vs Pos Student Mann-Whitney

miR-34a 1.53 1.16 0.49 0.23 Down 0.0063 0.0043

miR-30a 2.39 1.80 1.96 1.56 Down 0.41 0.49

miR-1539 3.53 1.17 1.47 0.66 Down 0.32 0.17

miR-142-3p 1.89 1.29 0.77 0.56 Down 0.081 0.11

miR-181d 0.42 0.26 0.40 0.38 Downc 0.91 1.00

a Relative quantity (RQ) values calculated using the equation 2−ΔΔCt

b p value calculated either using Student’s t test or Mann-Whitney U test
c Regulation of miR-181d was discrepant

Fig. 3 The relative expression levels of miR-34a in individual virus-
negative and virus-positive MCC tumors
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the six tumors taken from those patients who survived for
more than 5 years. Larger tumor series are required to deter-
mine whether the differently expressed miRNAs in fact have
prognostic value.

miR-34a overexpression in MCV-positive MCC was first
reported by Xie et al. [17] Distinct expression of miR-34a and
miR-30a according to MCV status was detected both in our
study and by Xie and colleagues. They, however also con-
firmed significant overexpression of miR-375 and miR-769-
5p and underexpression of miR-203 in MCV-positive tumors
[17], whereas the meanmiR-142-3p relative quantity was over
2.5-fold that our (own) MCV-positive tumors. As the differ-
ently expressed miRNAs show some partial differences be-
tween these studies, it is reasonable to propose possible fluc-
tuations in MCC tumors’ miRNA profiles. However, since
both of these independent studies found expression of miR-
34a to differ according to tumor viral status, it is possible that
there exist few key miRNAs whose dysregulation is relevant
in MCC oncogenesis. For example, the overexpression of
miR-203 detected in MCV-negative tumors by Xie and col-
leagues suppressed survivin expression and led to cell cycle
arrest in MCV-negative tumor cells, suggesting its role in
MCC as a tumor suppressor [17].

We acknowledge the limitations of this study, mainly the
small sample sizes. To overcome this limitation, however, we
used various methodologies to validate our results, together
with thorough statistical analysis.

In conclusion, we found underexpression of miR-34a,
miR-30a, miR-1539, and miR-142-3p in MCV-negative
MCCs compared to expression in MCV positives as well as
overexpression of miR-181d in MCV-negative MCCs by
array analysis. This underexpression of miR-34a, ascertained
to be statistically significant also by qRT-PCR, may play a role
in the oncogenesis of MCV-negative tumors. None of the
differently expressed miRNAs were of any prognostic value,
yet more research is needed to study the correlation between
miRNA expression and disease stage or survival. These re-
sults suggest that the miRNA profiles of MCC deviate accord-
ing to MCV status, and this offers further evidence that the
tumorigenesis of MCV-positive tumors diverges from that of
MCV-negative tumors.

Conflict of interest The authors declare no conflict of interest.
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