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Complex interactions between the components
of the PI3K/AKT/mTOR pathway, and with components
of MAPK, JAK/STAT and Notch-1 pathways, indicate
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Abstract We investigated the significance of PI3K/AKT/
mTOR pathway and its interactions with MAPK, JAK/STAT
and Notch pathways in meningioma progression. Paraffin-
embedded tissue from 108 meningioma patients was analysed
for the presence of mutations in PIK3CA and AKT1. These
were correlated with the expression status of components of

the PI3K/AKT/mTOR pathway, including p85α and p110γ
subunits of PI3K, phosphorylated (p)-AKT, p-mTOR, p-
p70S6K and p-4E-BP1, as well as of p-ERK1/2, p-STAT3
and Notch-1, clinicopathological data and patient survival. A
mutation in PIK3CA or AKT1was found in around 9 % of the
cases. Higher grade meningiomas displayed higher nuclear
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expression of p-p70S6K; higher nuclear and cytoplasmic ex-
pression of p-4E-BP1 and of Notch-1; lower cytoplasmic
expression of p85αPI3K, p-p70S6K and p-ERK1/2; and low-
er PTENHisto-scores (H-scores). PTENH-score was inverse-
ly correlated with recurrence probability. In univariate surviv-
al analysis, nuclear expression of p-4E-BP1 and absence of p-
ERK1/2 expression portended adverse prognosis, whereas in
multivariate survival analysis, p-ERK1/2 expression emerged
as an independent favourable prognostic factor. Treatment of
the human meningioma cell line HBL-52 with the PI3K
inhibitor LY294002 resulted in reduction of p-AKT, p-
p70S6K and p-ERK1/2 protein levels. The complex interac-
tions established between components of the PI3K/AKT/
mTOR pathway, or with components of the MAPK, JAK/
STAT and Notch-1 pathways, appear to be essential for facil-
itating and fuelling meningioma progression.
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Introduction

Meningiomas are among the most common types of
primary intracranial tumour in adults. Although most
are benign and slowly growing, some are highly recur-
rent and associated with poor prognosis [1]. In particu-
lar, anaplastic (WHO grade 3) meningiomas share clin-
ical features, such as infiltrating capacity and metastasis,
similar to other malignant brain neoplasms [2]. Despite
the remarkable progress made in clarifying the molecu-
lar mechanisms that underlie meningioma pathogenesis
and progression [3, 4], deregulated signalling pathways
in meningioma of therapeutic and prognostic signifi-
cance remain to be elucidated.

Disruption of phosphoinositide 3-kinase (PI3K)/v-akt mu-
rine thymoma viral oncogene homolog 1 (AKT, also known as
protein kinase B, PKB)/mammalian target of rapamycin
(mTOR) signalling pathway (Fig. 1) is a major regulator of
crucial cell functions such as cell growth, survival and prolif-
eration, and reportedly contributes to the pathogenesis of
several types of tumour [for review, 5]. This pathway is
strongly interconnected at multiple steps with the mitogen-
activated protein kinase (MAPK) pathway [6, 7], the Janus-
activated kinase (JAK)/signal transducer and activator of tran-
scription (STAT) pathway [7, 8] and the Notch-1 pathway [9,
10]. Complex interactions and cooperation between these
aberrantly activated pathways fuel growth and survival of
neoplastic cells.

Among the three classes of PI3Ks, only the altered expres-
sion of class I is implicated in tumourigenesis. The gene
(PIK3CA) encoding for p110α, the catalytic subunit of class
I PI3Ks, is frequently found either amplified or mutated in

several types of tumours [6]. The majority ofPIK3CA gain-of-
function mutations cluster in exons 9 and 20, which encode
for the helical and kinase domain of p110α subunit, respec-
tively. In exon 9, the most frequent mutations are E542K and
E545K, whereas in exon 20, the most frequent mutation is
H1047R. Several other rare gain-of-function mutations have
been recorded in tumours [11]. As yet, the role of p85α
regulatory subunit in oncogenesis has not been studied exten-
sively. The AKTserine/threonine kinase, which is encoded by
three distinct genes (AKT1, AKT2 and AKT3), can be aber-
rantly activated either by gene amplification or mainly as a
critical target of PI3K in human tumours [12]. However, a new
gain-of-function somatic mutation affecting amino acid 17
(E17K) in the lipid-binding pocket of AKT1 has been recently
reported [13]. Negative regulation of AKT is indirectly medi-
ated by PTEN (phosphatase and tensin homolog deleted on
chromosome 10), the loss of which appears to be an alterna-
tive mechanism of activation of the PI3K pathway in human
tumours [14].

Studies looking into the interactions of several signalling
pathways in meningiomas are rare. In order to treat these
tumours more effectively, the complex signalling networks
should be deciphered and clarified. For this purpose, we first
analysed the mutation status of PIK3CA and AKT1 genes in
relation to the expression status of several components of the
PI3K/AKT/mTOR pathway, namely p85α and p110γ sub-
units of PI3K, phosphorylated (p)-AKT, p-mTOR, p-p70S6K,
p-4E-BP1, as well as p-ERK1/2, p-STAT3 and Notch-1 ex-
pression. Immunohistochemistry was validated by Western
blot analysis in five meningioma specimens. In addition, we
tested the effect of an inhibitor of PI3K/AKT pathway on the
expression levels of p-AKT, p-ERK and p-p70S6K, the three
most commonly expressed proteins. To this end, we chose
LY294002, an inhibitor of PI3K lying upstream of AKT, and
the human meningioma cell line HBL-52. We also examined
correlations between the aforementioned components of sig-
nalling pathways and clinicopathological data. Finally, we
determined the potential prognostic utility of these molecules
in meningiomas.

Materials and methods

Patients

This is a retrospective study of 108 consecutive cases (69
female, 39 male) with meningioma (intracranial and SS) di-
agnosed at the Department of Pathology of the University of
Athens as well as theMetropolitanHospital between 2002 and
2009. Only primary tumours at diagnosis were included in this
investigation. Informed consent was obtained from all patients
before their enrolment in the study. All available histological
slides, routinely stained with haematoxylin and eosin, were
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reviewed and evaluated for tumour histological grade. Sec-
tions were immunohistochemically stained for GFAP, S100
protein and epithelial membrane antigen (EMA). Using the
criteria established in the WHO classification of 2007, the
diagnosis was confirmed by two experienced neuropatholo-
gists (PK, EP), who also graded the tumours as follows: grade
1, 73 cases; grade 2, 29 cases; and grade 3, 6 cases. Evidence
of brain invasion was observed in 9/29 (31 %) of grade 2
meningiomas. Information on total resection was based on the
surgeon’s assessment at the time of surgery and post-operative
computerized tomography with contrast, whenever consid-
ered necessary. Simpson grade was 1 to 4. None of the cases
had received radiotherapy before surgery.

The presence of recurrence or death from disease was
based on data obtained by clinical and histological records,
office notes on follow-up visits and telephone contact when-
ever possible. Follow-up period ranged from 0.7 to
146.3 months (median 74.7 months) and was available in 71
patients, a cohort of which the main characteristics did not
differ substantially from those of the whole series (Supple-
mentary Table 1). Radiotherapy was administered in 35/108
(32 %) cases. During this period of time, 7 patients died of
disease, i.e. as a result of meningioma progression, after a
medial follow-up period of 23 months (range 0.7–81 months),
whereas the remaining 65 cases were followed up for a medi-
an period of 76.5 months (range 2.7–146.3 months). The

Fig. 1 The PI3K/AKT/mTOR pathway and its interactions with MAPK,
JAK/STAT and Notch pathways. The initial step of PI3K/AKT/mTOR
pathway activation takes place at the cell membrane and is propagated
through PI3K class IA. The PI3K product (phosphatidylinositol-3,4,5-
triphosphate (PIP3)) binds to 3′-phosphoinositide-dependent kinase 1
(PDK-1) and AKT through the pleckstrin homology domains (PH),
allowing translocation of both proteins to the cell membrane, followed
by their activation. As consequence of this colocalization, AKT is fully
activated. PI3K is antagonized by PTEN (phosphatase and tensin homo-
log deleted on chromosome 10) through dephosphorylation of PIP3,
thereby preventing AKTactivation. Upon activation, AKT act by activat-
ing or inhibiting many downstream targets implicated in various cellular
functions including protein synthesis and cell cycle progression. One of

the most studied AKT’s targets is the serine/threonine kinase mTOR.
mTOR participates as member of two complexes: mTORC1 (mTOR
binding to Raptor) and mTORC2 (mTOR binding to Rictor). Two down-
stream pathways of mTORC1 involved in the translation machinery are
responsible for ribosome recruitment to mRNA: phosphorylation and
inactivation of 4E-BP1 (eukaryotic translation initiation factor 4E-bind-
ing protein 1), the repressor of mRNA translation, and phosphorylation
and activation of S6K1 (ribosomal S6 kinase 1), the promoter of mRNA
translation [5]. PI3K/AKT/mTOR can interact directly or indirectly with
the MAPK, JAK/STATand Notch pathways (for details see the text). The
analysed molecules in our study are shown in grey shape fill. Dashed
arrows indicate indirect or probable interactions between molecules.
Black lightenings show molecules that were analysed also for mutations
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patients’ clinicopathological data are shown in Supplementary
Table 1.

PIK3CA and AKT1 mutational analysis

DNA extraction from paraffin-embedded tissues

Sections 10 μm thick were cut from paraffin-embedded tissue
blocks after tumour enrichment by light microscopy. DNA
was extracted from the selected tissue areas following a stan-
dard DNA extraction kit protocol (NucleoSpin tissue,
Macherey–Nagel, Duren, Germany). The extracted DNA
was quantitated on a Picodrop Microliter spectrophotometer.

High-resolution melting analysis

PIK3CA exons 9 and 20 and AKT1 exon 4 were screened for
mutations in 100 tumour specimens (grade 1, 67 cases; grade
2, 27 cases; grade 3, 6 cases) using high-resolution melting
analysis (HRMA) on a LightCycler 480 (Roche Diagnostics,
GmbH, Germany). Each reaction consisted of 20 ng DNA,
200 nmol/L of each primer, 10 μL LightCycler 480 HRM
Master Mix (Roche), and 3.5 mMMgCl2, in a total volume of
20 μL. The profile used in the LightCycler was as follows:
95 °C for 10 min, followed by 50 cycles of 95 °C for 10 s, 58–
60 °C for 15 s, and 72 °C for 7 s. DNA samples from
colorectal cancers or cell lines were used as positive control
for HRMA. In detail, for PIK3CA exon 20 mutational analy-
sis, we used DNA extracted from colon cancer cell line HCT-
116 (PIK3CA mutation, p.H1047R). For AKT1, previously
identified mutant samples from colorectal cancers were used.
Primers for PIK3CA gene exon 9 were designed in order to
exclude the amplification of a pseudogene. The sequences of
the primers for PIK3CA and AKT1 genes have been published
previously [15].

Sequencing

PIK3CA (exons 9 and 20) PCR products positive by HRMA
were sequenced using the BigDye terminator cycle sequenc-
ing kit (Applied Biosystems, CA, USA) in order to confirm
the presence of mutations. The sequencing products were
analysed on an ABI Prism 310 Genetic Analyzer (Applied
Biosystems). PCR primers were also used for sequencing
analysis. Results were verified by sequencing analysis of at
least two independent PCR products. None of the sequences
of exon 9 showed amplification of the pseudogene. AKT1
mutations were identified using pyrosequencing with the
Q24 pyrosequencer according to the manufacturer’s protocol
(Qiagen Gmblt, Hilden, Germany).

Immunohistochemical analysis

Immunostaining was performed on paraffin-embedded 4-μm
sections of formalin-fixed tumour tissue using the two-step
peroxidase-conjugated polymer technique (DAKO Envision
kit, DAKO, Carpinteria, CA). The primary antibodies used are
listed in Supplementary Table 2.

Evaluation of immunohistochemical staining was per-
formed by two pathologists (PK, ET), without knowledge of
the clinical information. They viewed the first 20 cases for
each antibody together to obtain consensus regarding the
evaluation, without knowledge of the clinical information.
The remaining cases were then examined by one pathologist
(ET) and of those another 20 cases were checked for repro-
ducibility by the second pathologist (PK). Nuclear and cyto-
plasmic immunoreactivity was recorded separately. A Histo-
score (H-score) based on the percentage of stained neoplastic
cells (labelling index, LI) multiplied by staining intensity was
calculated, as previously described [16].

Cell culture

The meningioma cell line HBL-52 (Cell Line Services, Hei-
delberg, Germany), originally established from a transitional
meningioma grade 1 localized at the optic canal, was grown in
McCoy’s 5a Medium (CLS), supplemented with 2 mM L-
Glutamine (Gibco, Life Technologies), 10 % foetal bovine
serum (FBS; Gibco, Life Technologies) and 1 % penicillin–
streptomycin mixture (10,000 U/mL of penicillin and
10,000 μg/mL of streptomycin; Gibco, Life Technologies).
Cell cultures were incubated in a humidified incubator at
37 °C and 5 % CO2.

When cell cultures reached 70 % confluency, LY294002
PI3K inhibitor (Calbiochem, Germany) was added for 3 h in a
final concentration of 100 μM. All cell culture experiments
were performed at least in triplicate.

Western blot analysis

Western blot analysis was performed on extracts from HBL-
52 cells as well as on extracts from a subset of frozen menin-
gioma samples (five samples) which were also analysed
immunohistochemically. More specifically, 50 mg of tumour
tissue, fresh frozen and stored at −80 °C, was homogenized in
ice-cold lysis buffer (RIPA Lysis Buffer, Thermo Scientific)
containing protease inhibitors (1 % aprotinin, 2 mmol/L of
phenylmethylsulfonyl fluoride, 1 mmol/L DTTand 10 μg/mL
of leupeptin) and phosphatase inhibitors (2 mmol/L of sodium
orthovanadate, 10mmol/L of sodium fluoride, 2mmol/L beta-
glycerophosphate and 2 mmol/L sodium pyrophosphate,
decahydrate). Following the homogenization, analysis of pro-
tein levels was performed.More specifically, samples contain-
ing 100 μg of protein were separated on an 8 % (for p-AKT)
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and 10 % (for p-p70S6K, p-ERK1/2 and actin) SDS poly-
acrylamide gel, blotted onto nitrocellulose membranes
(Porablot NCP) and blocked for 1 h in room temperature in
phosphate-buffered saline–Tween-20 (PBST) with 5 % non-
fat milk. Subsequently, membranes were incubated overnight
at 4 °C with the primary antibodies listed in Supplementary
Table 2. Primary antibodies were diluted in PBST containing
1 % non-fat milk. The membranes were then incubated with
the HRP-conjugated secondary antibodies (1:1,000–1:2,000)
for 1 h in room temperature. Immunoreactive bands were
detected with the LumiSensor Chemiluminescent HRP Sub-
strate kit (GenScript).

Statistical analysis

Statistical analysis was performed by an MSc Biostatistician
(GL). In the basic statistical analysis, PTEN, p85aPI3K,
p110γPI3K, p-mTOR, p-p70S6K, p-4E-BP1, p-AKT, p-
ERK1/2, p-STAT3 and Notch-1 H-scores were treated as
continuous variables. Correlations between immunohisto-
chemical expression levels of the investigated proteins and
clinic pathological parameters were tested using non-
parametric tests (Kruskal–Wallis ANOVA, Mann–Whitney
U test, Spearman’s rank correlation coefficient, Fisher’s exact
test and chi-square, as appropriate).

Survival analysis was performed using death from disease
as endpoint for overall survival. Overall survival was mea-
sured from the date of surgical resection to the last follow-up
visit or death. The effect of various parameters (age, sex,
grade, Simpson grade, radiotherapy, along with PTEN,
p85aPI3K, p110γPI3K, p-mTOR, p-p70S6K, p-4E-BP1, p-
AKT, p-ERK1/2, p-STAT3 and Notch-1 H-scores and the
presence of PIK3CA and AKTmutations) on clinical outcome
was assessed by comparing groups using the log-rank test.
Receiver operating characteristics (ROC) analysis was per-
formed for the selection of the cut-off values, which are
indicated in Table 1. For multivariate analysis, Cox’s propor-
tional hazards estimation model with forward selection of
variables was used and only those variables significant in
univariate analysis were included. For statistical calculations,
the statistical package STATA 11.0 forWindows was used. All
results with a two-sided p level ≤0.05 were considered statis-
tically significant.

Results

PIK3CA and AKT1 mutations in meningioma

Of the 100 cases studied, molecular analysis was successful
with regard to the presence of activating mutations at exons 9
and 20 of PIK3CA gene in 91 and 88 cases, respectively, and

for mutations at exon 4 of AKT1 gene in 99 cases. PIK3CA
mutations were observed in 12 cases, three of which in exon 9
(E547K, S541F and L540L), the latter synonymous (Fig. 2).
We found nine mutations in exon 20, two concerning the most
common gain-of-function mutation H1047R, four concerning
rare missense mutations (A1046T, E1034K, M1043I,
R1023Q) and three concerning a known polymorphism
(T1025T). The E17K mutation of AKT1 was observed in nine
cases, one of which occurred simultaneously with PIK3CA
mutation L540L. AKT1 mutation correlated with higher
PTEN and lower pERK1/2 cytoplasmic H-score (Mann–
Whitney U test, p=0.0239 and p=0.0359, respectively).
Trends also emerged regarding correlations between AKT1
mutations and cytoplasmic expression of p-AKT, p-mTOR
and p-4E-BP1, but these did not reach significance (p=
0.0995, p=0.0534 and p=0.0932, respectively). Moreover,
there was a trend for PIK3CA or AKT1 mutation to occur
more often in men than in women (9/29 vs 9/58, chi-square
test p=0.0921).

AKT/mTOR pathway components, PTEN, p-ERK1/2,
p-STAT3 and Notch-1 expression in meningioma

Coexpression rates among analysed molecules are shown in
Supplementary Table 3. p-mTOR immunoreactivity was cy-
toplasmic and/or membranous in 52/107 cases (49%) (Fig. 3).
Nuclear p-p70S6K immunoreactivity was seen in all cases, 44
(41 %) of which also showed cytoplasmic immunoreactivity
(Fig. 3). Nuclear p-4E-BP1 immunoreactivity was seen in
41 % of cases, of which 68 (64 %) also showed cytoplasmic
immunoreactivity (Fig. 3). Endothelial cells were immunore-
active for both proteins and served as internal positive control.
In 52 cases (52/106, 49 %), nuclear coexpression of p-
p70S6K and p-mTOR was found, most p-p70S6K (nuclear)-
positive cases but also p-mTOR-negative cases (36/57, 67 %).
Coexpression of p-mTOR and p-4E-BP1, either nuclear or
cytoplasmic, was rather infrequent (22 and 33 %, respective-
ly), but most (70 %) p-4E-BP1-positive/p-mTOR-negative
cases expressed p-ERK1/2. Although simultaneous expres-
sion of all three components of mTOR cascade was rather
uncommon (23/105, 22 %), no case was triple negative for p-
mTOR, nuclear p-p70S6K and nuclear p-4E-BP1 and only
13% were simultaneously negative for p-mTOR, cytoplasmic
p-p70S6K and cytoplasmic p-4E-BP1.

p-AKT immunoreactivity was mainly cytoplasmic (77/
108, 71 %), with nuclear expression in only 31 % of cases
(Fig. 3). Cytoplasmic p-AKTwas coexpressed with p-mTOR
in 38 % of cases, but along with nuclear expression of p-
p70S6K in 18 % and cytoplasmic expression of p-p70S6K
and p-4E-BP1 in 17 %, with even lower percentages for
nuclear p-AKT (9 and 5 %, respectively). PTEN nuclear
expression was observed in all cases (Fig. 4).
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Cytoplasmic expression of p85αPI3K was observed in 38/
108 cases (35 %) and nuclear expression in 33/108 cases
(31 %) (Fig. 3). Cytoplasmic coexpression of p-AKT and
p85apI3K was found in 28 % of cases. Coexpression of
nuclear or cytoplasmic p85αPI3K with cytoplasmic p-
ERK1/2 was observed in 43/108 (40 %) of cases and of
nuclear or cytoplasmic p85aPI3K and Notch-1 in 24/108
(22 %) of cases.

Cytoplasmic expression for p110γPI3K was observed in
45/106 (42 %) of cases, but in only 19/106 (18 %) nuclear
expression (Fig. 3). Of the p110γPI3K-positive cases, 80 %
showed cytoplasmic p-AKT expression. Coexpression of nu-
clear or cytoplasmic p110γPI3K with cytoplasmic p-ERK1/2
was observed in 37 % of cases. Moreover, in 30 % of the
examined cases, either nuclear or cytoplasmic coexpression of
p110γPI3K and Notch-1 was found.

Expression of p-ERK1/2 was mostly cytoplasmic in 88/
108 cases (81 %) (Fig. 4). Coexpression of cytoplasmic p-
ERK1/2 with all three mTOR pathway components was ob-
served only in 18 % of cases.

Cytoplasmic Notch-1 expression was found in 54/107
cases (50 %) (Fig. 4). Coexpression of Notch-1 with mTOR
pathway components was uncommon (19 %), but 44 % of
Notch-1-positive cases also expressed p-STAT3. Nuclear ex-
pression of p-STAT3 was recorded in 90/108 (83 %) of cases,
most of which (60 %) with cytoplasmic coexpression of p-
AKT.

Correlation coefficients among analysed molecules are
shown in Supplementary Table 4. Expression of p-mTOR
was positively correlated with its downstream effectors and
with pERK1/2, Notch-1 and p-STAT3, some which of mar-
ginal statistical significance. Significant positive correlations

Table 1 Distribution (median,
range) of all the examined mole-
cules per histological grade in 108
patients with meningiomas

H-score Grade 1 Grade 2 Grade 3
Median (range) Median (range) Median (range)

Nuclear p85aPI3K 0 (0–180) 0 (0–7.5) 0 (0–1)

Cytoplasmic p85aPI3K 0 (0–80) 0 (0–50) 0 (0–50)

p-mTOR 0 (0–120) 0 (0–50) 0 (0–30)

Nuclear p-p70S6K 1.5 (0–150) 160 (40–285) 138.75 (90–240)

Cytoplasmic p-p70S6K 80 (7.5–270) 0 (0–60) 0 (0–20)

Notch-1 0 (0–200) 15 (0–180) 2.5 (0–225)

Cytoplasmic p-ERK1/2 10 (0–140) 2.5 (0–100) 5.5 (0–60)

Cytoplasmic p-AKT 20 (0–270) 10 (0–255) 105 (0–225)

Nuclear p-AKT 0 (0–160) 0 (0–80) 0 (0–10)

PTEN 105 (2–285) 60 (15–240) 72.5 (5–105)

p-STAT3 3.75 (0–140) 5 (0–112.5) 9 (0–120)

Nuclear p-4E-BP1 0.75 (0–160) 2 (0–100) 2.75 (0–30)

Cytoplasmic p-4E-BP1 0 (0–65) 32.5 (0–165) 20 (0–150)

Nuclear p110γPI3K 0 (0–140) 0 (0–20) 0 (0–10)

Cytoplasmic p110γPI3K 0 (0–140) 0 (0–60) 0 (0–70)

Fig. 2 Sanger sequencing analysis displaying a C > T substitution in exon 9 of PIK3CA gene leading to a mutation at codon 541 (p.S541F). The arrow
indicates the mutation
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also emerged between nuclear expression of p-p70S6K and
Notch-1, as well as between cytoplasmic expression of p-
AKT and p-4E-BP1. Cytoplasmic expression of p-p70S6K
positively correlated with that of p-ERK1/2, p85aPI3K,
p110γPI3K as well as p-STAT3. Moreover, cytoplasmic ex-
pression of p-4E-BP1 was positively correlated with that of

Notch-1, p-AKT, p-STAT3, as well as p110γPI3K and p-
ERK1/2. Expression of Notch-1 and p-STAT3 correlated with
nuclear expression of p-4EBP1, which also showed a margin-
ally significant inverse correlation with cytoplasmic expres-
sion of p85aPI3K and p-ERK1/2. Expression of both subunits
of PI3K and p-ERK1/2 was significantly correlated, whereas

Fig. 3 Immunohistochemical expression of p85aPI3K, p110γPI3K, p-
AKT, p-mTOR, p-p70S6K and p-4E-BP1 in benign and non-benign
meningiomas. Non-benign meningiomas displayed higher nuclear p-

p70S6K, nuclear and cytoplasmic p-4E-BP1 and lower cytoplasmic
p85αPI3K and cytoplasmic p-p70S6K H-scores when compared to be-
nign meningiomas

Fig. 4 Immunohistochemical expression of p-ERK1/2, p-STAT3, PTEN and Notch-1 in benign and non-benign meningiomas. Non-benign meningi-
omas displayed higher Notch-1 and lower p-ERK1/2 and PTEN H-scores when compared to benign meningiomas
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expression of p85aPI3Kwas negatively correlated with that of
Notch-1. Interestingly, PTEN expression was inversely corre-
lated with that of p-STAT3, nuclear and cytoplasmic p-4E-
BP1 as well as with cytoplasmic p110γPI3K. Expression of p-
STAT3 was also significantly correlated with that of Notch-1
and marginally significantly with cytoplasmic p-ERK1/2 and
p-AKT.

The expression levels of p-AKT, p-p70S6K and p-
ERK1/2, by Western blot of fresh frozen tissue from
five randomly selected meningioma samples, were found
to correlate with immunohistochemical expression (Sup-
plementary Fig. 1), which validates the specificity of the
immunohistochemical results. Treatment of HBL-52
cells with the PI3K inhibitor LY294002 (100 μΜ) re-
duced protein levels of p-AKT, p-p70S6K and p-ERK1/
2 in comparison to untreated cells (Supplementary
Fig. 2).

Nuclear expression of p-p70S6K, nuclear and cyto-
plasmic expression of p-4E-BP1, Notch-1 H-scores and
histological grade appeared to be positively correlated
(Kruskal–Wallis ANOVA, 1 vs 2 vs 3, p=0.0001, p=
0.0001, p=0.0055 and p=0.0089, respectively). A neg-
ative correlation was found between cytoplasmic expres-
sion of p-p70S6K and p-ERK1/2, PTEN H-score and
histological grade (Kruskal–Wallis ANOVA, 1 vs 2 vs
3, p=0.0223, p=0.0067 and p=0.0046, respectively)
(Figs. 3, 4 and 5 and Table 1).

Nuclear expression of p-p70S6K and p-ERK1/2 H-scores
were higher in women than in men (Mann–Whitney U test,
p=0.0569 and p=0.0357). PTEN H-score was lower in recur-
ring cases (p=0.0587). No other significant correlations be-
tween protein expression levels and clinicopathological fea-
tures were found.

Survival analysis

In univariate survival analysis (Table 2), histological grade (1
vs 2 vs 3, p<0.0001), nuclear p-4E-BP1 expression (p=
0.0486, Fig. 6) and absence of cytoplasmic p-ERK1/2 expres-
sion (p=0.0046, Fig. 6) correlated with adverse prognosis.
Upon stratification according to grade (grade 1 meningiomas
vs meningiomas grade 2/3), p-ERK1/2 remained significant
(p=0.0047). For all other parameters, significant correlations
were not found.

In multivariate survival analysis including only those
parameters that were proven to be significant in univar-
iate analysis (Table 3), cytoplasmic p-ERK1/2 expres-
sion (HR=0.078, p=0.029) along with histological
grade (p=0.030) emerged as independent predictors of
prognosis.

Discussion

The standard treatment for meningioma patients consists of
surgical resection, followed by radiotherapy for all grade 3
tumours and for those grade 2 tumours for which complete
resection (Simpson grade 1 or 2) has not been achieved [17].
However, the role of radiotherapy remains controversial and
no effective therapies exist for meningiomas recurring after
initial treatment [18]. Despite the identification of key genetic
alterations associated with meningioma tumourigenesis and
progression, such as the biallelic inactivation of the NF2 gene,
the existence of prognostic and predictive biomarkers that
might identify therapeutic targets remains an open issue. On
a series of well-characterized meningiomas of different grade,

Fig. 5 Box plots illustrating the
distribution of nuclear p-p70S6K,
nuclear and cytoplasmic p-4E-
BP1, Notch-1, cytoplasmic p-
p70S6K, p-ERK1/2 and PTENH-
scores among different
meningioma histological grades
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our study analysed simultaneously expression of all key mem-
bers of the PI3K/AKT/mTOR pathway, associations with

clinical characteristics and prognosis, and interactions with
the MAPK, Notch and JAK/STAT pathways.

A novel finding emerging from our study is that 9 % of
meningiomas contain rare oncogenic gain-of-function muta-
tions in exons 9 and 20 of PIK3CA gene, which contrasts with
a single previous paper reporting a much lower frequency
(<1 %) [19]. Although early reports failed to identify AKT1
mutations in meningioma [20], we found 9 % of our cases
mutated, confirming the results of recent studies [21, 22].
AKT1mut cases displayed a lower cytoplasmic p-ERK1/2 H-
score, a finding which has also been observed in urothelial
bladder cancer [23]. Interestingly, simultaneous PIK3CA and
AKT1 mutations were recorded in one case, indicating that
they are not always mutually exclusive [24]. Moreover, mu-
tations were marginally more frequent in men than in women,
which accounts for the higher p-ERK1/2 levels in female
cases and suggests that the underlying molecular events may
vary according to gender [25]. Other mechanisms could be
involved in the activation of the PI3K pathway in meningio-
ma, taking into account that mutational activation of PIK3CA
was found in a small subset and p110γPΙ3Κ overexpression in
approximately 40 % of our cases. These include copy number
gains of PIK3CA gene, which have been recorded in around
90 % of grade 2/3 meningiomas [26] or alternatively, up-
stream events involving RTKs such as PDGFR or FGFR3 or
even a direct interaction with the RAS/RAF/MEK/ERK path-
way [27–29]. The latter hypothesis is supported by a positive
correlation between p110γPI3K and p-ERK1/2 in our cohort.

The number of cases expressing AKT (either cytoplasmic
or nuclear) far exceeded the mutation rate of AKT1 gene or the
number expressing p110γPI3K, which acts upstream of AKT,
although a significant association was documented between
the two proteins. In this context, AKT activation might be
attributed to other pathways, e.g. STAT3 [30], which we found
in the vast majority of cases to be expressed simultaneously
with p-AKT at correlating levels, confirming previous studies
[31]. It is of interest that, although cytoplasmic expression of
p-AKT correlated positively with nuclear expression of p-
p70S6K, nuclear levels of these proteins were inversely cor-
related. In this context, p-AKT seems to play different roles
according to its subcellular localization, which has also been
observed in other tumours [32, 33].

Contrary to what we expected, we did not find a significant
correlation between p-mTOR and p-AKT. The positive corre-
lation of the expression of p-mTOR with that of Notch-1,
p110γPI3K or p-STAT3, and marginally with p-ERK1/2, illus-
trates the complexity of the molecular cues regulating mTOR
activation, as has been reported also in other human malignan-
cies [12, 34–38]. All our cases displayed nuclear expression of
p-p70S6K and 41 % also cytoplasmic expression, as expected
since one of the genetic abnormalities characteristic of menin-
gioma progression is the amplification of the 17q23 locus, in
which the RPS6KB1 gene encoding for p70S6K protein is

Table 2 Results of univariate survival analysis for overall survival (log-
rank test)

Variable Entire cohort p value

Age

60 vs ≥60 0.1091

Gender

Female vs male 0.2557

Histological grade

1 vs 2 vs 3 <0.0001

Surgery

Simpson grade 1/2 vs 3/4 0.2459

Radiotherapy

Absence vs presence 0.2325

PIK3CA mutations

Absence vs presence 0.9136

AKT1 mutations

Absence vs presence 0.5814

p85aPI3K cytoplasmic H-score

Negative vs positive 0.1781

p85aPI3K nuclear H-score

Negative vs positive 0.5395

p110γPI3K cytoplasmic H-score

Negative vs positive 0.3377

p110γPI3K nuclear H-score

Negative vs positive 0.2434

PTEN H-score

<97.5 vs ≥97.5 0.3197

p-AKT cytoplasmic H-score

<15 vs ≥15 0.3742

p-AKT nuclear H-score

Negative vs positive 0.0790

p-mTOR H-score

Negative vs positive 0.3420

p-p70S6K nuclear H-score

<105 vs ≥105 0.6009

p-p70S6K cytoplasmic H-score

Negative vs positive 0.3623

p-4E-BP1 nuclear H-score

Negative vs positive 0.0486

p-4E-BP1 cytoplasmic H-score

<3.75 vs ≥3.75 0.6393

p-STAT-3 H-score

<4.25 vs ≥4.25 0.8695

p-ERK cytoplasmic H-score

Negative vs positive 0.0046

Notch-1 H-score

<2.5 vs ≥2.5 0.8368
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located [28, 39]. In our series, expression of p-4E-BP1 was
more often cytoplasmic than nuclear. Furthermore, nuclear
expression of p-p70S6K and cytoplasmic expression of p-4E-
BP1 was significantly higher than that of p-mTOR. Moreover,
no significant correlation was observed between the former and
the latter proteins, which implies that mTOR may not be the
primary or the sole contributor to p70S6K and 4E-BP1 activa-
tion. In fact, p-AKT directly phosphorylates p70S6K via
TSC1/2 [40], which might correspond to our findings, since
we observed that the majority of nuclear p-p70S6K-positive/p-
mTOR-negative cases coexpressed cytoplasmic p-AKT, and a
marginally significant positive correlation existed between their
expression levels. Inhibition of PI3K with LY294002 in HBL-
52 cells reduced both p-AKT and p-p70S6K levels, which
further supports the liaison between p-AKT and p-p70S6K.
Moreover, nuclear and cytoplasmic expression of p-p70S6K
and p-4E-BP1 was positively correlated with that of p-STAT3,
whereas p-STAT3 expression was strongly correlated with that
of Notch-1, which is in accordance with the notion that Notch-1
is an upstream activator of STAT3 [41]. Collectively, our find-
ings raise the hypothesis that in a subset of meningiomas,
Notch-1 phosphorylates and activates STAT3 which in turn
promotes AKT activation, resulting in activation of both
p70S6K and 4E-BP1.

Interestingly, cytoplasmic expression of p-p70S6K and p-
4E-BP1 positively correlated with p-mTOR and p110γPI3K
expression, whereas expression of p-p70S6K correlated with
that of p85αPI3K and p-4E-BP1 with p-AKT. These obser-
vations suggest that PI3K/AKT/mTOR signalling activates
both cytoplasmic p70S6K and 4E-BP1 and also that nuclear
and cytoplasmic expression of p-p70S6K is differentially
regulated, since only cytoplasmic expression of p-p70S6K
correlated with p-ERK1/2 expression, in agreement with the
reported activation of p70S6K by MAPK through ribosomal
p90rsk [42]. The borderline negative correlation of nuclear p-
4E-BP1 expression with that of p-ERK1/2, and its borderline
positive correlation with cytoplasmic expression of p-4E-BP1,
suggests that the MAPK pathway may either activate [43] or
inhibit 4E-BP1 [44], depending on its subcellular localization.

We found nuclear and cytoplasmic expression of p-
p70S6K to be inversely correlated. Although nuclear p-
p70S6K expression by immunohistochemistry is rather un-
usual, it has been reported in various tumours including astro-
cytomas [45]. Moreover, for p-p70S6K, distinct correlations
with components of the examined pathways have been iden-
tified, depending on its subcellular localization, which high-
lights separate roles of nuclear and cytoplasmic p-p70S6K as
has been reported previously for gastric carcinoma [46].

Fig. 6 Kaplan–Meier survival
curves according to the presence
of nuclear p-4E-BP1 and
cytoplasmic p-ERK (1/2)

Table 3 Cox’s proportional haz-
ards estimation model for the en-
tire cohort. Only those variables
significant in univariate analysis
were included in the adjusted
models

Hazard ratio (HR) p value 95 % confidence
interval of HR

p-ERK cytoplasmic H-score (negative vs positive) 0.078 0.029 0.008 0.771

Histological grade 29.704 0.030 1.388 635.745

p-4E-BP1 nuclear H-score (negative vs positive) 0.266 0.369 0.015 4.794
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We found, as previously reported [47], that the MAPK
pathway plays an essential role in meningioma initiation but
not progression. In contrast, high p-p70S6K and p-4E-BP1
expression in grade 2/3 meningiomas fits with amplification
of the 17q23 locus during meningioma progression [28, 39]
also reported in gliomas [45]. Furthermore, high Notch-1
expression in grade 2/3 meningiomas fits with its involvement
into meningioma progression similar to what has been report-
ed for gliomas [37, 48]. Our finding of nuclear PTEN staining
in all meningioma cases is intriguing. Several reports point to
the distinct functions of PTEN according to its subcellular
localization [49–51]. While cytoplasmic PTEN acts primarily
as phosphatase to inhibit PI3K signalling, nuclear PTEN is
implicated in many functions which are unrelated to this
activity [51]. Our finding of a negative correlation between
the expression of PTEN and p-STAT3 is consistent with
PTEN operating as a negative regulator of STAT3 activation
[38]. Importantly, PTEN expression was found to inversely
correlate with meningioma grade and the probability of recur-
rence, in agreement with observations on other tumours
[52–54].

In terms of prognostic significance, we found in univariate
survival analysis grade 2/3 histology and nuclear p-4E-BP1
expression associated with poor survival, as has been reported
previously for other malignancies [16, 45, 55]. In contrast,
high cytoplasmic p-ERK1/2 expression associated with im-
proved overall survival in the entire cohort as well as in grade
1 meningioma, which is in harmony with the reported associ-
ation between high expression of p-ERK1/2 and the likeli-
hood of meningioma recurrence [47]. The prognostic impact
of activated ERK1/2 in tumourigenesis is controversial with
published studies highlighting elevated p-ERK1/2 as a
favourable as well as an unfavourable prognosticator accord-
ing to tumour type or subcellular localization [56–62]. The
latter has been proposed to define its activities, i.e. targeting of
proteins localized in either the cytoplasm or the nucleus
[reviewed in 63]. Interestingly, in multivariate survival
analysis, tumour grade as well as p-ERK1/2 expression
retained their statistical significance as independent prog-
nosticators, indicating that the relationship of p-ERK1/2
with prognosis cannot be attributed to its correlation with
histological grade.

In summary, we describe for the first time an almost 9 %
frequency of gain-of-function mutations within PIK3CA gene
and confirm recently published findings regarding AKT1 mu-
tations in meningioma. Moreover, we show that components
of the PI3K/AKT/mTOR pathway establish complex interac-
tions either with each other or with components of MAPK-,
JAK/STAT- and Notch-1-mediated pathways, which appear to
facilitate and fuel tumour progression. The results obtained
with LY294002 in the meningioma cell line encourage further
investigations into the potential use of PI3K pathway inhibi-
tors for the treatment of meningioma. Finally, our survival

analysis identifies expression of p-ERK1/2 as a favourable
prognostic factor for meningioma patient survival.
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