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Abstract The role of the microenvironment in high-grade
lymphoma is not well defined. In this report, we employ
immunohistochemistry to characterise programmed death-1
(PD-1/CD279) and FoxP3 expression in 70 cases of diffuse
large B-cell lymphoma (DLBCL). PD-1 is a surface marker
characteristic of follicular helper T-cells whilst FoxP3 is char-
acteristic of Tregs. We demonstrate variable infiltration with
CD4+ T-cells (<10 to >50 % of all lymph node cells) and PD-
1hi cells (0.1 to 1.5 % of all cells). CD4+ T-cells can be
distributed in clusters or more diffusely and PD-1hi cells, but
not FoxP3+ cells, are found in rosettes around lymphoma
cells. Cases with high CD4+ T-cell numbers tended to have
higher numbers of both PD-1hi and FoxP3+ cells. Cases with
total CD4+ T-cell, PD-1hi and FoxP3+ numbers above the

median associate with better clinical outcome. Overall, we
demonstrate that infiltration by CD4+ T-cells, including both
FoxP3+ and PD-1hi subsets, correlates with prognosis in
DLBCL. In distinction to previous reported series, patients
(91 %) were treated with rituximab-containing regimens, sug-
gesting that the effects of CD4+ T-cell infiltration are main-
tained in the rituximab era. This work suggests that determi-
nants of total CD4+ T-cell infiltration, either molecular char-
acteristics of the lymphoma or the patients’ immune system,
and not individual T-cell subsets, correlate with clinical
outcome.
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Introduction

The high-grade B-cell non-Hodgkin’s lymphoma, diffuse
large B-cell lymphoma, DLBCL, is clinically heterogeneous
[1–3]. The lymph node microenvironment, which contains T-
cells, dendritic cells, stromal cells, basement membrane com-
ponents, growth factors and chemokines, influences the
growth characteristics of lymphoma, and evidence supporting
a role for the microenvironment in DLBCL has been obtained
from gene expression profiling, which demonstrated that ex-
pression of genes representative of the microenvironment
determined clinical outcome [4–6]. More recently, expression
of only two genes, one of which was stromal cell derived, was
found to predict survival [7].

CD4+ T-cells comprise several subsets: TH1, TH2, TH17
and follicular T-cells. Follicular T-cells are, in part, defined by
the high expression of PD-1 and comprise both follicular
helper (Tfh) T-cells and repressive (Tfr) T-cells [8]. In normal
immunity, CD4+ T-cells deliver signals to B-cells through
cognate interactions and cytokine production. Indeed produc-
tion of specific cytokines is one of the defining characteristics
of the various T-cell subsets; TH1 cells produce IL-2 and
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IFNγ, TH2 cells produce IL-4 and IL5 [9,10], TH17 cells
produce IL-17 and Tfh cells produce IL-4 and IL-21.

CD4+ T-cell subsets can also be defined by the cytokines
required for their differentiation. Differentiation in the pres-
ence of IL-12 induces the transcription factor T-bet and leads
to TH1 cell production, whereas IL-4 induces GATA-3 in
differentiating cells and leads to the production of TH2 cells,
and IL-6 and TGFβ induce ROR-γt and TH17 cells. IL-12
produced by dendritic cells [11] together with IL-21 and IL-6
[12], signalling from inducible T-cell co-stimulator (ICOS)
and interaction with B-cells, induces BCL6, in primed T-
cells to generate Tfh cells [13–15]. A subset of suppressive
CD4+ T-cells, Tregs, which are characterised by expression of
FoxP3, suppresses autoimmunity and may also reduce the
immune response to lymphoma [16].

Tfh cells are required for normal germinal centre develop-
ment and production of high-affinity antibodies. They are
characterised by high expression of PD-1, CXCR5 and ICOS.
Tfh cells may be important producers of IL-4 in follicular
lymphoma [17], but their role in other lymphomas including
DLBCL has been little explored. Treg numbers are elevated in
the peripheral blood of patients with a variety of different
lymphomas [16], and the number and architecture of FoxP3-
expressing cells correlate with clinical outcome in follicular
lymphoma [18]. However, in DLBCL, the effects of FoxP3+

cells on survival are controversial. One group suggests that the
numbers of FoxP3-expressing cells do not influence clinical
outcome [19], whereas others report that increased num-
bers of FoxP3+ associate with improved survival either
regardless of subgroup [20] or in germinal centre B-cell
DLBCL only [21].

CD4+ T-cell infiltration correlates with clinical outcome in
DLBCL [22,23]. CD4+ T-cells are, therefore, important com-
ponents of the lymphoma microenvironment, but expression
of the newer marker PD-1 in combination with FoxP3 has not
previously been investigated in diffuse large B-cell
lymphoma.

Materials and methods

Patients

All samples were collected under ethical approval obtained
from the Local Research Ethics Committee and the Research
and Development Office at the University Hospitals of Leices-
ter NHS Trust and Hammersmith Hospital, London. Samples
were anonymised and entered either into the Haematological
Malignancy Tissue Bank or the Tonsil and Normal Lymphoid
Tissue Resource. A total of 70 patients were analysed
(Table 1), 41 male and 29 female. Median age was 67 years,
with a range of 30 to 88 years.

Immunohistochemistry

Pa r a f f i n - embedded t i s su e s e c t i on s unde rwen t
deparaffinisation and microwave heat antigen retrieval
(700 W for 20 min) in pH 9 tris-EDTA buffer before staining
with anti-CD4, anti-FOXP3 and anti-PD1 antibodies (Table 2).
Primary antibody was incubated with tissue sections for 3 h at
room temperature. The primary antibody was visualised using
a Novolink polymer detection system kit (Novocastra). Tissue
sections were counterstained with haematoxylin, dehydrated
and mounted. Slides were viewed using a Zeiss Axioplan 2
microscope and Axiocam and image capture performed man-
ually with AxioVision Imaging System 4.7. Sections were
analysed and quantified utilising ImageJ software [24]. PD1
is expressed at low level on effector CD8+ T-cells [25,26] and
pre-germinal centre Tfh [27,28] and at higher level on germi-
nal centre Tfh cells [29,30]. We set an intensity threshold for
the definition of high PD-1 expression by utilising PD-1
expression within germinal centres, an easily defined anatom-
ical structure containing Tfh cells, within tonsil sections from
normal subjects. Stained sections were imaged and
deconvoluted using an ImageJ plug-in (http://www.dentistry.
bham.ac.uk/landinig/software/cdeconv/cdeconv.html). An
intensity threshold that identified germinal centre PD1hi cells

Table 1 Patient characteristics: age, gender, clinical stage and interna-
tional prognostic index (IPI) scores, extranodal involvement and lactate
dehydrogenase values are presented (n=70)

Number of patients, N Percent, %

Age

Median 67

Range 30–88

Gender

Male 41 58

Female 29 42

Stage

I–II 44 63

III–IV 26 37

IPI

0–1 46 65

2–4 24 35

Number of extranodal sites

0–1 48 69

≥2 22 31

Pre-treatment LDH

Normal 43 61

Elevated 27 39

Treatment regimen

RCHOP 62 89

RPMitCEBO 3 4

CHOP 5 7
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was set. A tonsil section was included with each batch of
lymphoma sections stained in order to control for variation
in staining. This threshold was applied to lymph node sections
stained with PD1. There was little variation in FoxP3 and CD4
staining intensity and we, therefore, designate stained cells as
FoxP3+ and CD4+ cells, respectively. Cell numbers were
quantified across ten adjoining high power fields (×400
magnification level) in order to produce a representative
view of T-cell numbers [31].

Definition of Tfh cells by flow cytometry

We determined Tfh and Treg cells in lymph node sections, and
in order to facilitate cell counting, we required a single anti-
body to identify each of these subsets. We employed nuclear
FoxP3 expression to identify Tregs. We have previously eval-
uated flow cytometry protocols to identify Tfh cells [32],
which we define as the CD4+ cells within a gate, including
cells possessing a mean fluorescence intensity greater than the
70th centile for both CXCR5 and ICOS.

Statistical analysis

Overall survival was calculated from date of diagnosis and
survival curves were constructed using the method of Kaplan
and Meier, and log-rank test was used to assess any differ-
ences between patient groups (Prism v6.0c, GraphPad Soft-
ware Inc.). Cox proportional hazards were employed to deter-
mine important independent prognostic factors for overall
survival (XLSTAT v2014.1.08, Addinsoft).

Results

Tfh cells in lymphoma samples

In order to demonstrate Tfh cells in lymphoma lymph nodes,
we stained single cell suspensions with anti-CD4, anti-
CXCR5 and anti-ICOS and compared to tonsillar cells
(Fig. 1). The average number of CD4+CXCR5hiICOShi cells
in tonsils (n=12) was 16.3 %, but in lymphoma lymph nodes
the proportion of these cells ranged from 0.7 to 2.8 % (n=4),
comparable to the proportion measured in a reactive lymph
node (0.7 %). Combined staining with anti-CXCR5 and anti-
ICOS also showed variability in populations other than

CXCR5hiICOShi in DLBCL (Fig. 1a). Whilst patients 2 and
3 possessed predominantly CXCR5hiICOSlo cells, the major
population of patient 1 was CXCR5loICOSlo. Patient 4 also
had a major population of CXCR5loICOSlo cells but, in addi-
tion, showed cells with the phenotype CXCR5loICOShi.

Therefore, analysis of CXCR5 and ICOS on CD4+ T-cells
within DLBCL lymph nodes defined variable sub-populations
and a fraction of the CD4+ T-cells demonstrated the
immunophenotype of Tfh cells.

PD-1hi cell number and distribution in DLBCL

Next we utilised immunohistochemistry to examine the dis-
tribution and architecture of CD4+ T-cell infiltration. We
employed strong PD1 expression as a marker for Tfh cells
and nuclear FoxP3 to identify Tregs (Fig. 2a). Individual cases
showed low, intermediate or high infiltration by CD4+ T-cells,
which was mirrored by varying levels of FoxP3 and PD1
expression (Fig. 2b). Cases with high CD4+ T-cell infiltration
often demonstrated high numbers of both FoxP3+ and PD-1hi

cells rather than one sub-type of T-cell predominating, and
similarly cases with low CD4+ T-cells showed low numbers of
both FoxP3+ and PD-1hi subsets.

In order to characterise accurately the distribution of T-cells
within DLBCL, an entire lymph node section was examined.
CD4+ T-cells were found in small clusters (Fig. 3a) or diffuse-
ly, but with areas of relatively high and low infiltration
(Fig. 3b). CD4+ T-cells were also found “rosetting” lymphoma
cells (Fig. 3b, c). Rosettes were only identified in a minority of
cases, and there was no clear correlation with clinical charac-
teristics. The cells involved in rosette formation predominant-
ly expressed PD1 (Fig. 3d, e), suggesting that they were Tfh
cells. Analysis of sequential sections confirmed that PD1 and
not FoxP3-expressing cells formed rosettes around the large
lymphoma cells (Fig. 3f). No rosettes of FoxP3-expressing
cells were found in any of the cases in this series.

FoxP3 and PD1 cell numbers correlate with CD4 T-cell
number

In order to understand the role of CD4+ T-cells in DLBCL, we
determined CD4+, PD1hi and FoxP3hi cells in 70 cases (see
“Materials and Methods”). To avoid problems due to poor
representation in one area of the lymph node section, we
measured cell numbers in ten separate high power fields.
CD4+ T-cell infiltration varied widely (Fig. 4a), and in many

Table 2 Antibodies employed in
the study Specificity Type Source Antigen retrieval Dilution

CD4 Mouse monoclonal DAKO Tris-EDTA, pH 9.0 1:200

FoxP3 Mouse monoclonal Gift from Dr. G. Roncador Tris-EDTA, pH 9.0 1:100

PD1 Mouse monoclonal Gift from Dr. G. Roncador Tris-EDTA, pH 9.0 1:100
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cases, the majority of CD4+ T-cells were not accounted for by
either FoxP3hi or PD1hi subsets (grey portions of the bars in
Fig. 4a). We confirmed the correlation between numbers of
FoxP3 and PD1 expressing CD4+ T-cells (Fig. 4b) as well as
between total CD4+ T-cells and each of these subsets
(Supplemental Fig. 1).

To further investigate the clinical usefulness of FoxP3 and
PD1 expression in DLBCL, we analysed the effects of these
markers on overall survival. High LDH (P=0.02, log-rank
test) and advanced clinical stage were associated with poor
outcome, demonstrating that conventional indicators of prog-
nosis associated with the expected effects on survival in our

group of patients (Fig. 4b). Next we determined that cases
with total CD4+ T-cell number below the median showed
significantly worse overall survival than those cases with
higher numbers of CD4+ T-cells (P=0.04, log-rank test).
The data are self-consistent; LDH levels were significantly
higher (median 610 vs. 239 IU/l; upper limit of normal range
255 IU/l) (P=0.0014, Mann–Whitney U-test) for those cases
with total CD4+ T-cells below the median. Both FoxP3 (P=
0.0001, log-rank test) and PD1 (P=0.0007, log-rank test)
expression levels above the median were associated with
better overall survival than those cases with lower expression.
Cases with either FoxP3 or PD-1 expression below the median

Fig. 1 CD4+ T-cell and Tfh cell infiltration in lymphoma and non-
malignant lymph nodes. a Flow cytometry to demonstrate Tfh cell
populations in four samples of DLBCL (identified as patients 1 to 4). b
The contour plots show CD4+CXCR5hiICOShi cells from a tonsil sample
(left-hand panel) and a reactive lymph node (right-hand panel). In each

plot, the Tfh gate is indicated by a box and the number of
CXCR5hiICOShi as a proportion of total CD4+ cells (%) is presented.
The accompanying pie charts demonstrate the proportion (%) of all tonsil
cells that are CD4+ T-cells (black segment) and the proportion of all tonsil
cells that are CD4+CXCR5hiICOShi (grey segment)
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demonstrated LDH levels significantly higher than those cases
with higher expression. For FoxP3 cases with lower expres-
sion, the median level of LDHwas 383 IU/l, whereas for cases
with higher expression it was 224 IU/l (P=0.03, Mann–Whit-
ney U-test); similarly, cases with low PD-1 expression had
median LDH level of 369 IU/l versus 226 IU/l for higher
expressing cases (P=0.03, Mann–Whitney U-test).

In univariate analysis, overall survival correlated with PD-
1+ (P=0.0001) and FoxP3+ (P=0.005) numbers and with total
CD4+ (P=0.007) and LDH (P=0.001) (Spearman rank corre-
lation). We, therefore, carried out a multivariate analysis (Cox
proportional hazards) for overall survival and found that PD-
1+ (hazard ratio=0.469, 95 % confidence interval=0.016–
1.386, P<0.05), FoxP3+ (HR=0.735, 95 % CI 0.087–1.619,
P<0.05) and CD4+ (HR=0.872, 95 % CI 0.619–1.389,
P<0.05) retained independent prognostic significance.

Discussion

T-cells are a component of the lymphoma microenvironment,
and CD4+ T-cell infiltration has previously been shown to
associate with prognosis in DLBCL [22, 23]. However, since
these studies, novel CD4+ expressing T-cell subsets, defined
by cytokine, chemokine and transcription factor expression,
have been characterised.

Tissue microarrays have been used extensively to analyse
lymphomas, and although there are many technical difficulties
[33], they have the advantage in that material from a large
numbers of cases can be processed in a uniform manner. In
order to accomplish this, however, tissue microarrays will
utilise a small portion of a lymphoma lymph node, which
may not be representative of the whole specimen. This prob-
lem may be most significant when analysing infiltrating non-

Fig. 2 Immunohistochemistry for FoxP3 and PD-1 cells. a DLBCL
lymph node stained with anti-CD4, anti-FoxP3 and anti-PD1. b Cases
of DLBCL, which showed high, intermediate and low infiltration by CD4

T-cells. In each case, the left-hand panel has been stained with anti-FoxP3
and the right-hand panel with anti-PD1

Fig. 3 Architecture of PD-1 and FoxP3 infiltration. Low power (original
magnification×25) (LP) and high power (original magnification×100)
(HP) views of DLBCL lymph nodes. a A cluster of CD4+ cells at low
power. b Areas of low (to the left of the dashed line) and high infiltration
are shown and a rosette of CD4+ cells (dashed circle) surrounding a
lymphoma cell. c High power view of the section shown in b to demon-
strate the CD4+ cell rosette. d Low power view demonstrating two PD1+

rosettes (dashed circles). e High power view of the same area of the
lymph node in d again showing PD1+ rosettes. f Consecutive sections of
DLBCL lymph node were stained with anti-FoxP3 and anti-PD1. A large
lymphoma cell surrounded by a rosette of PD-1-expressing cells was
identified (left-hand panel), and the same large cell was then located in
the section stained with anti-FoxP3 (right-hand panel)
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lymphoma cells rather than lymphoma B-cells. Therefore,
although we studied a relatively small number of cases, the
methodology employed allowed an accurate analysis of infil-
trating T-cells and is similar to the methodology used by others
to analyse the T-cell compartment in follicular lymphoma [34,
35].

Our data suggest that DLBCL have infiltrating PD-1hi and
FoxP3+ cell populations. Although they only form a small
proportion of the total CD4+ T-cell population, PD-1hi cells
are occasionally found in rosettes surrounding lymphoma
cells, but low numbers prevented us from determining asso-
ciations with clinicopathologic characteristics of DLBCL. Tfh
cell rosettes have previously been described in nodular lym-
phocyte predominant Hodgkin’s lymphoma [36], but not in
DLBCL. FoxP3+ cells did not show rosette formation and we,
therefore, suggest that this is a feature specific to the PD-1hi

subset. PD-1 expressing follicular regulatory T-cells have
been described [37], and it is likely that the population that
we detect contains both types of cell.

Tregs infiltrate cancers, and mouse models show that they
suppress anti-tumour immunity, either through an effect on
CD8+ T-cells [38] or on other CD4+ T-cell subsets [39].
Higher Treg infiltration also correlates with improved clinical
outcome in follicular lymphoma [18]. There has been less
functional work on T-regs in high-grade lymphoma but puri-
fied DLBCL cells induced Tregs whilst these T-cells repressed
the proliferation of the same lymphoma cells [16], suggesting
a possible mechanism underlying their association with higher

overall survival. Although work by others raises the question
on whether there is a specific function for Tregs in DLBCL,
our data (Fig. 4a) suggest that this sub-population of CD4+ T-
cells is not specifically increased but that higher numbers of
CD4+ T-cells are associated with increased numbers of more
than one subset. Interestingly, our work appears to mirror
similar studies in follicular lymphoma, which have demon-
strated infiltration by both PD-1-expressing cells and FoxP3-
expressing cells and that higher numbers of each type of
CD4+ T-cell was associated with good clinical outcome [34,
35]. In some of our cases, the majority of CD4+ T-cells did not
belong to either Treg or Tfh subsets and may represent
CXCR5−CCR7− effector memory T-cells (Tem). Utilising
paraffin sections, it is not possible to be more definitive about
the nature of the CD4+ T-cells that were neither PD-1 nor
FoxP3 expressing because their characterisation requires anal-
ysis of cytokine production [10].

There has been little previous work on CD4+ T-cell subsets
in DLBCL. Our report is the first to characterise PD-1hi

populations in DLBCL, and although FoxP3+ cells have pre-
viously been studied, their effects on survival are controversial
[19–21]. Such reported variation may reflect differences in
anti-FoxP3 antibody specificities, determination of cutoff
levels and selection of tumour area for analysis. In addition,
two studies [19, 21] did not include any cases treated with
rituximab, and therefore our results cannot be directly com-
pared. Only one study included patients treated with RCHOP
immunochemotherapy, the current standard of care, but these

Fig. 4 Correlation of total CD4 T-cell numbers with PD-1hi and FoxP3+

cells. a Bar chart to show variation in total CD4+ T-cell infiltration in 70
cases of DLBCL. FoxP3-expressing cells are indicated in white, PD1
cells in black and other CD4+ T-cells in grey. b Correlation between
FoxP3 and PD1 expressing cell numbers. The dashed lines indicate the

median number of FoxP3 and PD1 cells respectively. c High LDH and
advanced clinical stage predict poor clinical outcome in our cases. Pa-
tients were separated into groups based on median expression of CD4,
FoxP3 or PD1. High FoxP3 (P=0.0069, logrank test), high PD1 and high
total CD4 were associated with improved clinical outcome
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only comprised 28 % of cases [20]. Our cohort included 91 %
of patients who were treated with RCHOP or RPMitCEBO,
suggesting that the importance of infiltrating CD4-T-cells to
the prediction of survival is maintained in the rituximab era.

Gene expression profiling enables the grouping of DLBCL
into prognostically significant categories. Initially, two groups
(GC and ABC [2]) have been expanded to include other
groups, which may bear the signature of microenvironment
genes [5, 40]. Despite initial optimism [41], it appears that
immunohistochemistry is not able to reliably predict the sub-
type of DLBCL [42]. The relationship between T-cell infiltra-
tion and prognostic groups defined on the basis of gene
expression, therefore, remains an open question. The hetero-
geneity of DLBCL and the relatively low number of cases
reported here warrants independent validation in a larger
prospective cohort.

Our observation that total CD4+ T-cell numbers correlate
with PD-1hi numbers and that numbers of PD-1hi and FoxP3+

cells, as well as total CD4+ T-cells, associate with improved
clinical outcome suggests that the effects of a single CD4+ T-
cell subset cannot be taken in isolation. The factors that lead to
high CD4+ T-cell infiltration in some cases of DLBCL have
not been defined but may represent novel targets for therapy.
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