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Abstract Traditionally, the pathology of human disease
has been focused on microscopic examination of affected
tissues, chemical and biochemical analysis of biopsy
samples, other available samples of convenience, such as
blood, and noninvasive or invasive imaging of varying
complexity, in order to classify disease and illuminate its
mechanistic basis. The molecular age has complemented
this armamentarium with gene expression arrays and
selective analysis of individual genes. However, we are
entering a new era of epigenomic profiling, i.e., genome-
scale analysis of cell-heritable nonsequence genetic change,
such as DNA methylation. The epigenome offers access to
stable measurements of cellular state and to biobanked
material for large-scale epidemiological studies. Some of
these genome-scale technologies are beginning to be
applied to create the new field of epigenetic epidemiology.
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Epigenetics

The term epigenetics was coined by the Cambridge
University embryologist Conrad Waddington in a series of
monographs, and he used it to describe his original view of
developmental biology that the morphological and func-
tional properties of an organism arise sequentially under a
program defined by the genome under the influence of the

organism’s environment [1]. The modern definition of
epigenetics is modifications of the DNA or associated
proteins, other than DNA sequence variation itself, that
carry information content during cell division [2], although
a few scientists take a more relaxed or stricter view, either
including RNA modification or limiting to vertical (gener-
ational) transmission. Remarkably, the modern definition
and Waddington’s have converged. That is because the
epigenetic state of an organism progresses from gamete to
zygote to somatic tissue, all of which have profoundly
different epigenomes, while the DNA is the same. Further-
more, given that the developmental state of a cell can be
completely reprogrammed by somatic cell nuclear transfer,
or by specific genes in combination, the information
specifying cell state is not the DNA alone but the epigenetic
program layered on top of this genetic code and is heritable
during cell division but ultimately reprogrammable.

The focus of this review is the specific epigenetic
modification involving DNA methylation (DNAm), a
covalent addition of a methyl (CH3) group to the nucleotide
cytosine. DNAm is the only epigenetic modification whose
mechanism for propagation is well understood biochemi-
cally. CpG dinucleotides show heritable methylation during
cell division because the complementary strand shows the
same sequence, and both cytosines are normally methylat-
ed. During DNA replication, the two daughter strands
contain hemimethylated DNA, i.e., the parent strand is
methylated and the daughter strand is not. The enzyme
DNA methyltransferase I (DNMT1) has high affinity for
this hemimethylated strand and adds a methyl group to the
newly synthesized daughter cytosine at that site, likely
within the same DNA replication complex. Dietary methi-
onine and a cofactor synthesized from folic acid are
necessary for the success of methylation maintenance,
providing a strong link between the environment and the
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epigenome. Indeed in animals, the epigenome and gene
expression can be modified by dietary manipulation of
methylation precursors, and dietary deprivation of methio-
nine leads to liver cancer in animals [3].

“CpG islands” are regions rich in CpG dinucleotides
(formally defined as G + C content≥0.5 and CpGobs/
CpGexp≥0.6)[4], and they are often described as uniformly
unmethylated in normal cells, with the exception of the
inactive X chromosome, and are near imprinted genes
[5, 6]. However, the assumption that autosomal CpG
islands (except for imprinted genes) are never methylated
is clearly not the case [7–10]. It is also important to note
that functionally important DNAm information is often not
within conventionally defined CpG islands, e.g., the H19
and insulin-like growth factor II gene (IGF2) differentially
methylated regions (DMRs) that regulate imprinting of
IGF2 [11, 12].

Epigenetics of human disease

How can one identify disease-specific epigenetic differences?
One would like to know that the epigenome varies normally in
the population, is associated in particular ways with disease,
and does not always simply reflect normal tissue-specific
differences in gene expression. Individual gene data in support
of this epigenetic variation were first reported in the 1980s
[13]. Other genomic regions showing epigenetic variation in
the population include X inactivation [14] and both familial
and environmental determinants of IGF2/H19 imprinting, or
parent of origin-specific gene silencing [14].

A common theme of disease epigenetics is the role of
defects in phenotypic plasticity, the ability of cells to
change their behavior in response to internal or external
environmental cues; this was reviewed recently in detail
[15]. For example, hereditary disorders of the epigenetic
apparatus lead to developmental defects, a dramatic
example being the Rett syndrome. This disorder involves
loss of function of methyl-CpG-binding protein 2 (MeCP2),
which recognizes DNAm. Children with Rett syndrome
develop normally until 6–12 months and then gradually
lose developmental milestones over years, due to a failure
to maintain gene silencing in the brain. This process of
delayed onset of disease is also a hallmark of bipolar
disorder and schizophrenia.

The study of epigenetic changes in human cancers began
with the discovery of widespread hypomethylation [16].
Cancer involves both hypomethylation and hypermethyla-
tion, attendant overexpression of oncogenes, silencing of
tumor suppressor genes, and loss of imprinting. Here too,
the mechanism by which epigenetic changes leads to cancer
appears to involve disruption of normal phenotypic plas-
ticity, in this case of the programming that leads a cell to

differentiate normally within a given tissue compartment
[2]. Moreover, epigenetic changes that arise constitutionally
are associated with increased risk of common disease, such
as loss of imprinting of the IGF2 gene in cancer, which has
been shown in both human [17] and mouse [18, 19] studies.
Prospective or nested case–control studies are needed to
establish a cause and effect relationship in colorectal cancer.

Epigenetic alterations have long been linked to human
disease, originally through disorders of genomic imprinting
[20]. Defects in the epigenetic machinery also lead to
developmental abnormalities, such as MeCP2 mutations in
Rett syndrome [21] and DNMT3B mutations in immuno-
deficiency, centromeric region instability, and facial anoma-
lies (ICF) syndrome [21].

Epigenetic alterations may also contribute to neuropsy-
chiatric disease. Bipolar disorder shows several features
consistent with an epigenetic contribution: lack of complete
concordance in monozygotic twins; onset of illness in
adolescence or adulthood rather than childhood, the often
episodic nature of the illnesses, and the apparent relationship
to environmental factors, such as stress [22, 23]. Stress has
been shown to alter epigenetic marks including DNAm and
histone modifications in the brain in animal models [24,
25]. Interestingly, three important bipolar disorder medica-
tions, the mood stabilizer valproate [24, 25], the antide-
pressant imipramine [25], and the antipsychotic haloperidol
[26], have also been shown to induce epigenetic changes in
the brain. More direct evidence in support of an epigenetic
effect in bipolar disorder: is based on the identification of an
excess of maternal transmission in some pedigrees [27]. The
mounting evidence for epigenetic involvement in autism
includes relationships with related phenotypes as well as
direct evidence. For example, imprinted genes on the X
chromosome are thought to be involved in social skills in
girls because defects in these skills are found in Turner
syndrome and in children lacking the paternal X chromo-
some but not the maternal X chromosome [28]. Both fragile
X, a disorder with known phenotype overlap with autism,
and ICF syndrome arise from malfunctions in the establish-
ment of normal DNAm patterns [29, 30]. Rett syndrome,
also associated with autistic features, is caused by mutations
in the gene encoding DNA methyl-binding protein MeCP2,
a protein important for interpreting DNAm and controlling
the repression of gene transcription [31]. Patients with these
three disorders exhibit mental retardation, demonstrating the
importance for proper DNAm in the regulation of cognitive
function. Furthermore, one mechanistic study has shown
that abnormally hypomethylated CNS neurons were im-
paired functionally and were selected against in postnatal
development [32]. Another suggests that neuronal activity
can drive the transcription of genes important for control-
ling neurotransmitter release by regulating their DNAm
status [33].

14 Virchows Arch (2010) 456:13–21



The potential for imprinting of autism-related genes
could explain the lack of Mendelian inheritance in autism
and the inconstant results across linkage and association
studies that do not account for these features. Direct
evidence for this idea comes from a study of the gene for
contactin-associated protein-like 2 (CNTNAP2), identified
by multiple studies as associated with autism spectrum
disorders (ASD) [34–38]. In one of these studies, risk for
ASD associated with the identified single nucleotide
polymorphism (SNP) showed parent-of-origin specificity
suggesting a role for imprinting [36].

Epigenetics of aging

Increasing evidence supports a role for epigenetics in the
biology of aging. X-inactivated genes in the mouse show an
increased frequency of reactivation with aging, consistent
with age-related epigenetic change [39, 40]. The frequency
of epigenetic changes in mice may be one to two orders of
magnitude greater than the rate of somatic DNA mutation
[41]. This fits with a role of epigenetics in late-onset
disorders such as frailty, a syndrome of decreased resiliency
and reserves, in which a mutually exacerbating cycle of
declines across multiple systems results in negative energy
balance, sarcopenia, and diminished strength and tolerance
for exertion [42]. Accumulation of DNA sequence changes
might not occur at enough high rate during the lifespan to
induce common disease, but epigenetic changes may occur
at a frequency that could contribute to this effect. Very few
studies have demonstrated epigenetic changes in humans
with age due to technical and biosample limitations. A
recent study has shown differences in local and global
methylation by age by examining the similarity in methyl-
ation patterns between MZ twins aged 3 years old and MZ
twins aged 50. Although these analyses were not in the
same individuals (the same twins were not followed
longitudinally), the similarity in methylation patterns
between young twins compared to the dissimilar patterns
among older twins argues strongly for age-related changes
in the epigenome [43]. Direct evidence comes from a recent
study showing changes in DNA methylation in the same
individual over time, described in more detail below.

Epigenomics

Epigenomics refers to genome-scale analysis of epigenetic
marks. The term “methylome,” or genome-wide state of
DNAm, was first introduced by the author in 2001 [44].
Despite the availability of an essentially complete genome
sequence for several years, understanding the methylome
has progressed more slowly, largely due to limitations in

technology affecting sensitivity, specificity, throughput,
quantitation, and cost among the previously used detection
methods. All of the available methods involve trade-offs
among these variables. Furthermore, all of these variables
are themselves moving targets, particularly cost. The rule in
genomic science generally is that increased demand
substantially reduces cost because of three factors: fierce
competition in the biotechnology sector; production effi-
ciencies as methods are automated; and continued techno-
logical advances. It is also important to define clearly what
is meant by genome scale. The term is commonly applied
to any method not limited to specific predefined genes, but
no epigenomic method in common use examines the entire
epigenome. For the sake of this article, the discussion will
be limited to DNAm analysis because of its particular
suitability for pathological and epidemiological studies due
to its stability in biobanked specimens.

The human genome contains ∼3×109bp of DNA, of
which there are ∼3×107 CpG dinucleotides, and half of that
is nonrepetitive single- or low-copy sequence [45]. CpG
dinucleotides are the sites that can be methylated and the
methylation in turn replicated faithfully during cell division
by DNA methyltransferase 1. While non-CpG methylation
exists, it is not currently considered epigenetic information
since no mechanism is known for its propagation during
DNA replication.

What are the methods in common practice for measuring
genome-scale DNAm? While this review naturally is
written from the perspective of our own approaches, there
are several other excellent reviews of epigenomics [46, 47].
Most investigators are drawn to commercially available
methods, particularly those that can be performed as a
service, with only DNA needing to be prepared by the
investigator. However, these methods are not necessarily
the most comprehensive or most accurate. A method similar
to array-based SNP analysis is the Illumina GoldenGate
methylation assay [48], or its more recent cousin, the
Illumina Infinium methylation platform. Both methods
involve bisulfite conversion of unmethylated DNA to
uracil, followed by polymerase chain reaction (PCR) which
propagates a thymine residue at the converted base [49].
Methylated cytosine is unconverted and thus read as
cytosine. Thus, the methylation state (C/mC) is transformed
to a pseudopolymorphism (T/C, respectively). The readout
is then as for any SNP and is semiquantitative, accurate
within ∼17% for the GoldenGate assay [50]. The major
limitation of this approach is the relatively poor coverage of
the genome by both methods, only ∼1,500 CpG by
GoldenGate and ∼27,000 CpG by Infinium, thus represent-
ing 0.01% to 0.18% of the single-copy methylome. A
second limitation is the choices involved in selecting CpG
sites for analysis. The chips are designed based in part on
the idea that functional CpG methylation lies within
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canonical gene promoters and CpG islands. CpG islands are
defined algorithmically, i.e., based on a formula given
above. The major rationale for this choice is literature
showing hypermethylation of CpG islands in cancer. Yet,
those studies are largely self-referential in design, and
recent studies described below suggest that most variable
DNAm occurs outside of these islands. Nevertheless, great
advances have been made possible by these reagents and
methods, and they show the promise of increasing efforts
by many laboratories to improve the resolution of genome-
scale technology.

Furthermore, there are comparatively few data support-
ing the choice specifically of promoters and CpG islands
for studies of other diseases, or normal population
variation. Indeed, a relatively small scale but very compre-
hensive study was performed by Stephan Beck at the
Sanger Center on ∼1.8 Mb of DNA including ∼40,000 CpG
sites across 12 tissues [10]. The study showed that most
methylation variation was not at transcriptional start site-
associated CpGs or at CpG islands [10]. One encouraging
result from that study, for those who wish to use CpG chips
as described above, was a high degree of correlation
between CpG site methylation within a few hundred base
pairs. However, the choice of one or two CpGs per
candidate region seems precariously underrepresented.

A second approach in common practice is hybridization
of antibody-purified methylated DNA to high-density
genome arrays [51]. For example, NimbleGen offers of
methylated DNA immunoprecipitation (MeDIP) to a ∼2-
Mb array tiled through gene promoters and CpG islands.
The coverage of this array is much greater than the SNP-
based arrays described above. However, choice of selection
is still a significant issue given that complete tiling of
the genome would currently require ten arrays, which is
cost-prohibitive for large-scale epidemiological studies.
Furthermore, MeDIP shows significant limitations in dis-
criminating methylation differences in regions of medium- to
low-density CpG content [52], and our recent study shows
that that is exactly where many or most significant variation
in DNAm occurs [53]. Another method focused on CpG
islands is restriction landmark genome scanning [54]. There
are emerging alternatives for methylation fractionation,
including affinity purification of methylated DNA on
methyl-CpG-binding protein [55], or affinity purification
of unmethylated DNA [56].

Two promising methods for genome-scale analysis use
methylated DNA fractionation based on restriction endo-
nuclease digestion. One of these, developed by John
Greally and colleagues at Albert Einstein College of
Medicine in New York, is termed HELP for HpaII-tiny
fragment Enrichment by Ligation-mediated PCR [57]. It
takes advantage of the difference in sizes of Hpa-II
fragments, which are generated from unmethylated DNA,

and Msp-I fragments, which recognize the same cleavage
site but are methylation-independent. While initial speci-
ficity was relatively limited, recent improvements involve
additional methylcytosine sensitive endonucleases and
allow representation of >98% of CpG islands and >90%
of refSeq promoters, and it can also be combined with next
generation sequencing for readout [58]. A second involves
fractionation of the unmethylated component with McrBC,
which recognizes methylated DNA if there are two
methylcytosines preceded by purines and separated by
∼40–100 b, an easy condition to meet for methylated DNA
except at very low CpG density. This approach was first
applied to specific chromosome analysis [59] but was
subsequently extended to study of human cancer [60].

Rafael Irizarry and I with our colleagues developed an
array-based readout method that is independent of methyla-
tion fractionation method and can be applied equally to
McrBC, HELP, or antibody-based methods. This approach,
termed CHARM for comprehensive high-throughput array-
based relative methylation analysis, involves two essential
components. First, the array is agnostic to presuppositions
about the location of differential methylation and tiles through
regions based only on the relative CpG content in decreasing
abundance [52]. It, therefore, includes all CpG islands, but
that represents only 38% of the CpG “real estate,” or
available oligonucleotide probe positions for analysis on the
array. One could use additional arrays or soon to be released
higher density arrays to increase coverage, which is now
about one fourth of the entire nonrepetitive methylome. The
second component is genome-weighted smoothing, or
correction for the hybridization properties of the target (i.e.,
sample) genome at each location, which is in turn calculated
from empirical measurements of hybridization efficiency
with regard to GC content, CpG density, and length of
fragments [52]. A statistical suite of postprocessing algo-
rithms, written in R, is termed CharmR and is continually
revised. The arrays and CharmR are open access and open
source (http://www.biostat.jhsph.edu/∼maryee/charmR/).
Thus, while not commercially available, this technology is
readily transportable to core laboratories that have statistical
and programming support.

Although my colleagues and I have developed one of the
current approaches to epigenomic analysis, we gladly
welcome the advent of second generation sequencing
technology for DNAm analysis. There are multiple com-
peting commercial platforms for massively parallel se-
quencing on slides, with throughput per machine >300 Gb
per run at <1% of the cost of conventional automated
sequencing [61, 62]. A particular advantage of sequencing-
based methylation analysis is the ability to ascertain allele-
specific methylation by virtue of DNA polymorphisms
within the same sequencing read. This is particularly true as
longer reads become cost-effective.
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Nevertheless, whole genome bisulfite sequencing ap-
plied to humans is not presently cost-effective for epidemi-
ological studies. Costs are in the many tens of thousands of
dollars, compared to hundreds of dollars per sample for
alternative less comprehensive methods. Therefore,
sequencing-based methods all involve significant trade-
offs. One method involves “reduced representation,” using
restriction enzymes to limit the sequenced target to regions
within CpG islands [63], which may miss significant
normal variation in patient populations or across tissues
[53]. Single molecule sequencing detection, such as in
development by Pacific Biosystems, or other methods not
widely discussed publicly, might reduce costs to the point
of making whole genome shotgun sequencing inexpensive
compared to other methods for epigenomic profiling. Until
that day comes, however, a great deal can be learned about
the methylome of human normal and disease populations
using array or chip-based approaches.

The first genome-scale epigenetic analysis of human
cancer: CpG island shores

We recently exploited CHARM methodology to perform
the first genome-scale analysis of the human cancer
methylome and to compare it to the normal tissue-varying
methylome. A comparison was first made of DNA from
five autopsy specimens, three matched tissues each repre-
senting the three embryonic lineages, brain, liver, and
spleen. Surprisingly, most tissue-specific DNAm was not at
CpG islands but at regions of intermediate CpG density
located up to 2 kb from the islands, and which we termed
“CpG island shores” [53]. Even though CpG islands
accounted for 33% of the CpG real estate on the arrays,
they only accounted for 6% of these tissue-varying
differentially methylated regions, or T-DMRs. In contrast
76% of T-DMRs were in CpG island shores. Furthermore,
the T-DMRs were located for the most part outside of
promoters (96%), and more than half were >2 kb from the
nearest annotated gene [53].

Next, comparing 13 colorectal cancers to matched
normal mucosa from the same patients, 2,707 regions were
identified showing cancer-specific differentially methylated
regions, or C-DMRs, under a false discovery rate of 5%.
These, too, were highly enriched at CpG island shores
(67%), and islands were comparatively underrepresented
(8% compared to 38% on the arrays). The data were highly
reproducible, being validated by independent quantitative
bisulfite pyrosequencing on a replicate set of 50 colon
cancers and matched normal mucosa [53].

Remarkably, there was a comparable amount of hyper-
methylation as hypomethylation, even though the cancer
literature is heavily biased toward the former. That may be

because the CpG islands, even though underrepresented for
C-DMRs overall, show hypermethylation when methyla-
tion is altered in cancer, while the shores away from the
islands tend toward relative hypomethylation. In retrospect,
this is not surprising, since CpG islands are protected
against normal DNA methylation, and thus, the only
direction they can commonly change in disease is toward
relative hypermethylation. In any case, the common dictum
that cancer shows repetitive DNA hypomethylation and
gene-specific hypermethylation appears to be false. While
the former is true, single genes are numerically comparably
altered by hypomethylation and hypermethylation in cancer
[53]. These results are illustrated in Fig. 1.

This comparative methylome analysis also showed that C-
DMRs and T-DMRs largely overlap (65% using an F
statistic). Indeed, if one performs supervised clustering to
identify the C-DMRs that distinguish colorectal cancer from
normal mucosa, those same DMRs in unsupervised cluster-
ing completely discriminate spleen from liver from brain
[53]. Thus, the DMRs that regulate normal differentiation are
involved in aberrant methylation in cancer, and this may
occur generally across cancer, since they even distinguish
tissues not of the type from which the cancer derives.

What do CpG island shores do? This is of great relevance
to any investigator interested in the disease epigenome, since
they were previously unapparent yet obviously at the heart of

Fig. 1 Altered DNA methylation of CpG island shores in human
colon cancer. Shown are an example of hypomethylation (Gene A,
top) and hypermethylation (Gene B, bottom) in cancer revealed by a
genome-scale analysis of the cancer methylome. Gene A is normally
methylated at the shore and not at the island, and it acquires a
hypomethylated pattern at the shore in colon cancer, resembling that
of the normal liver. Aberrant expression at an alternate promoter, or
for an untranslated RNA, is activated at the shore. Gene B is normally
unmethylated at both shore and island, and it acquires a hyper-
methylated island at the shore, resembling the normal liver, and
potentially at the island as well. Aberrant silencing ensues at the shore
and potentially at the canonical promoter
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normal and abnormal variation. One clue comes from their
localization, as they appear to be enriched in alternative
transcriptional start sites for annotated genes, as well as
unannotated RNAs. This localization was functionally sup-
ported by rapid amplification of complementary DNA ends
experiments showing that hypomethylated CpG island shores
in cancer show activation of alternative transcriptional start
sites within them in the same tumor showing hypomethyla-
tion at these sites [53].

The new field of epigenetic epidemiology

Epidemiology is the study of disease in populations, and
genetic epidemiology, or the relationship of genetic
variation to disease, has exploded by taking advantage of
the data generated by the HapMap project, a consortium
effort to identify six million common polymorphisms
across the genome and in the major human population
groupings [64]. Genome-wide association studies have
become the mainstay of human genetics research and have
identified nearly 100 loci for over 40 diseases [65].
Concomitant copy number variant (CNV) analysis which
can be performed on the same chip platform has also
identified insertions or deletions that contribute to common
disease [66]. However, epigenomics has not yet been
integrated into the routine search for variation contributing
to human disease susceptibility.

The new field of epigenetic epidemiology will measure
and catalog such epigenetic variation within and across
populations and to characterize the correlation properties of
methylation, similar to the catalog of SNP/CNV variation
and linkage disequilibrium. Epigenetic epidemiology can
also provide a unique perspective on the environmental
factors contributing to common disease. Several examples of
environmentally mediated epigenetic effects have been
documented, including the influence of methyl donors and
folate from diet on methylation levels, smoking influence on
methylation, and the effects of metallotoxins [67, 68]. DNA
methylation occurs by homocysteine conversion to methio-
nine, which is then converted to S-adenosylmethionine, the
common methyl donor for DNAm. Animal work has shown
that folate-deprived rats become hypomethylated locally, at
particular genes [69, 70] and globally [71]. Human cell work
has shown that specific genes may be hyper- or hypomethy-
lated with reduced folate [72]. Also, clinical studies have
shown a correlation between serum folate levels and
hypomethylation [73], and epidemiologic interventions show
older women put on folate-depleted diets result in increased
plasma homocysteine and decreased methylation [74, 75]. A
hypomethylation defect was associated with assisted repro-
ductive technology in the conception of children with
Beckwith–Wiedemann syndrome, a disorder of prenatal

overgrowth, birth defects, and cancer [76], which has been
borne out by several other groups [77, 78]. Thus, prenatal
exposure can act through an epigenetic mechanism.

The prior focus of epigenomics on the simple interface
between epigenetics and human disease phenotype varia-
tion has prepared us now to address the more complex task
of including genetic variation in genome-scale analysis.
Going forward, it is critical to develop genome-wide tools
to determine the relationship between genetic variation,
epigenetic variation, and disease simultaneously. This area
of overlap, the hashed area in Fig. 2, is deliberately drawn
as the larger fraction of the overlap between genetics and
phenotype to emphasize that most genetic findings must be
considered in an epigenetic context and to highlight that the
full value of typical genetic epidemiology studies cannot be
realized until the complementary epigenetic measures and
statistical tools are developed and performed on these
samples.

Fallin, Bjornsson, and I have proposed a common
disease genetic and epigenetic (CDGE) model for human
disease, which states that DNA sequence variation (tradi-
tional genetics), environment, and epigenetic mechanisms
interact to cause or accelerate common disease, especially
those of later onset [23, 79]. CDGE provides a model for
understanding how one might integrate epigenetics into
traditional studies genetics and the environment. For
example, epigenetic marks such as DNAm may influence
disease risk, either directly (such as aberrant DNAm turning
a gene on/off inappropriately) or indirectly (through
masking/unmasking DNA sequence variation that has
disease consequences). This type of DNA variation, whose
penetrance is dependent on epigenetic context, is denoted
“gdep,” since it is only one risk factor in the context of

Fig. 2 Epigenetic epidemiology. New genome-scale tools for epige-
netic analysis will allow us to determine the relationship between
genetic variation, epigenetic variation, and disease simultaneously.
The area of overlap is deliberately drawn as the larger fraction of the
overlap between genetics and phenotype to emphasize that most
genetic findings must be considered in an epigenetic context and to
highlight that the full value of typical genetic epidemiology studies
cannot be realized until the complementary epigenetic measures and
statistical tools are developed and performed on these samples
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certain epigenetic patterns. This type of sequence variation
would be difficult to discover in traditional genetic
association approaches, without knowledge of the epige-
netic background. Parent-of-origin analyses in genetic
epidemiology are aimed at accommodating this problem
in the context of imprinting, but this is often low-powered
and only addresses one kind of epigenetic model. Whether
epigenotype (e.g., DNAm) acts directly or indirectly on
disease risk, factors that control epigenotype are themselves
critical risk factors. DNA variation that controls epigeno-
type such as DNAm may be located, for example, in genes
that encode proteins in the one-carbon transfer pathway and
may affect the cell’s ability to maintain DNAm. This type of
risk-related DNA variation is denoted “gepg” to indicate that
the multiple effects manifest through an epigenetic mecha-
nism. With these thoughts in mind, at least three models can
be considered for how DNA variation may contribute to risk:
(1) independently of epigenetic mechanisms (gind), (2) as
genetic mediators of epigenetic modifications of other genes
(gepg), or (3) where the effect of the genetic variant depends
on its epigenetic context (gdep). Only the first of these would
be easily detected in current genetic association studies.
Current genetic studies might have reduced power to detect
gepg without epigenotype measures or knowledge of the
factors that contribute to epigenotype. Current genetic
studies would have virtually no power to detect gdep without
epigenetic measurement [23, 79].

A critical clue to CDGE comes from a global genome-
scale measurement of DNAm termed luminometric meth-
ylation assay (LUMA), a precise quantitative measure of
Hpa II site methylation. Using LUMA, intraindividual
change in DNA methylation was found over time with
familial clustering. DNA from 111 participants in the
AGES Reykjavik Study [80] was first analyzed. In this
cohort, 8.1% of individuals showing changes greater than
20% in Hpa II methylation over time, and these were
approximately equally divided between gains and losses of
DNAm. Permutation analysis showed that the change
observed was much greater than by chance (P<0.0001)
[81]. Next examined was a second cohort of 126 individ-
uals from a collection of Utah pedigrees that had been
sampled twice over an average of 16 years. In this group,
11% of individuals show changes greater than 20% in Hpa
II methylation over time. The Utah pedigrees showed high
heritability, with a heritability estimate of 0.99 (P<0.0001)
[81]. The familial clustering of methylation changes raises
the possibility that methylation changes could be directly
related to genetic variation, as suggested by CDGE.
Another recent study shows associations of single nucleo-
tide polymorphisms with nearby differences in DNA
methylation [82], consistent with CDGE.

Future needs for epigenetic epidemiology will require
advances in three areas. First, we must develop scalable,

cost-effective approaches for population-level epigenetic
profiling. This includes technical advances in measurement
and quantification of DNAm. We must also develop even
more comprehensive coverage of the epigenome. This can
be done by increasing real estate on the arrays, in part
perhaps by reducing coverage of highly comparable
adjacent sequences on the tiled regions, or by increasing
array density as will occur this year. A substantial advance
will come from combining array-based advances with
second generation sequencing technology. For example,
one could capture the relevant epigenome target (identified
by studies on arrays) using arrays or molecular inversion
probe or other solution-based technologies and then
perform bisulfite-based shotgun sequencing for single
nucleotide resolution.

Second, we must further develop the statistical tools and
concepts that are necessary to analyze, interpret, and compare
population-level epigenetic data. A critical requirement for
epidemiological analyses is the transformation of granular
individual epigenotypes into the higher-level epidemiological
data types without significant information loss. This will
include developing new statistical tools for identifying the
subset of variable DNAm regions relevant to human disease
and developing methods to simplify granular methylation
patterns into epigenetic “barcodes,” similar to the work by
Irizarry on gene expression [83].

Third, we must integrate conventional genetic epidemi-
ology with these epigenetic data to fully develop epigenetic
epidemiology. We must answer fundamental questions
about type, frequency, and properties of epigenetic variation
within and across individuals, families, and populations.
This can be done by relating genetic variation to epigenetic
variation in normal populations, or by investigating
epigenetic differences among monozygotic twins. A critical
question is whether epigenetic marks are transmitted intact
from parent to offspring and whether DNAm is allele-
specific and covaries with allele-specific gene expression.
For example, can we develop an epigenetic transmission
test comparable to the transmission disequilibrium test used
in genetic epidemiology? Finally, and most excitingly, we
must begin to examine the epigenome comprehensively in
large population-based epidemiological studies of disease.
Such studies will greatly enhance cancer risk assessment
and prevention and are already showing promise in better
understanding common neuropsychiatric disease.
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